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1 Notation

H . . . the empty set [1]
exp U . . . the set of all subsets of set U [1]
U ˆ V . . . Cartesian product of sets U and V [1]
Z . . . whole numbers [1]
Zě0 . . . non-negative Z [2] (i.e. 0, 1, 2, . . .)
Q . . . rational numbers [3]
R . . . real numbers [3]
i . . . imaginary unit [3]
pS,`, q . . . space of geometric scalars
A . . . affine space (space of geometric vectors)
pAo,‘,dq . . . space of geometric vectors bound to point o
pV,‘,dq . . . space of free vectors
A2 . . . real affine plane
A3 . . . three-dimensional real affine space
P2 . . . real projective plane
P3 . . . three-dimensional real projective space
~x . . . vector
A . . . matrix
Ai j . . . i j element of A
AJ . . . transpose of A
A: . . . conjugate transpose of A
|A| . . . determinant of A
I . . . identity matrix
R . . . rotation matrix
b . . . Kronecker product of matrices

β “ r~b1,~b2,~b3s . . . basis (an ordered triple of independent generator vectors)
β‹, β̄ . . . the dual basis to basis β
~xβ . . . column matrix of coordinates of ~x w.r.t. the basis β
~x ¨ ~y . . . Euclidean scalar product of ~x and ~y (~x ¨ ~y “ ~xJ

β
~yβ in an

orthonormal basis β)
~x ˆ ~y . . . cross (vector) product of ~x and ~y
r~xsˆ . . . the matrix such that r~xsˆ ~y “ ~x ˆ ~y

}~x} . . . Euclidean norm of ~x (}~x} “
?
~x ¨ ~x)

orthogonal vectors . . . mutually perpendicular vectors
equi-orthogonal vectors . . . orthogonal vectors of equal length
orthonormal vectors . . . unit orthogonal vectors
orthogonal matrix . . . matrix with non-zero equi-orthogonal columns and rows
orthonormal matrix . . . matrix with orthonormal columns and rows
P ˝ l . . . point P is incident to line l
P _ Q . . . line(s) incident to points P and Q
k ^ l . . . point(s) incident to lines k and l

1



2 Linear algebra

We rely on linear algebra [4, 5, 6, 7, 8, 9]. We recommend excellent text books [7, 4] for acquiring basic
as well as more advanced elements of the topic. Monograph [5] provides a number of examples and
applications and provides a link to numerical and computational aspects of linear algebra. We will
next review the most crucial topics needed in this text.

2.1 Change of coordinates induced by the change of basis

Let us discuss the relationship between the coordinates of a vector in a linear space, which is induced
by passing from one basis to another. We shall derive the relationship between the coordinates in a
three-dimensional linear space over real numbers, which is the most important when modeling the
geometry around us. The formulas for all other n-dimensional spaces are obtained by passing from
3 to n.

§1 Coordinates Let us consider an ordered basis β “
”

~b1
~b2

~b3

ı

of a three-dimensional vector

space V3 over scalarsR. A vector ~v P V3 is uniquely expressed as a linear combination of basic vectors

of V3 by its coordinates x, y, z P R, i.e. ~v “ x ~b1 ` y ~b2 ` z~b3, and can be represented as an ordered

triple of coordinates, i.e. as ~vβ “
“

x y z
‰J

.
We see that an ordered triple of scalars can be understood as a triple of coordinates of a vector

in V3 w.r.t. a basis of V3. However, at the same time, the set of ordered triples
“

x y z
‰J

is

also a three-dimensional coordinate linear space R3 over R with
“

x1 y1 z1

‰J `
“

x2 y2 z2

‰J “
“

x1 ` x2 y1 ` y2 z1 ` z2

‰J
and s

“

x y z
‰J “

“

s x s y s z
‰J

for s P R. Moreover, the ordered
triple of the following three particular coordinate vectors

σ “

»

–

»

–

1
0
0

fi

fl

»

–

0
1
0

fi

fl

»

–

0
0
1

fi

fl

fi

fl (2.1)

forms an ordered basis of R3, the standard basis, and therefore a vector ~v “
“

x y z
‰J

is represented

by ~vσ “
“

x y z
‰J

w.r.t. the standard basis inR3. It is noticeable that the vector ~v and the coordinate
vector ~vσ of its coordinates w.r.t. the standard basis of R3, are identical.

§2 Two bases Having two ordered bases β “
”

~b1
~b2

~b3

ı

and β1 “
”

~b 1
1
~b 1

2
~b 1

3

ı

leads to express-

ing one vector ~x in two ways as ~x “ x ~b1 ` y ~b2 ` z ~b3 and ~x “ x1~b 1
1

` y1~b 1
2

` z1~b 1
3
. The vectors of the

basis β can also be expressed in the basis β1 using their coordinates. Let us introduce

~b1 “ a11
~b 1

1 ` a21
~b 1

2 ` a31
~b 1

3

~b2 “ a12
~b 1

1 ` a22
~b 1

2 ` a32
~b 1

3 (2.2)

~b3 “ a13
~b 1

1 ` a23
~b 1

2 ` a33
~b 1

3

2
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§3 Change of coordinates We will next use the above equations to relate the coordinates of ~x w.r.t.
the basis β to the coordinates of ~x w.r.t. the basis β1

~x “ x ~b1 ` y ~b2 ` z ~b3

“ x pa11
~b 1

1 ` a21
~b 1

2 ` a31
~b 1

3q ` y pa12
~b 1

1 ` a22
~b 1

2 ` a32
~b 1

3q ` z pa13
~b 1

1 ` a23
~b 1

2 ` a33
~b 1

3q
“ pa11 x ` a12 y ` a13 zq~b 1

1 ` pa21 x ` a22 y ` a23 zq~b 1
2 ` pa31 x ` a32 y ` a33 zq~b 1

3

“ x1~b 1
1 ` y1~b 1

2 ` z1~b 1
3 (2.3)

Since coordinates are unique, we get

x1 “ a11 x ` a12 y ` a13 z (2.4)

y1 “ a21 x ` a22 y ` a23 z (2.5)

z1 “ a31 x ` a32 y ` a33 z (2.6)

Coordinate vectors ~xβ and ~xβ 1 are thus related by the following matrix multiplication

»

–

x1

y1

z1

fi

fl “

»

–

a11 a12 a13

a21 a22 a23

a31 a32 a33

fi

fl

»

–

x
y
z

fi

fl (2.7)

which we concisely write as

~xβ1 “ A ~xβ (2.8)

The columns of matrix A can be viewed as vectors of coordinates of basic vectors, ~b1,~b2,~b3 of β in the
basis β1

A “

»

—

–

| | |
~b1β1

~b2β1
~b3β1

| | |

fi

ffi

fl
(2.9)

and the matrix multiplication can be interpreted as a linear combination of the columns of A by
coordinates of ~x w.r.t. β

~xβ1 “ x~b1β1 ` y~b2β1 ` z~b3β1 (2.10)

Matrix A plays such an important role here that it deserves its own name. Matrix A is very often called
the change of basis matrix from basis β to β1 or the transition matrix from basis β to basis β1 [5, 10] since it
can be used to pass from coordinates w.r.t. β to coordinates w.r.t. β1 by Equation 2.8.

However, literature [6, 11] calls A the change of basis matrix from basis β1 to β, i.e. it (seemingly
illogically) swaps the bases. This choice is motivated by the fact that A relates vectors of β and vectors
of β1 by Equation 2.2 as

”

~b1
~b2

~b3

ı

“
”

a11
~b 1

1 ` a21
~b 1

2 ` a31
~b 1

3 a12
~b 1

1 ` a22
~b 1

2 ` a32
~b 1

3

a13
~b 1

1 ` a23
~b 1

2 ` a33
~b 1

3

ı

(2.11)

”

~b1
~b2

~b3

ı

“
”

~b 1
1
~b 1

2
~b 1

3

ı

»

–

a11 a12 a13

a21 a22 a23

a31 a32 a33

fi

fl (2.12)

and therefore giving

”

~b1
~b2

~b3

ı

“
”

~b 1
1
~b 1

2
~b 1

3

ı

A (2.13)

3
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or equivalently

”

~b 1
1
~b 1

2
~b 1

3

ı

“
”

~b1
~b2

~b3

ı

A´1 (2.14)

where the multiplication of a row of column vectors by a matrix from the right in Equation 2.13 has
the meaning given by Equation 2.11 above. Yet another variation of the naming appeared in [8, 9]
where A´1 was named the change of basis matrix from basis β to β1.

We have to conclude that the meaning associated with the change of basis matrix varies in the literature
and hence we will avoid this confusing name and talk about A as about the matrix transforming
coordinates of a vector from basis β to basis β1.

There is the following interesting variation of Equation 2.13

»

—

–

~b 1
1
~b 1

2
~b 1

3

fi

ffi

fl
“ A´J

»

—

–

~b1

~b2

~b3

fi

ffi

fl
(2.15)

where the basic vectors of β and β1 are understood as elements of column vectors. For instance, vector
~b 1

1
is obtained as

~b 1
1 “ a‹

11
~b1 ` a‹

12
~b2 ` a‹

13
~b3 (2.16)

where ra‹
11
, a‹

12
, a‹

13
s is the first row of A´J.

§4 Example We demonstrate the relationship between vectors and bases on a concrete example.
Consider two bases α and β represented by coordinate vectors, which we write into matrices

α “
“

~a1 ~a2 ~a3

‰

“

»

–

1 1 0
0 1 1
0 0 1

fi

fl (2.17)

β “
”

~b1
~b2

~b3

ı

“

»

–

1 1 1
0 0 1
0 1 1

fi

fl , (2.18)

and a vector ~x with coordinates w.r.t. the basis α

~xα “

»

–

1
1
1

fi

fl (2.19)

We see that basic vectors of α can be obtained as the following linear combinations of basic vectors of
β

~a1 “ `1~b1 ` 0~b2 ` 0~b3 (2.20)

~a2 “ `1~b1 ´ 1~b2 ` 1~b3 (2.21)

~a3 “ ´1~b1 ` 0~b2 ` 1~b3 (2.22)

or equivalently

“

~a1 ~a2 ~a3

‰

“
”

~b1
~b2

~b3

ı

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl “
”

~b1
~b2

~b3

ı

A (2.23)

4
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Coordinates of ~x w.r.t. β are hence obtained as

~xβ “ A ~xα, A “

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl (2.24)

»

–

1
´1

2

fi

fl “

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl

»

–

1
1
1

fi

fl (2.25)

We see that

α “ β A (2.26)
»

–

1 1 0
0 1 1
0 0 1

fi

fl “

»

–

1 1 1
0 0 1
0 1 1

fi

fl

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl (2.27)

The following questions arises: When are the coordinates of a vector ~x (Equation 2.8) and the basic
vectors themselves (Equation 2.15) transformed in the same way? In other words, when A “ A´J. We
shall give the answer to this question later in paragraph 2.4.

2.2 Determinant

Determinat [4] of a matrix A, denoted by |A|, is a very interesting and useful concept. It can be, for
instance, used to check the linear independence of a set of vectors or to define an orientation of the
space.

2.2.1 Permutations

A permutation [4] π on the set rns“ t1, . . . ,nu of integers is a one-to-one function from rns onto rns.
The identity permutation will be denoted by ǫ, i.e. ǫpiq “ i for all i P rns .

§1 Composition of permutations Let σ and π be two permutations on rns. Then, their composi-
tion, i.e. πpσq, is also a permutation on rns since a composition of two one-to-one onto functions is a
one-to-one onto function. We see that if πpσpiqq “ πpσp jqq, then σpiq “ σp jq and therefore i “ j since π
and σ are one-to-one functions. On the other hand, if i “ j, then πpσpiqq “ πpσp jqq. To simplify the
notation when composing a large number of permutations, we will sometimes write πσ for the com-
position πpσq and πk for the sequence of k compositions of π. For instance πpπpiqq “ ππpiq “ π2piq.
Let us not forget that πσ ‰ σπ in general.

Let us next show that every permutation can be written as a composition of some simple permu-
tations. We first define particularly simple permutations.

§2 Cycles Take i P rns and look at the values in the sequence ri, πpiq, π2piq, . . .s. Since the range of
π has n values, there must be 1 ď j ď m ď n such that π jpiq “ πmpiq. Hence ǫ “ pπ jpiqq´1pπmpiqq “
πm´ jpiq. Let k be the smallest number among all such numbers m ´ j. Then, the sequence cpiq “
ri, πpiq, . . . , πk´1piqs has pairwise distinct elements. We can now define a new permutation πcpiq as
follows. If j P cpiq, then πcpiqp jq “ πp jq and if j P rns but j R c, then πcpiqp jq “ j. Now, if k ě 2,
then permutation πcpiq is called the cycle of π generated by i. We could at this point also include the
permutations for k “ 1, which are equal to the identity ǫ, but then we would loose the nice property of
unique decomposition of permutations, which are not identities, into a composition of their disjoint
cycles. Notice that when j P cpiq, then πcp jq “ πcpiq, i.e. although sequences cpiq and cp jq are not the
same, functions πcp jq and πcpiq are equal. We say that πc is a cycle of π, or in short a cycle, when πc

5
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is a cycle of π generated by some i P rns. A cycle πc of length k can be represented as a sequence of
numbers c “ ri1, i2, . . . , iks, such that ip jmod k ` 1q “ πcpi jq. To be economical, this representation does
not list the fixed elements of πc, i.e. those for which πcpiq “ i.

§3 Transpositions A shortest cycle, which is of length two, is called a transposition.
It is important to notice that every cycle can be written as a composition of transpositions. All

shortest cycles are transpositions. Consider a cycle of length k ` 1 represented by the sequence
ck`1 “ ri1, i2, . . . , ik, ik`1s and the cycle ck “ ri1, i2, . . . , iks of length k and the transposition t “ ri1, ik`1s.
We see that πck`1

“ πtpπck
q. Thus, by the principle of mathematical induction [1], every cycle can be

written as a composition of transpositions.
There are many ways how to write a cycle as a composition of transpositions. A particularly useful

way is as follows. All shortest cycles are transpositions, which can be represented by ri1, i2s for some
i1, i2 P rns. Consider a cycle of length k ` 1 represented by the sequence ck`1 “ ri1, i2, . . . , ik, ik`1s and
the cycle ck “ ri1, i2, . . . , iks of length k and the transposition t “ rik, ik`1s. We see that πck`1

“ πck
pπtq.

Thus, by the principle of mathematical induction [1] a cycle πri1,i2,...,iks can be written as a composition
of transpositions πri1,i2,...,iks “ πri1,i2s πri2,i3s ¨ ¨ ¨πrik´2,ik´1s πrik´1,iks for every k.

§4 Decomposition of a permutation into disjoint cycles Let us now show that every permuta-
tion π, which is not the identity, can be uniquely written as a composition of cycles of π and thus
also as a composition of permutations of π. We introduce the equivalence relation [1] ”π on rns by
i ”π j when πcpiq “ πcp jq. This equivalence relation partitions [1] rns uniquely into 1 ď m ď n disjoint
equivalence classes. We distinguish two types of the classes. There are classes of the size equal to
one, which correspond to ǫ, and there are classes of the size larger than one, which are cycles. Let
C be the set of k ď m classes ci, i “ 1 . . . , k corresponding to cycles of the size |ci| ě 2, which are
uniquely represented by increasing sequences ci of integres. The set C is empty when π is the identity.
Otherwise C is non-empty and we claim that

π “ πc1πc2 ¨ ¨ ¨πck
(2.28)

To prove this, we have to show that the function on the left is equal to the function on the right. First,
j P rns is exactly in one of the equivalence classes. If it is in the equivalence class corresponding to
ǫ, then it is in no ci and therefore it is mapped by all πci

to itself, i.e. πci
p jq “ j for all 1 ď i ď k.

Therefore, πc1πc2 ¨ ¨ ¨πck
p jq “ j “ πp jq. If j is in a ci, then πci

p jq “ πp jq and πcmp jq “ j for all m ‰ i
Thus, πc1πc2 ¨ ¨ ¨πck

p jq “ πci
p jq “ πp jq. Notice that since ci X c j “ H, we have here πci

πc j
“ πc j

πci
for

all 1 ď i, j ď k and thus all πci
commute. We see that every permutation π ‰ ǫ can be written as a

unique composition of disjoint cycles. The term “disjoint” is related to the fact that the sequences
representing the cycles are disjoint.

§5 Decomposition of a permutation into transpositions Every permutation, which is not the
identity, can be written as a composition of cycles. Every cycle can be written as a composition of
transpositions. Therefore, every permutation, which is not the identity, can be written as a composi-
tion of transpositions. Since ǫ “ τ τ for every transposition, ǫ can also be written as a composition
of transpositions. Hence, we can say that any permutation can be written as a composition of
transpositions.

There are many ways how to compose a cycle from transpositions and there are many ways how
to write ǫ using transpositions, and therefore the decomposition of a permutation into transpositions
is not unique.

§6 Sign of a permutation We will now introduce another important concept related to permuta-
tions. Sign, sgnpπq, of a permutation π is defined as

sgnpπq “ p´1qNpπq (2.29)

6
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where Npπq is equal to the number of inversions in π, i.e. the number of pairs ri, js such that i, j P rns,
i ă j and πpiq ą πp jq.

§7 Hierarchy of permutations Consider a partition [1] of rns into two subsets I, J of rns, i.e.
rns “ I Y J and I X J “ H. Let |I| “ k and |J| “ m. Thus k ` m “ n.

Let us next study the set Srns of all permutations on rns and its relation to the sets SI of all
permutations of set I and SJ of all permutations of set J.

Let us use the following notation πpIq “ tπpiq | i P Iu for a permutation π and a set of integers I.
We introduce the equivalence relation „ on Srns by π „ σ for π, σ P Srns when πpIq “ σpIq. This
equivalence relation partitions Srns into the set E of (disjoint) equivalence classes.

As designed a permutation π P Π is a composition of three permutations, π “ πIpπJpπIJqq, where
πI permutes I, πJ permutes J and πIJ maps I onto IΠ and J onto JΠ such that for all i, j P I πIJpiq ă
πIJp jq ô i ă j and for all i, j P J πIJpiq ă πIJp jq.

Let us see that |E| “
`

n
k

˘

. A member Π of E contains all one-to-one functions from rns onto rns that
map I onto a fixed set IΠ of size k chosen out of rns. There are

`

n
k

˘

sets IΠ of size k. We further claim
that |Π| “ k! pn ´ kq!. An equivalence classΠ contains all one-to-one functions that map I onto IΠ and
J onto JΠ “ rnszIΠ. There are k! pn ´ kq! such functions. Thus, all equivalence classes in E contain the
same number k! pn ´ kq! of functions and we see that

`

n
k

˘

k! pn ´ kq! “ n!, which is the size of Srns.
exchanges some elements between I and J. Consider that every permutation π can be decomposed

into a composition of disjoint cycles

π “ pπI
1π

I
2 ¨ ¨ ¨πI

pqpπIJ
1
πIJ

2
¨ ¨ ¨πIJ

q qpπJ
1
πJ

2
¨ ¨ ¨πJ

rq (2.30)

for some integers p, q, r ě 0 and cycles πI
i
, i “ 1, . . . , p that keep J fixed, cycles πJ

i
, i “ 1, . . . , q that keep

I fixed, and cycles πIJ
i

, i “ 1, . . . , r that map at least one element from I to J and at least one element
from J to I.

Now, take a cycle πIJ, which exchanges some elements between I and J. We claim that the number
of exchanges between I and J induced by cycle πIJ is always even. Let us write πIJ as a sequence of
k transpositions πIJ “ τri1,i2sτri2,i3s ¨ ¨ ¨ τrik´1,iks. Let us start with a singleton set I1 “ tiu. Then, there are
exactly two transpositions τri´1,is, τri,i`1s from J to I and back. Now, let there be Ik with k exchanges
and add one more element j to Ik to get Ik`1. Then, three possibilities may arrise: (1) j ´ 1 and j ` 1 are
in Ik and then two exchanges are removed, (2) exactly one of j ´ 1, j ` 1 is in Ik and then on exchage
is added and one removed, i.e. the number of echanges remains the same, (3) none of j ´ 1, j ` 1 is
in Ik and then two exhanges are added. In all cases, the number of exchanges is changed by an even
number. Since the number of exchanges in I1 is even, the number of exchanges in Ik is even for all
integers k by the principle of mathematical induction [1].
πIpiq “ πpiq for all i P I and πIpiq “ i for i P J and πJpiq “ πpiq for all i P J and πJpiq “ i for i P I.

Functions πI, πJ commute since I and J are disjoint. Clearly, we see that sgnpπq “ sgnpπIq sgnpπJq.

2.2.2 Determinant

Let Sn be the set of all permutations on rns and A be an n ˆ n matrix. Then, determinant |A| of A is
defined by the formula

|A| “
ÿ

πPSn

sgnpπq A1,πp1q A2,πp2q ¨ ¨ ¨ An,πpnq (2.31)

Notice that for every π P Sn and for j P rns there is exactly one i P rns such that j “ πpiq. Hence

tr1, πp1qs, r2, πp2qs, . . . , rn, πpnqsu “
 

rπ´1p1q, 1s, rπ´1p2q, 2s, . . . , rπ´1pnq,ns
(

(2.32)

and since the multiplication of elements of A is commutative, we get

|A| “
ÿ

πPSn

sgnpπq Aπ´1p1q,1 Aπ´1p2q,2 ¨ ¨ ¨ Aπ´1pnq,n (2.33)

7
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Next, let σ P Sn, then tπσ | @π P Snu “ Sn since for every τ P Sn there is π “ τσ´1 P Sm and
therefore τ “ πσ P tπσ | @π P Snu. The other incluson is obvious. An analogical argument shows that
tσπ | @π P Snu “ Sn too. Thus

ÿ

πPSn

sgnpσπσ´1q A1,σπσ´1p1q A2,σπσ´1p2q ¨ ¨ ¨ An,σπσ´1pnq (2.34)

“
ÿ

πPSn

sgnpσq sgnpπq sgnpσ´1q Aσ´1p1q,πσ´1p1q Aσ´1p2q,πσ´1p2q ¨ ¨ ¨ Aσ´1pnq,πσ´1pnq

“
ÿ

πPSn

sgnpπq Aσ´1p1q,πσ´1p1q Aσ´1p2q,πσ´1p2q ¨ ¨ ¨ Aσ´1pnq,πσ´1pnq (2.35)

“
ÿ

πPSn

sgnpπq A1,πp1q A2,πp2q ¨ ¨ ¨ An,πpnq “ |A| (2.36)

Let us next define a submatrix of A and find its determinant. Consider k ď n and two one-to-one
monotonic functions ρ, ν : rks Ñ rns, i ă j ñ ρpiq ă ρp jq, νpiq ă νp jq. We define k ˆ k submatrix Aρ,ν of
an n ˆ n matrix A by

A
ρ,ν
i, j

“ Aρpiq,νp jq for i, j P rks (2.37)

We get the determinant of Aρ,ν as follows

|Aρ,ν| “
ÿ

πPSk

sgnpπq Aρ,ν
1,πp1q

A
ρ,ν

2,πp2q
¨ ¨ ¨ Aρ,ν

k,πpkq
(2.38)

“
ÿ

πPSk

sgnpπq Aρp1q,νpπp1qq Aρp2q,νpπp2qq ¨ ¨ ¨ Aρpkq,νpπpkqq (2.39)

Let us next split the rows of the matrix A into two groups of k and m rows and find the relationship
between |A| and the determinants of certain k ˆ k and m ˆ m submatrices of A. Take 1 ď k,m ď n such
that k ` m “ n and define a one-to-one function ρ : rms Ñ rk ` 1,ns “ tk ` 1, . . . ,nu, by ρpiq “ k ` i.
Next, let Ω Ď exp rns be the set of all subsets of rns of size k. Let ω P Ω. Then, there is exactly one
one-to-one monotonic function ϕω from rks onto ω since rks and ω are finite sets of integers of the
same size. Let ω “ rnszω. Then, there is exactly one one-to-one monotonic function ϕω from rk ` 1,ns
onto ω. Let further there be πk P Sk and πm P Sm. With the notation introduced above, we are getting
a version of the generalized Laplace expansion of the determinant [12, 13]

|A| “
ÿ

ωPΩ

¨

˝

ź

iPrks, jPrk`1,ns

sgnpϕωp jq ´ ϕωpiqq

˛

‚|Aǫ,ϕω |
ˇ

ˇ

ˇA
ρ,ϕωpρq

ˇ

ˇ

ˇ (2.40)

2.3 Vector product

Let us look at an interesting mapping from R3 ˆ R3 to R3, the vector product in R3 [7] (which it also
often called the cross product [5]). Vector product has interesting geometrical properties but we shall
motivate it by its connection to systems of linear equations.

§1 Vector product Assume two linearly independent coordinate vectors

~x “
“

x1 x2 x3

‰J
and ~y “

“

y1 y2 y3

‰J
in R3. The following system of linear equations

„

x1 x2 x3

y1 y2 y3



~z “ 0 (2.41)

has a one-dimensional subspace V of solutions in R3. The solutions can be written as multiples of
one non-zero vector ~w, the basis of V, i.e.

~z “ λ ~w, λ P R (2.42)

8
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Let us see how we can construct ~w in a convenient way from vectors ~x, ~y.
Consider determinants of two matrices constructed from the matrix of the system (2.41) by adjoining

its first, resp. second, row to the matrix of the system (2.41)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3

y1 y2 y3

x1 x2 x3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3

y1 y2 y3

y1 y2 y3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 (2.43)

which gives

x1 px2 y3 ´ x3 y2q ` x2 px3 y1 ´ x1 y3q ` x3 px1 y2 ´ x2 y1q “ 0 (2.44)

y1 px2 y3 ´ x3 y2q ` y2 px3 y1 ´ x1 y3q ` y3 px1 y2 ´ x2 y1q “ 0 (2.45)

and can be rewritten as
„

x1 x2 x3

y1 y2 y3



»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl “ 0 (2.46)

We see that vector

~w “

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl (2.47)

solves Equation 2.41.
Notice that elements of ~w are the three two by two minors of the matrix of the system (2.41). The

rank of the matrix is two, which means that at least one of the minors is non-zero, and hence ~w is also
non-zero. We see that ~w is a basic vector of V. Formula 2.47 is known as the vector product in R3 and
~w is also often denoted by ~x ˆ ~y.

§2 Vector product under the change of basis Let us next study the behavior of the vector
product under the change of basis in R3. Let us have two bases β, β 1 in R3 and two vectors ~x, ~y with

coordinates ~xβ “
“

x1 x2 x3

‰J
, ~yβ “

“

y1 y2 y3

‰J
and ~xβ 1 “

“

x 1
1

x 1
2

x 1
3

‰J
, ~yβ “

“

y 1
1

y 1
2

y 1
3

‰J
.

We introduce

~xβ ˆ ~yβ “

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl ~xβ 1 ˆ ~yβ 1 “

»

–

x 1
2
y 1

3
´ x 1

3
y 1

2
´x 1

1
y 1

3
` x 1

3
y 1

1
x 1

1
y 1

2
´ x 1

2
y 1

1

fi

fl (2.48)

To find the relationship between ~xβ ˆ ~yβ and ~xβ 1 ˆ ~yβ 1 , we will use the following fact. For every three

vectors ~x “
“

x1 x2 x3

‰J
, ~y “

“

y1 y2 y3

‰J
, ~z “

“

z1 z2 z3

‰J
in R3 there holds

~zJp~x ˆ ~yq “
“

z1 z2 z3

‰

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3

y1 y2 y3

z1 z2 z3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ

~yJ

~zJ

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(2.49)
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We can write

~xβ 1 ˆ ~yβ 1 “

»

–

r1 0 0s p~xβ 1 ˆ ~yβ 1q
r0 1 0s p~xβ 1 ˆ ~yβ 1q
r0 0 1s p~xβ 1 ˆ ~yβ 1q

fi

fl “

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β 1

~yJ
β 1

1 0 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β 1

~yJ
β 1

0 1 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β 1

~yJ
β 1

0 0 1

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

J

“

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β A

J

~yJ
β A

J

1 0 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β A

J

~yJ
β A

J

0 1 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β A

J

~yJ
β A

J

0 0 1

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

J

“

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β

~yJ
β

r1 0 0s A´J

fi

ffi

fl
AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β

~yJ
β

r0 1 0s A´J

fi

ffi

fl
AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

~xJ
β

~yJ
β

r0 0 1s A´J

fi

ffi

fl
AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

J

“

»

–

r1 0 0s A´Jp~xβ ˆ ~yβq
r0 1 0s A´Jp~xβ ˆ ~yβq
r0 0 1s A´Jp~xβ ˆ ~yβq

fi

fl

ˇ

ˇAJ
ˇ

ˇ

“ A´J

|A´J| p~xβ ˆ ~yβq (2.50)

§3 Vector product as a linear mapping It is interesting to see that for all ~x, ~y P R3 there holds

~x ˆ ~y “

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl “

»

–

0 ´x3 x2

x3 0 ´x1

´x2 x1 0

fi

fl

»

–

y1

y2

y3

fi

fl (2.51)

and thus we can introduce matrix

r~xsˆ “

»

–

0 ´x3 x2

x3 0 ´x1

´x2 x1 0

fi

fl (2.52)

and write
~x ˆ ~y “ r~xsˆ ~y (2.53)

Notice also that r~xsJ
ˆ “ ´ r~xsˆ and therefore

p~x ˆ ~yqJ “ pr~xsˆ ~yqJ “ ´~yJ r~xsˆ (2.54)

The result of § 2 can also be written in the formalism of this paragraph. We can write for every
~x, ~y P R3

“

A ~xβ
‰

ˆ
A ~yβ “ pA ~xβq ˆ pA ~yβq “ A´J

|A´J| p~xβ ˆ ~yβq “ A´J

|A´J|
“

~xβ
‰

ˆ
~yβ (2.55)

and hence we get for every ~x P R3

“

A ~xβ
‰

ˆ
A “ A´J

|A´J|
“

~xβ
‰

ˆ
(2.56)

2.4 Dual space and dual basis

Let us start with a three-dimensional linear space L over scalars S and consider the set L‹ of all linear
functions f : L Ñ S, i.e. the functions on L for which the following holds true

f pa ~x ` b ~yq “ a f p~xq ` b f p~yq (2.57)

10



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

for all a, b P S and all ~x, ~y P L.
Let us next define the addition `‹ : L‹ ˆ L‹ Ñ L‹ of linear functions f , g P L‹ and the multiplication

¨‹ : S ˆ L‹ Ñ L‹ of a linear function f P L‹ by a scalar a P S such that

p f `‹ gqp~xq “ f p~xq ` gp~xq (2.58)

pa ¨‹ f qp~xq “ a f p~xq (2.59)

holds true for all a P S and for all ~x P L. One can verify that pL‹,`‹, ¨‹q over pS,`, q is itself a linear
space [4, 7, 6]. It makes therefore a good sense to use arrows above symbols for linear functions, e.g.
~f instead of f .

The linear space L‹ is derived from, and naturally connected to, the linear space L and hence
deserves a special name. Linear space L‹ is called [4] the dual (linear) space to L.

Now, consider a basis β “ r~b1,~b2,~b3s of L. We will construct a basis β‹ of L‹, in a certain natural and

useful way. Let us take three linear functions ~b‹
1
,~b‹

2
,~b‹

3
P L‹ such that

~b‹
1
p~b1q “ 1 ~b‹

1
p~b2q “ 0 ~b‹

1
p~b3q “ 0

~b‹
2
p~b1q “ 0 ~b‹

2
p~b2q “ 1 ~b‹

2
p~b3q “ 0

~b‹
3
p~b1q “ 0 ~b‹

3
p~b2q “ 0 ~b‹

3
p~b3q “ 1

(2.60)

where 0 and 1 are the zero and the unit element of S, respectively. First of all, one has to verify [4] that
such an assignment is possible with linear functions over L. Secondly one can show [4] that functions
~b‹

1
,~b‹

2
,~b‹

3
are determined by this assignment uniquely on all vectors of L. Finally, one can observe [4]

that the triple β‹ “ r~b‹
1
,~b‹

2
,~b‹

3
s forms an (ordered) basis of ~L. The basis β‹ is called the dual basis of L‹,

i.e. it is the basis of L‹, which is related in a special (dual) way to the basis β of L.

§1 Evaluating linear functions Consider a vector ~x P L with coordinates ~xβ “ rx1, x2, x3sJ w.r.t.

a basis β “ r~b1,~b2,~b3s and a linear function ~h P L‹ with coordinates ~hβ‹ “ rh1, h2, h3sJ w.r.t. the dual

basis β‹ “ r~b‹
1
,~b‹

2
,~b‹

3
s. The value ~hp~xq P S is obtained from the coordinates ~xβ and ~hβ‹ as

~hp~xq “ ~hpx1
~b1 ` x2

~b2 ` x3
~b3q (2.61)

“ ph1
~b‹

1 ` h2
~b‹

2 ` h3
~b‹

3qpx1
~b1 ` x2

~b2 ` x3
~b3q (2.62)

“ h1
~b‹

1p~b1q x1 ` h1
~b‹

1p~b2q x2 ` h1
~b‹

1p~b3q x3

`h2
~b‹

2p~b1q x1 ` h2
~b‹

2p~b2q x2 ` h2
~b‹

2p~b3q x3 (2.63)

`h3
~b‹

3p~b1q x1 ` h3
~b‹

3p~b2q x2 ` h3
~b‹

3p~b3q x3

“
“

h1 h2 h3

‰

»

—

–

~b‹
1
p~b1q ~b‹

1
p~b2q ~b‹

1
p~b3q

~b‹
2
p~b1q ~b‹

2
p~b2q ~b‹

2
p~b3q

~b‹
3
p~b1q ~b‹

3
p~b2q ~b‹

3
p~b3q

fi

ffi

fl

»

–

x1

x2

x3

fi

fl (2.64)

“
“

h1 h2 h3

‰

»

–

1 0 0
0 1 0
0 0 1

fi

fl

»

–

x1

x2

x3

fi

fl (2.65)

“
“

h1, h2, h3

‰

»

–

x1

x2

x3

fi

fl (2.66)

“ ~h
J

β‹ ~xβ (2.67)

The value of ~h P L‹ on ~x P L is obtained by multiplying ~xβ by the transpose of ~hβ‹ from the left.
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Notice that the middle matrix on the right in Equation 2.64 evaluates into the identity. This is the
consequence of using the pair of a basis and its dual basis. The formula 2.67 can be generalized to the
situation when bases are not dual by evaluating the middle matrix accordingly. In general

~hp~xq “ ~h
J

β̄
r~̄bip~b jqs ~xβ (2.68)

where matrix r~̄bip~b jqs is constructed from the respective bases β, β̄ of L and L‹.

§2 Changing the basis in a linear space and in its dual Let us now look at what happens with
coordinates of vectors of L‹ when passing from the dual basis β‹ to the dual basis β 1‹ induced by

passing from a basis β to a basis β 1 in L. Consider vector ~x P L and a linear function ~h P L‹ and their

coordinates ~xβ, ~xβ 1 and ~hβ‹ , ~hβ 1‹ w.r.t. the respective bases. Introduce further matrix A transforming
coordinates of vectors in L as

~xβ 1 “ A ~xβ (2.69)

when passing from β to β 1.
Basis β‹ is the dual basis to β and basis β 1‹ is the dual basis to β 1 and therefore

~h
J

β‹ ~xβ “ ~hp~xq “ ~h
J

β 1‹ ~xβ 1 (2.70)

for all ~x P L and all ~h P L‹. Hence
~h

J

β‹ ~xβ “ ~h
J

β 1‹ A ~xβ (2.71)

for all ~x P L and therefore
~h

J

β‹ “ ~h
J

β 1‹ A (2.72)

or equivalently
~hβ‹ “ AJ~hβ 1‹ (2.73)

Let us now see what is the meaning of the rows of matrix A. It becomes clear from Equation 2.72 that

the columns of matrix AJ can be viewed as vectors of coordinates of basic vectors of β 1‹ “ r~b 1
1

‹,~b 1
2

‹,~b 1
3

‹s
in the basis β‹ “ r~b‹

1
,~b‹

2
,~b‹

3
s and therefore

A “

»

—

—

–

~b 1
1

‹
β‹

J

~b 1
2

‹
β‹

J

~b 1
3

‹
β‹

J

fi

ffi

ffi

fl

(2.74)

which means that the rows of A are coordinates of the dual basis of the primed dual space in the dual
basis of the non-primed dual space.

Finally notice that we can also write
~hβ 1‹ “ A´J~hβ‹ (2.75)

which is formally identical with Equation 2.15.

§3 When do coordinates transform the same way in a basis and in its dual basis It is natural
to ask when it happens that the coordinates of linear functions in L‹ w.r.t. the dual basis β‹ transform
the same way as the coordinates of vectors of L w.r.t. the original basis β, i.e.

~xβ 1 “ A ~xβ (2.76)

~hβ 1‹ “ A~hβ‹ (2.77)

12
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for all ~x P L and all ~h P L‹. Considering Equation 2.75, we get

A “ A´J (2.78)

AJA “ I (2.79)

Notice that this is, for instance, satisfied when A is a rotation [5]. In such a case, one often does not
anymore distinguish between vectors of L and L‹ because they behave the same way and it is hence
possible to represent linear functions from L‹ by vectors of L.

§4 Coordinates of the basis dual to a general basis We denote the standard basis in R3 by
σ and its dual (standard) basis in R3‹

by σ‹. Now, we can further establish another basis γ “
“

~c1 ~c2 ~c3

‰

inR3 and its dual basis γ‹ “
“

~c ‹
1
~c ‹

2
~c ‹

3

‰

inR3‹
. We would like to find the coordinates

γ‹
σ‹ “

“

~c ‹
1σ‹ ~c ‹

2σ‹ ~c ‹
3σ‹

‰

of vectors of γ‹ w.r.t. σ‹ as a function of coordinates γσ “
“

~c1σ ~c2σ ~c3σ
‰

of
vectors of γ w.r.t. σ.

Considering Equations 2.60 and 2.67, we are getting

~c i
‹
σ‹
J
~c jσ “

"

1 if i “ j
0 if i ‰ j

for i, j “ 1, 2, 3 (2.80)

which can be rewritten in a matrix form as
»

–

1 0 0
0 1 0
0 0 1

fi

fl “

»

—

–

~c1
‹
σ‹
J

~c2
‹
σ‹
J

~c3
‹
σ‹
J

fi

ffi

fl

“

~c1σ ~c2σ ~c3σ
‰

“ γ‹
σ‹
J γσ (2.81)

and therefore
γ‹
σ‹ “ γ´J

σ (2.82)

§5 Remark on higher dimensions We have introduced the dual space and the dual basis in a
three-dimensional linear space. The definition of the dual space is exactly the same for any linear
space. The definition of the dual basis is the same for all finite-dimensional linear spaces [4]. For any
n-dimensional linear space L and its basis β, we get the corresponding n-dimensional dual space L‹

with the dual basis β‹.

2.5 Operations with matrices & tensors

Matrices are a powerful tool which can be used in many ways. Here we review a few useful rules for
matrix manipulation. The rules are often studied in multi-linear algebra and tensor calculus. We shall
not review the theory of multi-linear algebra but will look at the rules from a phenomenological point
of view. They are useful identities making an effective manipulation and concise notation possible.

§1 Kronecker product Let A be a k ˆ l matrix and B be a m ˆ n matrix

A “

»

—

—

—

–

a11 a12 ¨ ¨ ¨ a1l

a21 a22 ¨ ¨ ¨ a2l
...

...
. . .

...
ak1 ak2 ¨ ¨ ¨ akl

fi

ffi

ffi

ffi

fl

P Rkˆl and B P Rmˆn (2.83)

then k m ˆ l n matrix

C “ Ab B “

»

—

—

—

–

a11 B a12 B ¨ ¨ ¨ a1l B

a21 B a22 B ¨ ¨ ¨ a2l B
...

...
. . .

...
ak1 B ak2 B ¨ ¨ ¨ akl B

fi

ffi

ffi

ffi

fl

(2.84)

13



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

is the matrix of the Kronecker product of matrices A, B (in this order).
Notice that this product is associative, i.e. pAb Bq b C “ Ab pBb Cq, but it is not commutative, i.e.
Ab B ‰ Bb A in general. There holds a useful identity pAb BqJ “ AJb BJ.

§2 Matrix vectorization Let A be an m ˆ n matrix

A “

»

—

—

—

–

a11 a12 ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2n
...

...
. . .

...
am1 am2 ¨ ¨ ¨ amn

fi

ffi

ffi

ffi

fl

P Rmˆn (2.85)

We define operator vp.q : Rmˆn Ñ Rm n which reshapes an m ˆ n matrix A into a m n ˆ 1 matrix (i.e.
into a vector) by stacking columns of A one above another

vpAq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

a11

a21
...

am1

a12

a22
...

am2

a1n

a2n
...

amn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ (2.86)

Let us study the relationship between vpAq and vpAJq. We see that vector vpAJq contains permuted
elements of vpAq and therefore we can construct permutation matrices [5] Jmˆn and Jnˆm such that

vpAJq “ Jmˆn vpAq
vpAq “ Jnˆm vpAJq

We see that there holds
Jnˆm Jmˆn vpAq “ Jnˆm vpAJq “ vpAq (2.87)

for every m ˆ n matrix A. Hence
Jnˆm “ J´1

mˆn (2.88)

Consider a permutation J. It has exactly one unit element in each row and in each column.
Consider the i-th row with 1 in the j-th column. This row sends the j-th element of an input vector
to the i-th element of the output vector. The i-the column of the transpose of J has 1 in the j-th row.
It is the only non-zero element in that row and therefore the j-th row of JJ sends the i-th element
of an input vector to the j-th element of the output vector. We see that JJ is the inverse of J, i.e.
permutation matrices are orthogonal. We see that

J´1
mˆn “ JJ

mˆn (2.89)

and hence conclude
Jnˆm “ JJ

mˆn (2.90)

We also write vpAq “ JJ
mˆn vpAJq.
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§3 From matrix equations to linear systems Kronecker product of matrices and matrix vector-
ization can be used to manipulate matrix equations in order to get systems of linear equations in the
standard matrix form A x “ b. Consider, for instance, matrix equation

A X B “ C (2.91)

with matrices A P Rmˆk, X P Rkˆl, B P Rlˆn, C P Rmˆn. It can be verified by direct computation that

vpA X Bq “ pBJb Aq vpXq (2.92)

This is useful when matrices A, B and C are known and we use Equation 2.91 to compute X. Notice
that matrix Equation 2.91 is actually equivalent to m n scalar linear equations in k l unknown elements
of X. Therefore, we should be able to write it in the standard form, e.g., as

M vpXq “ vpCq (2.93)

with some M P Rpm nqˆpk lq. We can use Equation 2.92 to get M “ BJ b Awhich yields the linear system

vpA X Bq “ vpCq (2.94)

pBJb Aq vpXq “ vpCq (2.95)

for unknown vpXq, which is in the standard form.
Let us next consider two variations of Equation 2.91. First consider matrix equation

A X B “ X (2.96)

Here unknowns X appear on both sides but we are still getting a linear system of the form

pBJb A´ Iq vpXq “ 0 (2.97)

where I is the pm nq ˆ pk lq identity matrix.
Next, we add yet another constraints: XJ “ X, i.e. matrix X is symmetric, to get

A X B “ X and XJ “ X (2.98)

which can be rewritten in the vectorized form as

pBJb A´ Iq vpXq “ 0 and pJmˆn ´ Iq vpXq “ 0 (2.99)

and combined it into a single linear system

„

Jmˆn ´ I
BJb A´ I



vpXq “ 0 (2.100)
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3 Affine space

Let us study the affine space, an important structure underlying geometry and its algebraic represen-
tation. The affine space is closely connected to the linear space. The connection is so intimate that the
two spaces are sometimes not even distinguished. Consider, for instance, function f : R Ñ R with
non-zero a, b P R

f pxq “ a x ` b (3.1)

It is often called “linear” but it is not a linear function [6, 7, 5] since for every α P R there holds

f pα xq “ α a x ` b ‰ α pa x ` bq “ α f pxq (3.2)

In fact, f is an affine function, which becomes a linear function only for b “ 0.
In geometry, we need to be very precise and we have to clearly distinguish affine from linear. Let us

therefore first review the very basics of linear spaces, and in particular their relationship to geometry,
and then move to the notion of affine spaces.

3.1 Vectors

Let us start with geometric vectors and study the rules of their manipulation.
Figure 3.1(a) shows the space of points P, which we live in and intuitively understand. We know

what is an oriented line segment, which we also call a marked ruler (or just a ruler). A marked ruler
is oriented from its origin towards its end, which is actually a mark (represented by an arrow in
Figure 3.1(b)) on a thought infinite ruler, Figure 3.1(b). We assume that we are able to align the ruler
with any pair of points x, y, so that the ruler begins in x and a mark is made at the point y. We also
know how to align a marked ruler with any pair of distinct points u, v such that the ruler begins in u
and aligns with the line connecting u and v in the direction towards point v. The mark on so aligned
ruler determines another point, call it z, which is collinear with points u, v. We know how to translate,
Figure 3.1(c), a ruler in this space.

To define geometric vectors, we need to first define geometric scalars.

x

y

z

u

v

(a) (b) (c)

Figure 3.1: (a) The space around us consists of points. Rulers (marked oriented line segments) can be
aligned (b) and translated (c) and thus used to transfer, but not measure, distances.
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a
a

a
a

b

b
b

b
a ` b

a ` b

a

aa

ab

b

1

1
1

´1

´1

a b

´1 a

(a) (b)

Figure 3.2: Scalars are represented by oriented rulers. They can be added (a) and multiplied (b) purely
geometrically by translating and aligning rulers. Notice that we need to single out a unit
scalar “1” to perform geometric multiplication.

3.1.1 Geometric scalars

Geometric scalars S are horizontal oriented rulers. The ruler, which has its origin identical with its
end is called 0. Geometric scalars are equipped with two geometric operations, addition a ` b and
multiplication a b, defined for every two elements a, b P S.

Figure 3.2(a) shows addition a ` b. We translate ruler b to align origin of b with the end of a and
obtain ruler a ` b.

Figure 3.2(b) shows multiplication a b. To perform multiplication, we choose a unit ruler “1” and
construct its additive inverse ´1 using 1 ` p´1q “ 0. This introduces orientation to scalars. Scalars
aiming to the same side as 1 are positive and scalars aiming to the same side as ´1 are negative. Scalar
0 is neither positive, nor negative. Next we define multiplication by ´1 such that ´1 a “ ´a, i.e. ´1
times a equals the additive inverse of a. Finally, we define multiplication of non-negative (i.e. positive
and zero) rulers a, b as follows. We align a with 1 such that origins of 1 and a coincide and such that
the rulers contain an acute non-zero angle. We align b with 1 and construct ruler a b by a translation,
e.g. as shown in Figure 3.2(b)1.

All constructions used were purely geometrical and were performed with real rulers. We can
verify that so defined addition and multiplication of geometric scalars satisfy all rules of addition
and multiplication of real numbers. Geometric scalars form a field [11, 14] w.r.t. to a ` b and a b.

3.1.2 Geometric vectors

Ordered pairs of points, such as px, yq in Figure 3.3(a), are called geometric vectors and denoted as ÝÑxy,
i.e. ÝÑxy “ px, yq. Symbol ÝÑxy is often replaced by a simpler one, e.g. by ~a. The set of all geometric vectors
is denoted by A.

3.1.3 Bound vectors

Let us now choose one point o and consider all pairs po, xq, where x can be any point, Figure 3.3(a).
We obtain a subset Ao of A, which we call geometric vectors bound to o, or just bound vectors when it
is clear to which point they are bound. We will write ~x “ po, xq. Figure 3.3(f) shows another bound

vector ~y. The pair po, oq is special. It will be called the zero bound vector and denoted by ~0. We will
introduce two operations ‘,d with bound vectors.

1Notice that a b is well defined since it is the same for all non-zero angles contained by a and 1.
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o

o o

o
x

xx

y

y

y

~x

~x~x

~y~y

~y

z

zz

z

~x ‘ ~y

~y ‘ ~x

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.3: Bound vectors are (ordered) pairs of points po, xq, i.e. arrows ~x “ po, xq. Addition of the
bound vectors ~x, ~y is realized by parallel transport (using a ruler). We see that the result
is the same whether we add ~x to ~y or ~y to ~x. Addition is commutative.

First we define addition of bound vectors ‘ : Ao ˆ Ao Ñ Ao. Let us add vector ~x to ~y as shown on
Figure 3.3(b). We take a ruler and align it with ~x, Figure 3.3(c). Then we translate the ruler to align
its begin with point y, Figure 3.3(d). The end of the ruler determines point z. We define a new
bound vector, which we denote ~x ‘ ~y, as the pair po, zq, Figure 3.3(e). Figures 3.3(f-j) demonstrate
that addition gives the same result when we exchange (commute) vectors ~x and ~y, i.e. ~x ‘ ~y “ ~y ‘ ~x.
We notice that for every point x, there is exactly one point x1 such that po, xq ‘ po, x1q “ po, oq, i.e.

~x ‘ ~x1 “ ~0. Bound vector ~x1 is the inverse to ~x and is denoted as ´~x. Bound vectors are invertible w.r.t.
operation ‘. Finally, we see that po, xq ‘ po, oq “ po, xq, i.e. ~x ‘ ~0 “ ~x. Vector ~0 is the identity element
of the operation ‘. Clearly, operation ‘ behaves exactly as addition of scalars – it is a commutative
group [11, 14].

Secondly, we define the multiplication of a bound vector by a geometric scalar d : S ˆ Ao Ñ Ao, where S
are geometric scalars and Ao are bound vectors. Operation d is a mapping which takes a geometric
scalar (a ruler) and a bound vector and delivers another bound vector.

Figure 3.4 shows that to multiply a bound vector ~x “ po, xq by a geometric scalar a, we consider the
ruler b whose origin can be aligned with o and end with x. We multiply scalars a and b to obtain scalar

o

x

y

~x

~y “ a d ~x

a
b

a b

Figure 3.4: Multiplication of the bound vector ~x by a geometric scalar a is realized by aligning rulers
to vectors and multiplication of geometric scalars.
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o

x

~x

~b1

~b2

x1 d~b1

x2 d~b2

Figure 3.5: Coordinates are the unique scalars that combine independent basic vectors ~b1, ~b2 into ~x.

a b and align a b with ~x such that the origin of a b coincides with o and a b extends along the line passing
through ~x. We obtain end point y of so placed a b and construct the resulting vector ~y “ a d ~x “ po, yq.

We notice that addition ‘ and multiplication d of horizontal bound vectors coincides exactly with
the addition and multiplication of scalars.

3.2 Linear space

We can verify that for every two geometric scalars a, b P S and every three bound vectors ~x, ~y,~z P Ao

with their respective operations, there holds the following eight rules

~x ‘ p~y ‘ ~zq “ p~x ‘ ~yq ‘ ~z (3.3)

~x ‘ ~y “ ~y ‘ ~x (3.4)

~x ‘ ~0 “ ~x (3.5)

~x ‘ ´~x “ ~0 (3.6)

1 d ~x “ ~x (3.7)

pa bq d ~x “ a d pb d ~xq (3.8)

a d p~x ‘ ~yq “ pa d ~xq ‘ pa d ~yq (3.9)

pa ` bq d ~x “ pa d ~xq ‘ pb d ~xq (3.10)

These rules are known as axioms of a linear space [6, 7, 4]. Bound vectors are one particular model of
the linear space. There are many other very useful models, e.g. n-tuples of real or rational numbers for
any natural n, polynomials, series of real numbers and real functions. We will give some particularly
simple examples useful in geometry later.

The next concept we will introduce are coordinates of bound vectors. To illustrate this concept, we

will work in a plane. Figure 3.5 shows two non-collinear bound vectors ~b1, ~b2, which we call basis,
and another bound vector ~x. We see that there is only one way how to choose scalars x1 and x2 such

that vectors x1 d~b1 and x2 d~b2 add to ~x, i.e.

~x “ x1 d~b1 ‘ x2 d~b2 (3.11)

Scalars x1, x2 are coordinates of ~x in (ordered) basis r~b1,~b2s.

3.3 Free vectors

We can choose any point from A to construct bound vectors and all such choices will lead to the same
manipulation of bound vector and to the same axioms of a linear space. Figure 3.6 shows two such
choices for points o and o1.

19



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

o

o1

b1

b1
1

b2

b1
2

x

x1

~x

~x 1

~b1

~b 1
1~b2

~b 1
2

x1 d~b1

x1 d~b 1
1

x2 d~b2

x2 d~b 1
2

Figure 3.6: Two sets of bound vectors Ao and Ao1 . Coordinates of ~x w.r.t. r~b1,~b2s are equal to coordinates

of ~x 1 w.r.t. r~b 1
1
,~b 1

2
s.

We take bound vectors ~b1 “ po, b1q, ~b2 “ po, b2q, ~x “ po, xq at o and construct bound vectors
~b 1

1
“ po1, b1

1
q, ~b 1

2
“ po1, b1

2
q, ~x 1 “ po1, x1q at o1 by translating x to x1, b1 to b1

1
and b2 to b1

2
by the same

translation. Coordinates of ~x w.r.t. r~b1,~b2s are equal to coordinates of ~x 1 w.r.t. r~b 1
1
,~b 1

2
s. This interesting

property allows us to construct another model of a linear space, which plays an important role in
geometry.

Let us now consider the set of all geometric vectors A. Figure 3.7(a) shows an example of a few
points and a few geometric vectors. Let us partition [1] the set A of geometric vectors into disjoint
subsets Apo,xq such that we choose one bound vector po, xq and put to Apo,xq all geometric vectors that
can be obtained by a translation of po, xq. Figure 3.7(b) shows two such partitions Apo,xq, Apo,yq. It is
clear that Apo,xq X Apo,x1q “ H for x ‰ x1 and that every geometric vector is in some (and in exactly one)
subset Apo,xq.

Two geometric vectors po, xq and po1, x1q form two subsets Apo,xq, Apo1,x1q which are equal if and only
if po1, x1q is related by a translation to po, xq.

“To be related by a translation” is an equivalence relation [1]. All geometric vectors in Apo,xq are
equivalent to po, xq.

There are as many sets in the partition as there are bound vectors at a point. We can define the
partition by geometric vectors bound to any point o because if we choose another point o1, then for
every point x, there is exactly one point x1 such that po, xq can be translated to po1, x1q.

We denote the set of subsets Apo,xq by V. Let us see that we can equip set V with a meaningful
addition ‘ : V ˆ V Ñ V and multiplication d : S ˆ V Ñ V by geometric scalars S such that it will
become a model of the linear space. Elements of V will be called free vectors.

We define the sum of ~x “ Apo,xq and ~y “ Apo,yq, i.e. ~z “ ~x ‘ ~y is the set Apo,xq ‘ po,yq. Multiplication of
~x “ Apo,xq by geometrical scalar a is defined analogically, i.e. a d ~x equals the set Aadpo,xq. We see that

ooo

xx
y y

(a) (b)

Figure 3.7: The set A of all geometric vectors (a) can be partitioned into subsets which are called free
vectors. Two free vectors Apo,xq and Apo,yq, i.e. subsets of A, are shown in (b).
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oo

xx

x1

pp

yy

y1

qq

zz

Figure 3.8: Free vector Apo,xq is added to free vector App,yq by translating po, xq to pq, x1q and pp, yq to

pq, y1q, adding bound vectors pq, zq “ pq, x1q ‘ pq, y1q and setting Apo,xq ‘ App,yq “ Apq,zq

the result of ‘ and d does not depend on the choice of o. We have constructed the linear space V of
free vectors.

§1 Why so many vectors? In the literature, e.g. in [4, 5, 8], linear spaces are often treated purely
axiomatically and their geometrical models based on geometrical scalars and vectors are not studied
in detail. This is a good approach for a pure mathematician but in engineering we use the geometrical
model to study the space we live in. In particular, we wish to appreciate that good understanding of
the geometry of the space around us calls for using bound as well as free vectors.

3.4 Affine space

We saw that bound vectors and free vectors were (models of) a linear space. On the other hand, we
see that the set of geometric vectors A is not (a model of) a linear space because we do not know how
to meaningfully add (by translation) geometric vectors which are not bound to the same point. The
set of geometric vectors is an affine space.

The affine space connects points, geometric scalars, bound geometric vectors and free vectors in a
natural way.

Two points x and y, in this order, give one geometric vector px, yq, which determines exactly one
free vector ~v “ Apx,yq. We define function ϕ : A Ñ V, which assigns to two points x, y P P their
corresponding free vector ϕpx, yq “ Apx,yq.

x

y

z

t

~u

~v

~w

Figure 3.9: Free vectors ~u, ~v and ~w defined by three points x, y and z satisfy triangle identity ~u‘~v “ ~w.
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x

y

z “ x#~w

px, yq

py, zq

px, zq

~u “ Apx,yq

~v “ Apy,zq

~w “ ~u ‘ ~v “ Apo,aq‘po,cq

ϕpx, yq

t

o

a

b

c

Figure 3.10: Affine space pP,L, ϕq, its geometric vectors px, yq P A “ P ˆ P and free vector space L and
the canonical assignment of pairs of points px, yq to the free vector Apx,yq. Operations ‘,

‘, combining vectors with vectors, and #, combining points with vectors, are illustrated.

Consider a point a P P and a free vector ~x P V. There is exactly one geometric vector pa, xq, with a
at the first position, in the free vector ~x. Therefore, point a and free vector ~x uniquely define point x.
We define function # : P ˆ V Ñ P, which takes a point and a free vector and delivers another point.
We write a#~x “ x and require ~x “ ϕpa, xq.

Consider three points x, y, z P P, Figure 3.9. We can produce three free vectors ~u “ ϕpx, yq “ Apx,yq,
~v “ ϕpy, zq “ Apy,zq, ~w “ ϕpx, zq “ Apx,zq. Let us investigate the sum ~u ‘ ~v. Chose the representatives
of the free vectors, such that they are all bound to x, i.e. bound vectors px, yq P Ax,y, px, tq P Apy,zq

and px, zq P Apx,zq. Notice that we could choose the pairs of original points to represent the first and
the third free vector but we had to introduce a new pair of points, px, tq, to represent the second free
vector. Clearly, there holds px, yq ‘ px, tq “ px, zq. We now see, Figure 3.9, that py, zq is related to px, tq
by a translation and therefore

~u ‘ ~v “ Apx,yq ‘ Apy,zq “ Apx,yq ‘ Apx,tq “ Apx,yq‘px,tq “ Apx,zq “ ~w (3.12)

Figure 3.10 shows the operations explained above in Figure 3.9 but realized using the vectors bound
to another point o.

The above rules are known as axioms of affine space and can be used to define even more general
affine spaces.

§1 Remark on notation We were carefully distinguishing operations p`, q over scalars, p‘,dq
over bound vectors, p‘,dq over free vectors, and function # combining points and free vectors. This
is very correct but rarely used. Often, only the symbols introduced for geometric scalars are used for
all operations, i.e.

` ” `, ‘, ‘, # (3.13)

” , d, d (3.14)

§2 Affine space Triple pP,L, ϕq with a set of points P, linear space pL,‘,dq (over some field of
scalars) and a function ϕ : P ˆ P Ñ L, is an affine space when

A1 ϕpx, zq “ ϕpx, yq ‘ ϕpy, zq for every three points x, y, z P P

A2 for every o P P, the function ϕo : P Ñ L, defined by ϕopxq “ ϕpo, xq for all x P P is a bijection [1].
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o

o 1

x

~x “ ϕpo, xq
~x 1 “ ϕpo1, xq

~o 1 “ ϕpo, o1q

~b1

~b2

~b 1
1

~b 1
2

Figure 3.11: Point x is represented in two affine coordinate systems.

Axiom A1 calls for an assignment of pairs of point to vectors. Axiom A2 then makes this assignmet
such that it is one-to-one when the first argument of ϕ is fixed.

We can define another function # : PˆL Ñ P, defined by o#~x “ ϕ´1
o p~xq, which meansϕpo, o#~xq “ ~x

for all ~x P L. This function combines points and vectors in a way that is very similar to addition and
hence is sometimes denoted by ` instead of more correct #.

In our geometrical model of A discussed above, function ϕ assigned to a pair of points x, y their
corresponding free vector Apx,yq. Function #, on the other hand, takes a point x and a free vector ~v
and gives another points y such that the bound vector px, yq is a representative of ~v, i.e. Apx,yq “ ~v.

3.5 Coordinate system in affine space

We see that function ϕ assigns the same vector from L to many different pairs of points from P. To
represent uniquely points by vectors, we select a point o, called the origin of affine coordinate system
and represent point x P P by its position vector ~x “ ϕpo, xq. In our geometric model of A discussed
above, we thus represent point x by bound vector po, xq or by point o and free vector Apo,xq.

To be able to compute with points, we now pass to the representation of points in A by coordinate

vectors. We choose a basis β “ p~b1,~b2, . . .q in L. That allows us to represent point x P P by a coordinate
vector

~xβ “

»

—

–

x1

x2
...

fi

ffi

fl
, such that ~x “ x1

~b1 ` x2
~b2 ` ¨ ¨ ¨ (3.15)

The pair po, βq, where o P P and β is a basis of L is called an affine coordinate system (often shortly called
just coordinate system) of affine space pP,L, ϕq.

Let us now study what happens when we choose another point o1 and another basis β1 “ p~b 1
1
,~b 1

2
, . . .q

to represent x P P by coordinate vectors, Figure 3.11. Point x is represented twice: by coordinate
vector ~xβ “ ϕpo, xqβ “ Apo,xqβ and by coordinate vector ~x 1

β 1 “ ϕpo1, xqβ 1 “ Apo1,xqβ 1 .

To get the relationship between the coordinate vectors ~xβ and ~x 1
β 1 , we employ the triangle equality

ϕpo, xq “ ϕpo, o1q ‘ ϕpo1, xq (3.16)

~x “ ~o 1
‘ ~x 1 (3.17)

which we can write in basis β as (notice that we replace ‘ by ` to emphasize that we are adding
coordinate vectors)

~xβ “ ~x 1
β ` ~o 1

β (3.18)
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2

10 2

1 ~x

~y

~b

~u

~o

p
V

Figure 3.12: Affine space pP,V, ϕq of solutions to a linear system is the set of vectors representing
points on line p. In coordinate system p~o, ~uq, vector ~x has coordinate 1. The subspace V of
solutions to the associated homogeneous system is the associated linear space. Function
ϕ assigns to two points ~o, ~x the vector ~u “ ~y ´ ~x.

and use the matrix A transforming coordinates of vectors from basis β1 to β to get the desired relation-
ship

~xβ “ A ~x 1
β 1 ` ~o 1

β (3.19)

Columns of A correspond to coordinate vectors ~b 1
1β,
~b 1

2β, . . .. When presented with a situation in a

real affine space, we can measure those coordinates by a ruler on a particular representation of L by
geometrical vectors bound to, e.g., point o.

3.6 An example of affine space

Let us now present an important example of affine space.

3.6.1 Affine space of solutions of a system of linear equations

When looking at the following system of linear equations in R2

„

1 1
´1 ´1



~x “
„

2
´2



(3.20)

we immediately see that there is an infinite number of solutions. They can be written as

~x “
„

2
0



` τ

„

1
´1



, τ P R (3.21)

or as a sum of a particular solution r2, 0sJ and the set of solutions ~v “ τ r´1, 1sJ of the accompanied
homogeneous system

„

1 1
´1 ´1



~v “
„

0
0



(3.22)

Figure 3.12 shows that the affine space pP,V, ϕq of solutions to the linear system (3.20) is the set of
vectors representing points on line p. The subspace V of solutions to the accompanied homogeneous
system (3.22) is the linear space associated to A by function ϕ, which assigns to two points ~x, ~y P A

the vector ~u “ ~y ´ ~x P V. If we choose ~o “ r2, 0sJ as the origin in A and vector ~b “ ϕp~o, ~xq “ ~x ´ ~o as
the basis of V, vector ~x has coordinate 1.
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We see that, in this example, points of A are actually vectors of R2, which are the solution to
the system (3.20). The vectors of V are the vectors of R2, which are solutions to the associated
homogeneous linear system (3.22).
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4 Motion

Let us introduce a mathematical model of rigid motion in three-dimensional Euclidean space. The
important property of rigid motion is that it only relocates objects without changing their shape.
Distances between points on rigidly moving objects remain unchanged. For brevity, we will use
“motion” for “rigid motion”.

4.1 Change of position vector coordinates induced by motion

o’

X

~x

~x 1

O

O 1

~b1

~b2

~b 1
1

~b 1
2

o’

X Y

~x
~y

~y 1

O

O 1

~b1

~b2

~b 1
1

~b 1
2

(a) (b)

Figure 4.1: Representation of motion. (a) Alias representation: Point X is represented in two coordi-
nate systems. (b) Alibi representation: Point X move tohetjer with the coordinate system
into point Y.

§1 Alias representation of motion1. Figure 4.1(a) illustrates a model of motion using coordinate
systems, points and their position vectors. A coordinate system pO, βq with origin O and basis β is
attached to a moving rigid body. As the body moves to a new position, a new coordinate system
pO 1, β 1q is constructed. Assume a point X in a general position w.r.t. the body, which is represented in
the coordinate system pO, βq by its position vector ~x. The same point X is represented in the coordinate
system pO 1, β 1q by its position vector ~x 1. The motion induces a mapping ~x 1

β 1 ÞÑ ~xβ. Such a mapping

also determines the motion itself and provides its convenient mathematical model.
Let us derive the formula for the mapping ~x 1

β 1 ÞÑ ~xβ between the coordinates ~x 1
β 1 of vector ~x 1 and

coordinates ~xβ of vector ~x. Consider the following equations:

~x “ ~x 1 ` ~o 1 (4.1)

~xβ “ ~x 1
β ` ~o 1

β (4.2)

~xβ “
”

~b 1
1β

~b 1
2β

~b 1
3β

ı

~x 1
β 1 ` ~o 1

β (4.3)

~xβ “ R ~x 1
β 1 ` ~o 1

β (4.4)

1The terms alias and alibi were introduced in the classical monograph [14].
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eplacements

~b1
~b1

~b2
~b2

~b 1
1

~b 1
2 a11

a11

a21

´a21O O

(a) (b)

Figure 4.2: Rotation in two-dimensional space.

Vector ~x is the sum of vectors ~x 1 and ~o 1, Equation 4.1. We can express all vectors in (the same) basis β,

Equation 4.2. To pass to the basis β 1 we introduce matrix R “
”

~b 1
1β

~b 1
2β

~b 1
3β

ı

, which transforms the

coordinates of vectors from β 1 to β, Equation 4.4. Columns of matrix R are coordinates ~b 1
1β
,~b 1

2β
,~b 1

3β
of

basic vectors ~b 1
1
,~b 1

2
,~b 1

3
of basis β 1 in basis β.

§2 Alibi representation of motion. An alternative model of motion can be developed from the
relationship between the points X and Y and their position vectors in Figure 4.1(b). The point Y is
obtained by moving point X altogether with the moving object. It means that the coordinates ~y 1

β 1 of

the position vector ~y 1 of Y in the coordinate system pO 1, β 1q equal the coordinates ~xβ of the position
vector ~x of X in the coordinate system pO, βq, i.e.

~y 1
β 1 “ ~xβ

~yβ 1 ´ ~o 1
β 1 “ ~xβ

R´1
´

~yβ ´ ~o 1
β

¯

“ ~xβ

~yβ “ R ~xβ ` ~o 1
β (4.5)

Equation 4.5 describes how is the point X moved to point Y w.r.t. the coordinate system pO, βq.

4.2 Rotation matrix

Motion that leaves at least one point fixed is called rotation. Choosing such a fixed point as the origin

leads to O “ O 1 and hence to ~o “ ~0. The motion is then fully described by matrix R, which is called
rotation matrix.

§1 Two-dimensional rotation. To understand the matrix R, we shall start with an experiment in
two-dimensional plane. Imagine a right-angled triangle ruler as shown in Figure 4.2(a) with arms
of equal length and let us define a coordinate system as in the figure. Next, rotate the triangle ruler
around its tip, i.e. around the origin O of the coordinate system. We know, and we can verify it
by direct physical measurement, that, thanks to the symmetry of the situation, the parallelograms

through the tips of ~b 1
1

and ~b 1
2

and along ~b1 and ~b2 will be rotated by 90 degrees. We see that

~b 1
1 “ a11

~b1 ` a21
~b2 (4.6)

~b 1
2 “ ´a21

~b1 ` a11
~b2 (4.7)
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Figure 4.3: A three-dimensional coordinate system.

for some real numbers a11 and a21. By comparing it with Equation 4.3, we conclude that

R “
„

a11 ´a21

a21 a11



(4.8)

We immediately see that

RJR “
„

a11 a21

´a21 a11

 „

a11 ´a21

a21 a11



“
„

a2
11

` a2
21

0
0 a2

11
` a2

21



“
„

1 0
0 1



(4.9)

since pa2
11

` a2
21

q is the squared length of the basic vector of b1, which is one. We derived an interesting
result

R´1 “ RJ (4.10)

R “ R´J (4.11)

Next important observation is that for coordinates ~xβ and ~x 1
β 1 , related by a rotation, there holds true

px1q2 ` py1q2 “ ~x 1
β 1
J~x 1

β 1 “
`

R ~xβ
˘J
R ~xβ “ ~xJ

β

`

RJR
˘

~xβ “ ~xJ
β ~xβ “ x2 ` y2 (4.12)

Now, if the basis β was constructed as in Figure 4.2, in which case it is called an orthonormal basis,
then the parallelogram used to measure coordinates x, y of ~x is a rectangle, and hence x2 ` y2 is the
squared length of ~x by the Pythagoras theorem. If β 1 is related by rotation ro β, then also px1q2 ` py1q2

is the squared length of ~x, again thanks to the Pythagoras theorem.
We see that ~xJ

β
~xβ is the squared length of ~x when β is orthonormal and that this length is preserved

by computing it in the same way from the new coordinates of ~x in the new coordinate system after
motion. The change of coordinates induced by motion is modeled by rotation matrix R, which has
the desired property RJR “ I when the bases β, β 1 are both orthonormal.

§2 Three-dimensional rotation. Let us now consider three dimensions. It would be possible to
generalize Figure 4.2 to three dimensions, construct orthonormal bases, and use rectangular parallel-
ograms to establish the relationship between elements of R in three dimensions. However, the figure
and the derivations would become much more complicated.

We shall follow a more intuitive path instead. Consider that we have found that with two-
dimensional orthonormal bases, the lengths of vectors could be computed by the Pythagoras theorem
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since the parallelograms determining the coordinates were rectangular. To achieve this in three
dimensions, we need (and can!) use bases consisting of three orthogonal vectors. Then, again, the
parallelograms will be rectangular and hence the Pythagoras theorem for three dimensions can be
used analogically as in two dimensions, Figure 4.3.

Considering orthonormal bases β, β 1, we require the following to hold true for all vectors ~x with

~xβ “
“

x y z
‰J

and ~x 1
β 1 “

“

x1 y1 z1
‰J

px1q2 ` py1q2 ` pz1q2 “ x2 ` y2 ` z2

~x 1
β 1
J~x 1

β 1 “ ~xJ
β ~xβ

`

R ~xβ
˘J
R ~xβ “ ~xJ

β ~xβ

~xJ
β

`

RJR
˘

~xβ “ ~xJ
β ~xβ

~xJ
β C ~xβ “ ~xJ

β ~xβ (4.13)

Equation 4.13 must hold true for all vectors ~x and hence also for special vectors such as those with
coordinates

»

–

1
0
0

fi

fl ,

»

–

0
1
0

fi

fl ,

»

–

0
0
1

fi

fl ,

»

–

1
1
0

fi

fl ,

»

–

1
0
1

fi

fl ,

»

–

0
1
1

fi

fl (4.14)

Let us see what that implies, e.g., for the first vector

“

1 0 0
‰

C

»

–

1
0
0

fi

fl “ 1 (4.15)

c11 “ 1 (4.16)

Taking the second and the third vector leads similarly to c22 “ c33 “ 1. Now, let’s try the fourth vector

“

1 1 0
‰

C

»

–

1
1
0

fi

fl “ 2 (4.17)

1 ` c12 ` c21 ` 1 “ 2 (4.18)

c12 ` c21 “ 0 (4.19)

Again, taking the fifth and the sixth vector leads to c13 ` c31 “ c23 ` c32 “ 0. This brings us to the
following form of C

C “

»

–

1 c12 c13

´c12 1 c23

´c13 ´c23 1

fi

fl (4.20)

Moreover, we see that C is symmetric since

CJ “
`

RJR
˘J “ RJR “ C (4.21)

which leads to ´c12 “ c12, ´c13 “ c13 and ´c23 “ c23, i.e. c12 “ c13 “ c23 “ 0 and allows us to conclude
that

RJR “ C “ I (4.22)

Interestingly, not all matrices R satisfying Equation 4.22 represent motions in three-dimensional space.
Consider, e.g., matrix

S “

»

–

1 0 0
0 1 0
0 0 ´1

fi

fl (4.23)
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Matrix S does not correspond to any rotation of the space since it keeps the plane xy fixed and reflects
all other points w.r.t. this xy plane. We see that some matrices satisfying Equation 4.22 are rotations
but there are also some such matrices that are not rotations. Can we somehow distinguish them?

Notice that |S| “ ´1 while |I| “ 1. It might be therefore interesting to study the determinant of C
in general. Consider that

1 “ |I| “
ˇ

ˇpRJRq
ˇ

ˇ “
ˇ

ˇRJ
ˇ

ˇ |R| “ |R| |R| “ p|R|q2 (4.24)

which gives that |R| “ ˘1. We see that the sign of the determinant splits all matrices satisfying
Equation 4.22 into two groups – rotations, which have a positive determinant, and reflections, which
have a negative determinant. The product of any two rotations will again be a rotation, the product
of a rotation and a reflection will be a reflection and the product of two reflections will be a rotation.

To summarize, rotation in three-dimensional space is represented by a 3 ˆ 3 matrix Rwith RJR “ I
and |R| “ 1. The set of all such matrices, and at the same time also the corresponding rotations,
will be called SOp3q, for special orthonormal three-dimensional group. Two-dimensional rotations will be
analogically denoted as SOp2q.

4.3 Coordinate vectors

We see that the matrix R induced by motion has the property that coordinates and the basic vectors
are transformed in the same way. This is particularly useful observation when β is formed by the
standard basis, i.e.

β “

¨

˝

»

–

1
0
0

fi

fl ,

»

–

0
1
0

fi

fl ,

»

–

0
0
1

fi

fl

˛

‚ (4.25)

For a rotation matrix R, Equation 2.15 becomes

»

—

–

~b 1
1
~b 1

2
~b 1

3

fi

ffi

fl
“ R

»

—

–

~b1

~b2

~b3

fi

ffi

fl
“

»

–

r11 r12 r13

r21 r22 r23

r31 r32 r33

fi

fl

»

—

–

~b1

~b2

~b3

fi

ffi

fl
“

»

—

–

r11
~b1 ` r12

~b2 ` r13
~b3

r21
~b1 ` r22

~b2 ` r23
~b3

r31
~b1 ` r32

~b2 ` r33
~b3

fi

ffi

fl
(4.26)

and hence

~b 1
1 “ r11

~b1 ` r12
~b2 ` r13

~b3 “ r11

»

–

1
0
0

fi

fl ` r12

»

–

0
1
0

fi

fl ` r13

»

–

0
0
1

fi

fl “

»

–

r11

r12

r13

fi

fl (4.27)

and similarly for ~b 1
2

and ~b 1
3
. We conclude that

”

~b 1
1
~b 1

2
~b 1

3

ı

“

»

–

r11 r21 r31

r12 r22 r32

r13 r23 r33

fi

fl “ RJ (4.28)

This also corresponds to solving for R in Equation 2.13 with A “ R
»

–

1 0 0
0 1 0
0 0 1

fi

fl “
”

~b 1
1
~b 1

2
~b 1

3

ı

R (4.29)
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5 Image coordinate system

Digital image Im is a matrix of pixels. We assume that Im is obtained by measuring intensity of light
by sensors (pixels) arranged in a grid, Figure 5.1.

We will work with images in two ways. First, we will work with intensity values, which are stored
in the memory as a three-dimensional array of bytes indexed by the row index i, the column index
j, and the color index k, Figure 5(a). Color index attains three values 1, 2, 3, with 1 corresponding to
red, 2 corresponding to green and 3 corresponding to blue colors.

In Matlab, image Im is accessed using the row index i, the column index j and the color index k
as >>Im(i,j,k). The most top left pixel has row as well as column index equal to 1. The red channel
of the pixel with row index 2 and column index 3 is accessed as >>Im(2,3,1).

§1 Image coordinate system For geometrical computation, we introduce an image coordinate sys-
tem as in Figure 5(b). The origin of the image coordinate system is chosen to assign coordinates 1, 1

to the center of the most top left pixel. Horizontal axis ~b1 goes from left to right. The vertical axis
~b2 goes from top down. The pixel that is accessed as >>Im(i,j,k) is in the image coordinate system
represented by the vector ~u “ rj, isJ. A digital image with H rows and W columns will be in indexed
in Matlab as >>Im(1:H,1:W,1:3) and >>size(Im)will return [H W 3]. The center of the most bottom
right pixel will have coordinates rW, HsJ in the image coordinate system.

The image coordinate system coincides with the Matlab coordinate system image, i.e. commands

>> axis image

>> plot(j,i,’.b’)

plot a blue dot on the pixel accessed as >>Im(i,j,:);
The image coordinate system is non-standard in two dimensions since it is a left-handed system. The

reason for such a unnatural choice is that this system will be next augmented into a three-dimensional

right-handed coordinate system in such a way that the ~b3 vector will be pointing towards the scene.

Figure 5.1: Image is digitized by a rectangular array of pixels
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i

j

2

3

2

3~b1

~b2

(a) Image Im is a matrix of pixels. InMatlab, it
is accessed using the row index i, the column
index j and color index k as >>Im(i,j,k).
The most top left pixel has row as well as
column index equal to 1. The red channel of
the pixel with row index 2 and column index
3 is accessed as >>Im(2,3,1).

(b) The image coordinate system is defined

with horizontal axis ~b1 and vertical axis ~b2.
The origin of the coordinate system is chosen
to assign coordinates 1, 1 to the most top left
pixel. Notice that pixel, which is accessed
as >>Im(2,3,1), is represented in the image
coordinate system by the vector ~u “ r3, 2sJ.

Figure 5.2: Image coordinate system.
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6 Perspective camera

Modern photographic camera, Figure 6.1, is an interesting and advanced device. We shall abstract
from all physical and technical details of image formation and will concentrate solely on its geometry.
From the point of view of geometry, a perspective camera projects point X from space into an image
point x by intersecting the line connecting X with the projection center (red) and a planar image plane
(green), Figure 6.1(b).

6.1 Perspective camera model

Let us now develop a mathematical model of the perspective camera. The model will allow us to
project space point X into image point x and to find the ray p in space along the which point X has
been projected.

§1 Camera coordinate system Figure 6.2 shows the geometry of the perspective camera. Point X
is projected along ray p from three-dimensional space to point x into two-dimensional image. Point
x is obtained as the intersection of ray p with planar image plane π. Ray p is constructed by joining
point X with the projection center C. The plane through the projection center C, which is parallel to the
image plane is called the principal plane.

The image plane is equipped with an image coordinate system (§ 1), po, αq, where o is the origin

and α “ r~b1,~b2s is the basis of the image coordinate system. Notice that the basis α is shown as
non-orthogonal. We want to develop a general camera model, which will be applicable even in the
situation when image coordinate system is not rectangular. Point x is represented by vector ~u in po, αq

~u “ u~b1 ` v~b2 i.e. ~uα “
„

u
v



(6.1)

Three-dimensional space is equipped with a world coordinate system pO, δq, where O is the origin

and δ “ r~d1, ~d2, ~d3s is a three-dimensional orthonormal basis. Point X is represented by vector ~X in

pO, δq. The camera projection center is represented by vector ~C in pO, δq.
Let us next define the camera coordinate system. The system will be derived from the image coordinate

system to make the construction of coordinates of the direction vector ~x of p extremely simple.

Camera coordinate system pC, βq has the origin in the projection center C and its basis β “ r~b1,~b2,~b3s
is constructed by re-using the two basis vectors of α and adding the third basic vector ~b3, which

corresponds to vector
ÝÑ
Co. We see that vectors in β form a basis when point C is not in π, which is

satisfied for every meaningful perspective camera. Notice also that the camera coordinate system is
three-dimensional.

Image points o and x are in plane π, which is in three-dimensional space, and therefore we can
consider them as points of that space too. Point x is in pC, βq represented by vector ~x, which is the
direction vector of the projection ray p along which point X has been projected into x. We see that

vectors ~u, ~x, ~b3 form a triangle such that

~x “ ~u `~b3 (6.2)

“ u~b1 ` v~b2 ` 1~b3 (6.3)
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(a) (b)

Figure 6.1: Perspective camera (a) is geometrically a point (red) and an image plane (green) (b).

and therefore

~xβ “ ~x
r~b1,~b2,~b3s

“

»

–

u
v
1

fi

fl “
„

~uα
1



. (6.4)

Notice that basis β has been constructed in a very special way to facilitate construction of ~xβ. We can
use u, v directly since β re-uses vectors of α and the third coordinate is always 1 by the construction

of ~b3. Although we do not know exact position of C w.r.t. the image plane, we know that it is not in
the plane π and hence a meaningful camera coordinate system constructed this way exists.

Notice next that the camera coordinate system is right-handed. This is because when looking at a
scene from a point C through the image plane, the image is constructed by intersecting image rays

with the image plane, which is in front and hence the vector ~b3 points towards the scene. We see that
vectors of β form a right-handed system.

Let us mention that we have used deeper properties of linear and affine spaces. In particular, we

were making use of the concept of free vector in the following way. We look at vectors ~b1, ~b2 and ~u
as on a free vectors. Therefore, coordinates of the representative of ~u beginning in o with respect

to representatives of ~b1, ~b2 beginning in o equal the coordinates of the representative of ~u beginning

in C with respect to representatives of ~b1, ~b2 beginning in C. Hence u, v reappear as the first two
coordinates of ~x.

For usual consumer cameras, vector ~b3 is often much longer than vectors ~b1,~b2 and often not
orthogonal to them. Therefore, basis β is in general neither orthonormal nor orthogonal! This has
severe consequences since we can’t measure angles and distances in the space using β, unless we find
out what are the lengths of its vectors and what are the angles between them.

§2 Perspective projection Point X has been projected along p into x. Since ~x is a direction vector
of p, point X can be represented in pC, βq by

η ~x (6.5)

for some real non-negative1 η. The value of η corresponds to the scaled depth of X, i.e. the distance

of X from the plane passing through C and generated by ~b1, ~b2 in units equal to the distance of C
from π. Value η is not known since it “has been lost” in the process of projection2 but will serve us

1Here we choose ~x such that η is non-negative. Considering negative η, as in [15], may be necessary if it is not clear how
has the image coordinate systems been defined or how has ~x been chosen. For instance, if ~x has been chosen to point
along ray p away from X, η would have to be negative.

2It can be recovered when a point X is observed by two cameras with different projection centers.
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O

C

o

X

p

~X

~C

x

~x

~u

π

~d1

~d2

~d3

~b1

~b1

~b2

~b2

~b3

~c1

~c2

~c3

Figure 6.2: Coordinate systems of perspective camera.
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to parametrize the projection ray in order to get coordinates of all possible points in space that could
project into x.

Let us now relate the coordinates ~uα, which are measured in the image, to the coordinates ~Xδ, which

are measured in the world coordinate system. First consider vectors ~X, ~C and ~x. They are coplanar
and we see that there holds

η ~x “ ~X ´ ~C (6.6)

To pass to coordinates, we will use the camera coordinate system, in which we can write

η ~xβ “ ~Xβ ´ ~Cβ (6.7)

η

„

~uα
1



“ ~Xβ ´ ~Cβ (6.8)

Next we shall pass to the coordinates w.r.t. basis δ on the right hand side of Equation 6.8 by introducing
a matrix A, which transforms coordinates of a general vector ~y from basis δ to basis β, i.e.

~yβ “ A ~yδ (6.9)

We know from linear algebra (§ 3) that such a matrix exists. We write

η

„

~uα
1



“ A p~Xδ ´ ~Cδq

η

„

~uα
1



“ A

”

I | ´ ~Cδ

ı

„

~Xδ

1



(6.10)

η

„

~uα
1



“ Pβ

„

~Xδ

1



(6.11)

η ~xβ “ Pβ

„

~Xδ

1



(6.12)

with 3 ˆ 4 image projection matrix

Pβ “
”

A | ´ A ~Cδ
ı

(6.13)

§3 Projection equation Equation 6.11 describes the relationship between measurement ~uα in the

image and measurement ~Xδ in space. It says that ~Xδ is projected into ~uα since there exists η such that
Equation 6.11 holds. Notice that η multiple of the vector on the left of Equation 6.11 is obtained by a

linear mapping represented by matrix Pβ from vector ~Xδ on the right.

When computing ~uα from ~Xδ, we actually eliminate η using the last row of the (matricidal) equa-
tion (6.11)

~uα “

»

—

—

—

—

–

pJ
1
X

pJ
3
X

pJ
2
X

pJ
3
X

fi

ffi

ffi

ffi

ffi

fl

(6.14)

where we introduced rows of p1, p2, p3 of P and a 4 ˆ 1 vector X as follows

Pβ “

»

–

pJ
1
pJ

2
pJ

3

fi

fl and X “
„

~Xδ

1



(6.15)

Notice that the projection equation is not linear. It is a rational function of the first order polynomials
in elements of X.
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§4 Projection ray Having an image point ~uα, we can construct its projection ray p in space. The

ray consists of all points ~Y that can project to ~uα. In pC, βq, the ray is emanating from the origin C. We

parametrize it by real η and express it in pO, δq by vector ~Xδ

~Yβ “ η

„

~uα
1



“ η ~xβ

~Xδ “ η A´1~xβ ` ~Cδ (6.16)

Notice that ~Xδ (6.16) can also be obtained for a given η by solving the system of linear equations (6.12)

for ~Xδ.

6.2 Computing image projection matrix from images of six points

Let us now consider the task of finding the Pβ from measurements. We shall consider the situation
when we can measure points in space as well as their projection in the image. Consider a pair of such

measurements rx, y, zsJ corrØ ru, vsJ. There holds

λ

»

–

u
v
1

fi

fl “ Q

»

—

—

–

x
y
z
1

fi

ffi

ffi

fl

“ Q X (6.17)

for some real λ, 3 ˆ 4 matrix Q and 4 ˆ 1 coordinate vector X. Notice that we introduced new symbols
λ and Q to emphasize that they are determined by Equation 6.17 up to a non-zero scale

Q “ ξ Pβ (6.18)

We will see that this will have further consequences.
Introduce symbols for rows of Q

Q “

»

–

qJ
1
qJ

2
qJ

3

fi

fl (6.19)

and rewrite the above matrix equation as

λu “ qJ
1 X (6.20)

λ v “ qJ
2 X (6.21)

λ “ qJ
3 X (6.22)

Eliminate λ from the first two equations using the third one

pqJ
3 Xq u “ qJ

1 X (6.23)

pqJ
3 Xq v “ qJ

2 X (6.24)

move all to the left hand side and reshape it using xJy “ yJx

XJq1 ´ pu XJq q3 “ 0 (6.25)

XJq2 ´ pv XJq q3 “ 0 (6.26)

Introduce vector of parameters (which are elements of Q)

q “
“

qJ
1
qJ

2
qJ

3

‰J
(6.27)
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and express the above two equations in matrix form

„

x y z 1 0 0 0 0 ´u x ´u y ´u z ´u
0 0 0 0 x y z 1 ´v x ´v y ´v z ´v



q “ 0

M q “ 0 (6.28)

Every correspondence rx, y, zsJ corrØ ru, vsJ brings two rows into the matrix M (6.28). We need
therefore at least 6 correspondences in general position to obtain 11 linearly independent rows in
Equation 6.28 to obtain a one-dimensional space of solutions.

If Q is a solution to Equation 6.28, then τ Q is also a solution and both determine the same projection
for any positive τ since

pτ Qq X “ τ pQ Xq “ τ pλ~xβq “ pτλq ~xβ (6.29)

Assuming Pβ “ τ Q leads to λ “ η{τ. We see that we can’t recover Pβ but only its non-zero multiple.
Therefore, when solving Equation 6.28, we are looking for one-dimensional subspace of 3ˆ4 matrices
of rank 3. Such a subspace determines one projection. Also note that the zero matrix does not represent
any interesting projection.

Notice that when considering more correspondences, M becomes

M q “

»

—

—

—

—

—

—

—

—

–

x1 y1 z1 1 0 0 0 0 ´u1x1 ´u1y1 ´u1z1 ´u1

x2 y2 z2 1 0 0 0 0 ´u2x2 ´u2y2 ´u2z2 ´u2
...

0 0 0 0 x1 y1 z1 1 ´v1x1 ´v1y1 ´v1z1 ´v1

0 0 0 0 x2 y2 z2 1 ´v2x2 ´v2y2 ´v2z2 ´v2
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

q “ 0 (6.30)

Matrix M can be more concisely rewritten as

M “

»

—

—

—

—

—

—

—

—

—

–

XJ
1
0J ´u1 X

J
1

XJ
2
0J ´u2 X

J
2

...
0J XJ

1
´v1 X

J
1

0J XJ
2

´v2 X
J
2

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.31)

with 0J “ r0, 0, 0, 0s.

§1 A more general procedure for computing Q We shall next develop and alternative formulation
for finding matrix Q. Let us come back to Equation 6.17

λ ~u “ Q X (6.32)

Above, we have eliminated λ assuming ~u3 “ 1. Let us now present an alternative procedure for
eliminating λ, which works for any non-zero ~u “ ru, v,wsJ, i.e. even when w “ 0. The trick is to
realize that

0 “ ~u ˆ pλ ~uq “ ~u ˆ Q X “ r~usˆ Q X (6.33)

This gives three equations for each ~u Ø X correspondence. However, only two of them are linearly
independet since r~usˆ has rank two. Now, we are in the position to employ Equation 2.95, which
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gives

r~usˆ Q X “ 0 (6.34)

XJQJ r~usJ
ˆ “ 0J (6.35)

vpXJQJ r~usJ
ˆq “ vp0Jq (6.36)

pr~usˆb XJq vpQJq “ vp0Jq (6.37)
¨

˝

»

–

0 ´w v
w 0 ´u

´v u 0

fi

flb XJ

˛

‚vpQJq “ vp0Jq (6.38)

»

–

0J ´w XJ v XJ

w XJ 0J ´u XJ

´v XJ u XJ 0J

fi

fl vpQJq “ vp0Jq (6.39)

For more correspondences numbered by i, we then get

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0J ´w1 X
J
1

v1 X
J
1

0J ´w2 X
J
2

v2 X
J
2

...
w1 X

J
1

0J ´u1 X
J
1

w2 X
J
2

0J ´u2 X
J
2

...
´v1 X

J
1

u1 X
J
1

0J

´v2 X
J
2

u2 X
J
2

0J

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

vpQJq “ 0 (6.40)

which if, for w “ 1, is equivalent to Equation 6.30. Notice that vpQJq “ q from Equation 6.30.
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7 Camera calibration

Let us now look at a useful interpretation of image projection matrix in space and image equipped
with a cartesian coordinate systems.

7.1 Camera pose

The projection formula 6.10 reveals that the perspective projection depends on matrix A and vector
~Cδ. The vector ~Cδ represents the position of the camera projection center w.r.t. the world coordinate
system. Columns of matrix A are coordinates of the basic vectors of δ in the basis β

A “
”

~d1β
~d2β

~d3β

ı

(7.1)

To recover the orientation of the camera, we will introduce the focal length f as the distance of the
camera projection center C from its projection plane π (in the world units) and replace the product
f A by the product of two 3 ˆ 3 matrices K and R

f A “ K R (7.2)

We will see that this seemingly artificial construction is indeed justified.

Rotation matrix R determines the orientation of the camera in space and altogether with ~Cδ defines
the camera pose. The camera calibration matrix K does not change when moving its camera in the space.

To obtain K and R, we define, Figure 7.1, the camera cartesian coordinate system pC, γq with center
(again) in the camera projection center C and with basis γ “ r~c1,~c2,~c3s such that

~c1 “ k11
~b1

~c2 “ k12
~b1 ` k22

~b2 (7.3)

~c3 “ k13
~b1 ` k23

~b2 ` 1~b3

Parameters ki j are determined to make the basis γ orthogonal. Notice that vector ~c3 is orthogonal to
π since it is orthogonal to ~c1,~c2, which span π, by construction. Also notice that γ is (in general) not
an orthonormal basis since the length of its vectors equals the distance of C from π, i.e. the focal length
f in the world units.

Equations 7.3 define matrix K as

K “
“

~c1β ~c2β ~c3β

‰

“

»

–

k11 k12 k13

0 k22 k23

0 0 1

fi

fl (7.4)

By this construction, we have

~xβ “ A ~xδ “ K ~xγ (7.5)

~xγ “ “ 1

f
R ~xδ (7.6)

The world cartesian coordinate system has basic vectors of unit length. The camera cartesian coordi-
nate system pC, γq has basic vectors of length equal to f . Therefore,

”

~d1γ
~d2γ

~d3γ

ı

“ 1

f
R “

»

—

—

–

rJ
1

{ f

rJ
2

{ f

rJ
3

{ f

fi

ffi

ffi

fl

(7.7)
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~b1
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~b2
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~c3

=p~b1,~b2q

Figure 7.1: Camera internal parameters are related to the geometry of basis β.

for some 3 ˆ 3 orthonormal matrix Rwith rows rJ
1

, rJ
2

, rJ
3

.
Consider that

A “
”

~d1β
~d2β

~d3β

ı

“ K
”

~d1γ
~d2γ

~d3γ

ı

“ 1

f
K R (7.8)

We can view the matrices 1
f R and K as coordinate transformation matrices, which transform a

general vector ~y from the coordinates w.r.t. δ to γ and then to β, i.e.

~yβ “ K ~yγ “ 1

f
K R ~yδ (7.9)

The basis γ is orthogonal and all basic vectors have the same length, which is equal to f . It follows
from the orthogonality of the basis γ that ~c1 ¨ ~c1 “ f 2, ~c1 ¨ ~c2 “ 0 and ~c2 ¨ ~c2 “ f 2 and hence using
Equation 7.3 leads, for a positive f , to

k11 }~b1} ´ f “ 0

k2
11 k22 p~b1 ¨~b2q ` k12 f 2 “ 0 (7.10)

k2
11 k2

22 }~b2}2 ´ pk2
12 ` k2

11q f 2 “ 0

Let us solve Equations 7.10 for k11, k12 and k22. The first equation in (7.10) provides k11. Substituting
the square of f from the first equation into the second one and dividing it by k2

11
gives the second

equation of (7.11), which allows to compute k12 from k22. To get k22, we construct the third equation
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of (7.11) as follows. We express k11 from the first equation of (7.10) and k12 from the second equation

of (7.11) and substitute them into the third equation of (7.10), which we then multiply by ||~b1||4{ f 2.
Altogether, we get

k11 }~b1} ´ f “ 0

k12 }~b1}2 ` k22 p~b1 ¨~b2q “ 0 (7.11)

k2
22 p}~b1}2 }~b2}2 ´ p~b1 ¨~b2q2q ´ f 2 }~b1}2 “ 0

Looking at the third equation of (7.11) we see that

k2
22 “ f 2}~b1}2

}~b1}2}~b2}2 ´ p~b1 ¨~b2q2
“ f 2

}~b2}2 ´ }~b2}2 cos2=p~b1,~b2q
(7.12)

and since γ was constructed to make k22 positive, we obtain

k22 “ f

}~b2} sin =p~b1,~b2q
(7.13)

The second equation of (7.10) now gives

k12 “ ´k22

~b1 ¨~b2

}~b1}2
“ ´k22

}~b2} cos =p~b1,~b2q
}~b1}

(7.14)

“ ´ f cos =p~b1,~b2q
}~b1} sin =p~b1,~b2q

(7.15)

Finally k11 follows from (7.11)

k11 “ f

}~b1}
(7.16)

Considering Figure 7.1 and Equation 7.3, we see that the coordinates of the vector ~u0, corresponding
to the principal point, which is the perpendicular projection of C onto π, are in β

~u0β “

»

–

k13

k23

0

fi

fl , i.e. ~u0α “
„

k13

k23



(7.17)

The horizontal pixel size corresponds to }~b1}. Quantity k11 can thus be understood as f ex-

pressed in the horizontal image units. The angle between the image axes ~b1,~b2 is obtained from

k12{k11 “ ´ cotan =p~b1,~b2q. The ratio of the lengths of the image axes is determined by }~b2}{}~b1} “
b

k11 pk2
11

` k2
12

q{k22.
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Let us now return to Equation 6.11 and substitute there the above results to arrive at the final
projection equation

η ~xβ “ Pβ

„

~Xδ

1



(7.18)

η

„

~uα
1



“ A p~Xδ ´ ~Cδq (7.19)

f η

„

~uα
1



“ f A p~Xδ ´ ~Cδq (7.20)

f η

„

~uα
1



“ K R p~Xδ ´ ~Cδq (7.21)

ζ

„

~uα
1



“ K R p~Xδ ´ ~Cδq (7.22)

ζ

„

~uα
1



“ K R

”

I | ´ ~Cδ

ı

„

~Xδ

1



(7.23)

We have introduced a new parameter ζ “ f η, which is the depth of X in the world units. We conclude
that

Pβ “
”

1
f K R | ´ 1

f K R
~Cδ

ı

(7.24)

Notice that the last row aJ
3

of A provides f since

A “

»

–

aJ
1
aJ

2
aJ

3

fi

fl “ 1

f

»

–

k11 k12 k13

0 k22 k23

0 0 1

fi

fl

»

–

rJ
1
rJ

2
rJ

3

fi

fl “ 1

f

»

–

k11r
J
1

` k12r
J
2

` k13r
J
3

k22r
J
2

` k23r
J
3
rJ

3

fi

fl (7.25)

and hence }aJ
3

} “ 1
f . Therefore }Pβp3, 1 : 3q} “ 1

f .

Equation 7.23 is very important in many practical situations when we do not have access to physical

dimensions of the camera but only to images. Then, it is possible to recover matrix K R
”

I | ´ ~Cδ

ı

but not image projection matrix Pβ. This is so important the we introduce the camera projection matrix

P “
”

K R | ´ K R ~Cδ
ı

(7.26)

which is related to the image projection matrix as

P “ f Pβ (7.27)

In this text, it would be more consistent to associate subscript νwith the camera projection matrix but
we will not do that since we want to use the nomenclature of [15] here whenever possible.

Let us write K explicitly,

K “

»

—

—

–

f

}~b1}
´ f cos =p~b1,~b2q

}~b1} sin =p~b1,~b2q
u0

0
f

}~b2} sin =p~b1,~b2q
v0

0 0 1

fi

ffi

ffi

fl

(7.28)

where ~u0α “
“

u0 v0

‰J
. We see that we can neither recover f nor }~b1} from P.

Let us introduce image calibration matrix

Kβ “ 1

f
K (7.29)

to have
Pβ “

”

Kβ R | ´ Kβ R ~Cδ
ı

(7.30)
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Writing image calibration matrix Kβ explicitly,

Kβ “ 1

f
K “

»

—

—

–

1

}~b1}
´ cos =p~b1,~b2q

}~b1} sin =p~b1,~b2q

u0

f

0 1

}~b2} sin =p~b1,~b2q

v0

f

0 0 1
f

fi

ffi

ffi

fl

(7.31)

shows that it is possible to recover both

}~b1} “ 1

Kβ11
and f “ 1

Kβ33
(7.32)

from image calibration matrix.
There is an important difference between Kβ and K regarding the representation of internal camera

calibration information. Image calibration matrix Kβ, and also image projection matrix Pβ, captures
all calibration information about a perspective image whereas camera calibration matrix K, and also
camera projection matrix P, captures only the calibration information that can be recovered by auto-
calibration from images as we will see later. When the focal length is known in world units or when
pixel sizes are known in world units, it is more appropriate to use image calibration Kβ, or image
projection matrix Pβ, to represent full internal calibration information.

§1 Coordinate systems generated by applying K R to ~yδ and R´1K´1 to ~yβ We have seen that the
decomposition of A to K and R introduced the camera cartesian coordinate system pC, γq, Figure 7.2(b)

~yγ “ 1

f
R ~yδ (7.33)

~yβ “ K ~yγ (7.34)

There are three more coordinate systems to consider when looking at how matrices R, K, and their
inverses R´1, K´1, apply to vectors ~yδ and ~yβ, Figure 7.2.

Let us first consider coordinates of a vector ~y w.r.t. basis δ and apply successivelyR andK. Coordinate
vector R ~yδ can be interpreted as coordinates of ~y w.r.t. a new basis ǫ “ r~e1,~e2,~e3s, Figure 7.2(c).
Applying further K to ~yǫ gives the coordinate vector K ~yǫ, which can be interpreted as ~y w.r.t. yet
another new basis ν “ r~n1, ~n2, ~n3s. We get from ν to β by using 1

f I

~yǫ “ R ~yδ (7.35)

~yν “ K ~yǫ (7.36)

~yβ “ 1

f
I ~yν (7.37)

We have introduced two new coordinate systems pC, νq, ν “ r~n1, ~n2, ~n3s and pC, ǫq, ǫ “ r~e1,~e2,~e3s.
Next we consider coordinates of a vector ~y w.r.t. basis β and apply successively K´1 and R´1.

Coordinate vector K´1 ~yβ gives ~yγ. Coordinate vector R´1 ~yγ can be interpreted as coordinates of ~y

w.r.t. a new basis κ “ r~k1,~k2,~k3s, Figure 7.2(d). To get from ~yκ to ~yδ we need to employ fI

~yγ “ K´1 ~yβ (7.38)

~yκ “ R´1 ~yγ (7.39)

~yδ “ fI ~yκ (7.40)

We have thus introduced a new coordinate system pO, κq, κ “ r~k1,~k2,~k3s.
Figure 7.3 summarizes the relationship between coordinates of a vector and between bases associ-

ated with a perspective camera.
We can now see why we have chosen to denote the image projection matrix as Pβ and the camera

projection matrix as P. The image projection matrix provides the ray direction vector ~x in basis β
while the camera projection matrix provides the ray direction vector ~x in basis ν.
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(a) β “ r~b1,~b2,~b3s, δ “ r~d1, ~d2, ~d3s: ~yβ “ A ~yδ (b) γ “ r~c1,~c2,~c3s: ~yγ “ 1
f R ~yδ

~yβ “ K ~yγ
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~b2

~b3

~e1
~e2

~e3

~n1

~n2

~n3

R

K

O

C

~d1

~d2

~d3

o

π

~b1
~b2

~b1

~b2

~b3

~c1

~c2

~c3

~k1

~k2

~k3

R´1

K´1

(c) ǫ “ r~e1,~e2,~e3s: ~yǫ “ R ~yδ, (d) κ “ r~k1,~k2,~k3s: ~yγ “ K´1 ~yβ,
ν “ r~n1, ~n2, ~n3s: ~yν “ K ~yǫ ~yκ “ R´1 ~yγ

Figure 7.2: Coordinate systems generated by applying 1
f R, K, R, R

´1 and K´1.
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K

„
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

1
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1
f
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β

γ

δ

ǫ

ν

κ

1
f A

´1

R´1
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K´1

K´1

»

–

1 0
0 1
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fi

fl

f R´1

f

f

f

(a) (b)

Figure 7.3: Relationships between (a) coordinates in different bases. e.g. ~yβ “ K ~yγ and (b) bases

themselves, e.g. β “ γ K´1, associated with a perspective camera.

§2 Recovering camera pose from its projection matrix Let us next consider that we have already
computed the camera projection matrix

Q “ ξ P “ ξ K R rI | ´ ~Cδs (7.41)

consisting of a 3 ˆ 3 matrix M and 3 ˆ 1 vector m

Q “ rM | ms (7.42)

To recover camera pose from Q, we need to get ~Cδ from m and to decompose Q into the product of K in
the form of (7.4) and R such that RJR “ I and |R| “ 1. Consider M in the form

M “

»

–

mJ
1
mJ

2
mJ

3

fi

fl (7.43)

Next we notice that the last row of K R has unit norm since it is equal to the last row of rotation
R. Therefore, we need to divide M by the norm of its last row to get a matrix decomposable into
the product of K R. Moreover, it follows from the construction of β that k11 ą 0 and k22 ą 0. Thus,
determinant |K R| “ |K| |R| “ k11 k22 ą 0. Therefore, we also need to multiply M by the sign of its
determinant to get a matrix decomposable into K R.

sign |M|
}m3} M “

sign |M|
}m3}

»

–

mJ
1
mJ

2
mJ

3

fi

fl “

»

–

k11 k12 k13

0 k22 k23

0 0 1

fi

fl

»

–

rJ
1
rJ

2
rJ

3

fi

fl (7.44)
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which provides the following set of equations

mJ
2
m3

}m3}2
“ k22 r

J
2 r3 ` k23 r

J
3 r3 “ k23 (7.45)

mJ
1
m3

}m3}2
“ k13 (7.46)

mJ
2
m2

}m3}2
“ k2

22 ` k2
23 (7.47)

mJ
1
m2

}m3}2
“ k12 k22 ` k13 k23 (7.48)

mJ
1
m1

}m3}2
“ k2

11 ` k2
12 ` k2

13 (7.49)

from which k11, k12, k13, k22, k23 can be easily computed considering that the most of consumer digital
cameras have k11 ą 0, k22 ą 0, k13 ą 0, k23 ą 0.

Having ki j computed, we recover R from M as

R “ K´1 sign |M|
}m3} M (7.50)

Camera projection center can be computed in two ways. Either we get

~Cδ “ ´ M´1m (7.51)

or we obtain it by finding a basis c of the one-dimensional right null space of matrix Q, i.e. solving

Q c “ 0 (7.52)

and then computing
„

~Cδ
1



“ 1

c4
c (7.53)

where c4 is the fourth coordinate of vector c.

7.2 Camera calibration and angle between projection rays

We have introduced matrices P, R and K, and vector ~Cδ which determine the projection from space

to images. However, since K is introduced with K33 “ 1, the triplet (K, R, ~Cδ) does not contain
all information about the camera, which can be obtained by direct measurement of its physical
components in a world coordinate system equipped with a known world unit length 1W. The missing
element is the scale of P, which is equivalent to knowing the value of the focal length or the size of

pixels, i.e. f , }~b1} or }~b2}, in 1W.

Knowing K and f allows to recover }~b1} from Equations 7.3 as }~b1} “ f {k11. Knowing K and }~b1},

on the other hand, gives f “ }~b1} k11.
Therefore, full calibration of the camera is encoded in matrix Pβ, Equation 7.24, or, e.g., in one of the

following tuples: (Kβ, R, ~Cδ), (K, R, ~Cδ, f ), (K, R, ~Cδ, }~b1}) or (K, R, ~Cδ, }~b2}).
We defined the camera calibration matrix Kwith K33 “ 1 because we often do not have access to the

world unit when working with images without knowing anything about the camera which was used
to make them. Moreover, a number of important tasks can be done without knowing the world unit.
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Figure 7.4: A calibrated camera pose can be computed from projections of three known points.

§1 Angle between projection rays Consider two image points ~u1α and ~u2α. The direction vectors
of the rays are in β given by

~x1β “
„

~u1α

1



, ~x2β “
„

~u2α

1



(7.54)

To obtain the angle between the direction vectors by evaluating the scalar product of the vectors, we
need to pass to an orthogonal basis. The “closest” orthogonal basis is γ. Hence

cos =p~x1, ~x2q “
~xJ

1γ
~x2γ

}~x1γ}}~x2γ} “
~xJ

1β K
´JK´1~x2β

}K´1~x1β}}K´1~x2β}
(7.55)

Notice that we could use the orthogonal basis γ to measure angles instead of, e.g., the closest
orthonormal basis ǫ since the unknown scale factor f cancels in the following formula

cos =p~x1, ~x2q “
~xJ

1ǫ
~x2ǫ

}~x1ǫ}}~x2ǫ}
“

p f ~xJ
1γqp f ~x2γq

} f ~x1ǫ}} f ~x2γ} “
~xJ

1γ
~x2γ

}~x1γ}}~x2γ} (7.56)

We conclude that we do not need to know f to measure angles between projection rays.

7.3 Calibrated camera pose computation

We have seen how to find (uncalibrated) perspective camera pose from projections of known six
points. In fact, we have recovered the calibration of the camera. Next we shall show that when the
calibration is known, we are able to find the pose of the camera from projections of three points. This
is a very classical problem which has been known since [16].

Figure 7.4 shows a camera with center C, which projects three points X1, X2 and X3, represented by

vectors ~X1δ, ~X2δ and ~X3δ in pO, δq, into image points represented by ~x1β, ~x2β and ~x3β.
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§1 Classical formulation of the calibrated camera pose computation We introduce distances
between pairs of points as

d12 “ ||~X2δ ´ ~X1δ||, d23 “ ||~X3δ ´ ~X2δ||, d31 “ ||~X1δ ´ ~X3δ|| (7.57)

Since we see three different points, we know that all distances are positive.
Points X1, X2 and X3 are in pC, γq represented by vectors

ηi

~xiγ

||~xiγ|| “ ηi

K´1~xiβ

||K´1~xiβ||
, i “ 1, 2, 3 (7.58)

with ηi representing the distance from C to Xi. Distances ηi are positive since otherwise we could not
see the points.

§2 Computing distances to the camera center Calibrated perspective camera measures angles
between projection rays

ci j “ cos =p~xi, ~x jq “
~xJ

iβ K
´JK´1~x jβ

}K´1~xiβ}}K´1~x jβ}
, i “ 1, 2, 3, j “ pi ´ 1qmod 3 ` 1 (7.59)

Hence we have all quantities ηi, cos =p~xi, ~x jq and di j, which we need to construct a set of equations
using the rule of cosines d2

i j
“ η2

i
` η2

j
´ 2 ηi η j cos =p~xi, ~x jq, i.e.

d2
12 “ η2

1 ` η2
2 ´ 2 η1 η2 c12 (7.60)

d2
23 “ η2

2 ` η2
3 ´ 2 η2 η3 c23 (7.61)

d2
31 “ η2

3 ` η2
1 ´ 2 η3 η1 c31 (7.62)

with ci j “ cos =p~xi, ~x jq.
We have three quadratic equations in three variables. We shall solve this system by manipulating

the three equations to generate one equation in one variable, solving it and then substituting back to
get the remaining two variables.

§3 A classical solution Let us first get two equations in two variables. Let us generate new
equations by multiplying the left hand side of (7.60) and (7.62) by the right hand side of (7.61) and
right hand side of (7.60) and (7.62) by the left hand side of (7.61)

d2
12 pη2

2 ` η2
3 ´ 2 η2 η3 c23q “ d2

23 pη2
1 ` η2

2 ´ 2 η1 η2 c12q (7.63)

d2
31 pη2

2 ` η2
3 ´ 2 η2 η3 c23q “ d2

23 pη2
3 ` η2

1 ´ 2 η3 η1 c31q (7.64)

We could have made three different choices which equation to use twice but since all di j ‰ 0, and
hence all sides of the equations are nonzero, all the choices are equally valid.

We have now two equations with three variables but since the equations are homogeneous, we
will be able to reduce the number of variables to two by dividing equations by (e.g.) η2

1
(which is

non-zero) to get

d2
12

`

η2
12 ` η2

13 ´ 2 η12 η13 c23

˘

“ d2
23

`

1 ` η2
12 ´ 2 η12 c12

˘

(7.65)

d2
31

`

η2
12 ` η2

13 ´ 2 η12 η13 c23

˘

“ d2
23

`

1 ` η2
13 ´ 2 η13 c31

˘

(7.66)

with η12 “ η2

η1
and η13 “ η3

η1
. Notice that we have a simpler situation than before with only two

quadratic equations in two variables. Let us proceed further towards one equation in one variable.
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We rearrange the terms to get a polynomials in η13 on the left and the rest on the right

d2
12 η

2
13 ` p´2 d2

12 η12 c23q η13 “ d2
23

`

1 ` η2
12 ´ 2 η12 c12

˘

´ d2
12η

2
12

pd2
31 ´ d2

23q η2
13 ` p2 d2

23 c31 ´ 2 d2
31 η12 c23q η13 “ d2

23 ´ d2
31 η

2
12 (7.67)

to get two quadratic equations

m1 η
2
13 ` p1 η13 “ q1 (7.68)

m2 η
2
13 ` p2 η13 “ q2

in η13 with

m1 “ d2
12 (7.69)

p1 “ ´2 d2
12 η12 c23 (7.70)

q1 “ d2
23

`

1 ` η2
12 ´ 2 η12 c12

˘

´ d2
12η

2
12 (7.71)

m2 “ d2
31 ´ d2

23 (7.72)

p2 “ 2 d2
23 c31 ´ 2 d2

31 η12 c23 (7.73)

q2 “ d2
23 ´ d2

31 η
2
12 (7.74)

We have “hidden” the variable η12 in the new coefficients. We can now look upon Equations 7.68 as
on a linear system

„

m1 p1

m2 p2

 „

η2
13
η13



“
„

q1

q2



(7.75)

The matrix of the system (7.75) either is or is not singular.

§4 Case A If it is not singular, we can solve the system by Cramer’s rule [6, 7, 5]

η2
13

ˇ

ˇ

ˇ

ˇ

„

m1 p1

m2 p2

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

„

q1 p1

q2 p2

ˇ

ˇ

ˇ

ˇ

(7.76)

η13

ˇ

ˇ

ˇ

ˇ

„

m1 p1

m2 p2

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

„

m1 q1

m2 q2

ˇ

ˇ

ˇ

ˇ

(7.77)

giving

η2
13 pm1 p2 ´ m2 p1q “ q1 p2 ´ q2 p1 (7.78)

η13 pm1 p2 ´ m2 p1q “ m1 q2 ´ m2 q1 (7.79)

Eliminating η13 (by squaring the second equation, multiplying the first one by m1 p2 ´ m2 p1, which is
non-zero, and comparing the left hand sides) yields

pm1 p2 ´ m2 p1q pq1 p2 ´ q2 p1q “ pm1 q2 ´ m2 q1q2 (7.80)

Substituting Formulas 7.69-7.74 into Equation 7.80 yields

0 “ a4 η
4
12 ` a3 η

3
12 ` a2 η

2
12 ` a1 η12 ` a0 (7.81)
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with coefficients

a4 “ ´d8
23 ´ d4

12 d4
23 ´ d4

23 d4
31 ´ 2 d2

12 d4
23 d2

31 ` 2 d6
23 d2

31 ` 2 d2
12 d6

23 (7.82)

`4 d2
12 c2

23 d4
23 d2

31

a3 “ 4 d4
12 d4

23 c31 c23 ´ 4 d2
12 d6

23 c12 ´ 4 d2
12 c23 d6

23 c31 ` 4 d4
23 c12 d4

31 (7.83)

`4 d8
23 c12 ´ 4 d2

12 d4
23 c31 d2

31 c23 ´ 8 d2
12 c2

23 d4
23 d2

31 c12 ´ 8 d6
23 c12 d2

31

`4 d2
12 d4

23 c12 d2
31

a2 “ 8 d6
23 c2

12 d2
31 ` 4 d6

23 d2
31 ´ 2 d4

23 d4
31 ` 2 d4

12 d4
23 ´ 4 d4

12 d4
23 c2

31 (7.84)

´4 d8
23 c2

12 ´ 4 d4
12 c2

23 d4
23 ´ 2 d8

23 ` 8 d2
12 c23 d6

23 c31 c12

`4 d2
12 c2

23 d4
23 d2

31 ´ 4 d4
23 c2

12 d4
31 ` 4 d2

12 d6
23 c2

31 ` 8 d2
12 d4

23 c31 d2
31 c23 c12

a1 “ 4 d4
23 c12 d4

31 ` 4 d2
12 d6

23 c12 ` 4 d8
23 c12 ´ 4 d2

12 c23 d6
23 c31 (7.85)

´8 d2
12 d6

23 c2
31 c12 ´ 4 d2

12 d4
23 c31 d2

31 c23 ´ 4 d2
12 d4

23 c12 d2
31

`4 d4
12 d4

23 c31 c23 ´ 8 d6
23 c12 d2

31

a0 “ 2 d6
23 d2

31 ` 2 d2
12 d4

23 d2
31 ´ d4

23 d4
31 ´ d4

12 d4
23 ` 4 d2

12 d6
23 c2

31 (7.86)

´d8
23 ´ 2 d2

12 d6
23

We will use eigenvalue computation to find a numerical solution to Equation 7.81. Construct the
following companion matrix

C “

»

—

—

—

–

0 0 0 ´ a0

a4

1 0 0 ´ a1

a4

0 1 0 ´ a2

a4

0 0 1 ´ a3

a4

fi

ffi

ffi

ffi

fl

(7.87)

and observe that

| η12 I´ C | “ η4
12 ` a3

a4
η3

12 ` a2

a4
η2

12 ` a1

a4
η12 ` a0

a4
(7.88)

Therefore, a numerical approximation of η12 can be obtained by computing, e.g., >>eig(C) in Matlab.
Complex solutions are artifacts of the method and should not be further considered. For every real
solution, we can then substitute back to Equation 7.79 to obtain the corresponding

η13 “ m1 q2 ´ m2 q1

m1 p2 ´ m2 p1
(7.89)

“
d2

12
pd2

23
´ d2

31
η2

12
q ` pd2

23
´ d2

31
q pd2

23
p1 ` η2

12
´ 2 η12 c12q ´ d2

12
η2

12
q

2 d2
12

pd2
23

c31 ´ d2
31

c23 η12q ` 2 pd2
31

´ d2
23

q d2
12

c23 η12

To get η1, η2 and η3, we consider Equation 7.60, which can be rearranged as

d2
12 “ η2

1 p1 ` η2
12 ´ 2 η12 c12q (7.90)

and hence yields positive

η1 “ d12
b

1 ` η2
12

´ 2 η12 c12

(7.91)

η2 “ η1 η12 (7.92)

η3 “ η1 η13 (7.93)
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§5 Case B Let us now look at what happens when the matrix of the system (7.75) is singular. Then,
after substituting m1, m2, p1 and p2 from Equations 7.69–7.74, we have

m1 p2 ´ m2 p1 “ 0 (7.94)

´2 d2
12 d2

23 pη12 c23 ´ c31q “ 0 (7.95)

η12 c23 “ c31 (7.96)

We used the fact that neither d12 ‰ 0 nor d23 ‰ 0.

§6 Case B1 When c23 ‰ 0, then we get

η12 “ c31

c23
(7.97)

Substituting it to Equations 7.65 we get

d2
12

ˆ

pc31

c23
q2 ` η2

13 ´ 2
c31

c23
η13 c23

˙

“ d2
23

ˆ

1 ` pc31

c23
q2 ´ 2

c31

c23
c12

˙

(7.98)

d2
12

`

c2
31 ` c2

23 η
2
13 ´ 2 c31 c2

23 η13

˘

“ d2
23

`

c2
23 ` c2

31 ´ 2 c31 c23 c12

˘

(7.99)

and after some more manipulation obtain a quadratic equation

pd2
12 c2

23q η2
13 ` p´2 d2

12 c2
23 c31q η13 ` d2

12 c2
31 ´ d2

23 c2
23 ´ d2

23 c2
31 ` 2 d2

23 c12 c23 c31 “ 0 (7.100)

in η13. We get η1, η2 and η3 from Equations 7.91, 7.92, 7.93.

§7 Case B2 When c23 “ 0, then it follows from Equation 7.96 that c31 “ 0 as well. Returning back
to equations 7.65, 7.66 provides

d2
12

`

η2
12 ` η2

13

˘

“ d2
23

`

1 ` η2
12 ´ 2 η12 c12

˘

(7.101)

d2
31

`

η2
12 ` η2

13

˘

“ d2
23

`

1 ` η2
13

˘

(7.102)

Expressing η13 from Equation 7.102 gives

pd2
23 ´ d2

31q η2
13 “ d2

31 η
2
12 ´ d2

23 (7.103)

§8 Case B2.1 When d2
23

‰ d2
31

, then we can write

η2
13 “

d2
31
η2

12
´ d2

23

d2
23

´ d2
31

(7.104)

to substitute it into Equation 7.101

d2
12

˜

η2
12 `

d2
31
η2

12
´ d2

23

d2
23

´ d2
31

¸

“ d2
23

`

1 ` η2
12 ´ 2 η12 c12

˘

(7.105)

which we further manipulate to get a quadratic equation in η12

`

d2
12 ´ d2

23 ` d2
31

˘

η2
12 ` 2 c12 pd2

23 ´ d2
31q η12 ` d2

31 ´ d2
12 ´ d2

23 “ 0 (7.106)

We get η1, η2 and η3 from Equations 7.91, 7.92, 7.93.
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§9 Case B2.2 Finally, when d2
23

“ d2
31

, then we get from Equation 7.103

η12 “ 1 (7.107)

and from Equation 7.101

η2
13 “

d2
23

d2
12

p2 ´ 2 c12q ´ 1 (7.108)

and hence the positive

η13 “

g

f

f

e

d2
23

d2
12

p2 ´ 2 c12q ´ 1 (7.109)

We get η1, η2 and η3 from Equations 7.91, 7.92, 7.93.

§10 Selecting solutions The above process of ηi computation often delivers several solutions. It is
important to notice that some of them may not satisfy the original Equations 7.62–7.60. For instance,
we always obtain solutions for the case A as well as for some of the cases B but only one of the cases
is actually valid. Hence, we need to select only the solutions that satisfy Equations 7.62–7.60 and are
meaningful, i.e. are real and positive.

§11 A modern (more elegant) solution The classical solution is perfectly valid but it was quite
tedious to derive it. Let us now present another, somewhat more elegant, solution, which exploits
some of more recent results of algebraic geometry [2, 17].

Let us consider Equations 7.60, 7.61, 7.62 and proceed to Equations 7.65, 7.66, but, this time, using
all three pairs to get three equations in η12, η13

f1 “ d2
12

`

η2
12 ` η2

13 ´ 2 η12 η13 c23

˘

´ d2
23

`

1 ` η2
12 ´ 2 η12 c12

˘

“ 0 (7.110)

f2 “ d2
31

`

η2
12 ` η2

13 ´ 2 η12 η13 c23

˘

´ d2
23

`

1 ` η2
13 ´ 2 η13 c31

˘

“ 0 (7.111)

f3 “ d2
12

`

1 ` η2
13 ´ 2 η13 c31

˘

´ d2
31

`

1 ` η2
12 ´ 2 η12 c12

˘

“ 0 (7.112)

It is known [2, 17] that solutions to a set of k algebraic equations

fipx1, . . . , xnq “ 0, i “ 1 . . . , k (7.113)

in n variables, which have a fininte number of solutions, can always be obtained by deriving a
polynomial gpxnq “ 0 in the last variable by the following procedure. If the system, does not have
any solution, the procedure will generate polynomial gn “ 1, i.e. a non-zero constant, leading to the
contradiction 1 “ 0.

The procedure is as follows. First generate new equations by multiplying all fi by all possible
monomials up to degree m

x1, . . . , xn, x
2
1, x1 x2, . . . , x

2
n, x

3
1, x

2
1 x2, . . . , x

m
n (7.114)

to get equations

f1 “ 0, . . . , fn “ 0, x1 f1 “ 0, . . . , xn fn “ 0, x2
1 f1 “ 0, x1 x2 f1 “ 0, . . . , xm

n fn “ 0 (7.115)

The degree m needs to be chosen such that the next step yields the desired result. It is always possible
to choose such m but it may sometimes be found only by using more and more monomials until the
Gaussian elimination of the matrix of coefficients, which combine monomials, does not produce a
row corresponding to an equation in xn only. Let us demonstrate this process by solving our problem.
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We use the following four monomials of maximal degree two

η12, η13, η12 η13, η
2
12 (7.116)

Notice that we did not include the second degree monomial η2
13

since it turns out that equations
generated by that monomial are not necessary. We obtain 15 “ 3 ` 4 ˆ 3 equations

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

f1
f2
f3

η12 f1
η12 f2
η12 f3
η13 f1
η13 f2
η13 f3

η12 η13 f1
η12 η13 f2
η12 η13 f3
η2

12
f1

η2
12

f2
η2

12
f3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ M

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

η12 η3
13

η3
13

η2
12
η2

13
η2

13
η12

η2
13

η3
12
η13

η13 η2
12

η13 η12

η13

η4
12
η3

12
η2

12
η12

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ M m “ 0 (7.117)

with

M “

»

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 m1 0 0 ´m7 0 0 0 m4 m8 ´m2
0 0 0 0 m5 0 0 m9 ´m10 0 0 ´m3 0 m2
0 0 0 0 ´m1 0 0 0 m11 0 0 m3 ´m12 m6
0 0 0 m1 0 0 ´m7 0 0 0 m4 m8 ´m2 0
0 0 0 m5 0 0 m9 ´m10 0 0 ´m3 0 m2 0
0 0 0 ´m1 0 0 0 m11 0 0 m3 ´m12 m6 0
0 m1 0 ´m7 0 0 m4 m8 ´m2 0 0 0 0 0
0 m5 0 m9 ´m10 0 ´m3 0 m2 0 0 0 0 0
0 ´m1 0 0 m11 0 m3 ´m12 m6 0 0 0 0 0

m1 0 ´m7 0 0 m4 m8 ´m2 0 0 0 0 0 0
m5 0 m9 ´m10 0 ´m3 0 m2 0 0 0 0 0 0

´m1 0 0 m11 0 m3 ´m12 m6 0 0 0 0 0 0
0 0 m1 0 0 ´m7 0 0 0 m4 m8 ´m2 0 0
0 0 m5 0 0 m9 ´m10 0 0 ´m3 0 m2 0 0
0 0 ´m1 0 0 0 m11 0 0 m3 ´m12 m6 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(7.118)

and
m1 “ d2

12
m4 “ d2

12
´ d2

23
m7 “ 2 d2

12
c23 m10 “ 2 d2

23
c31

m2 “ d2
23

m5 “ d2
23

´ d2
31

m8 “ 2 d2
23

c12 m11 “ 2 d2
12

c31

m3 “ d2
31

m6 “ d2
31

´ d2
12

m9 “ 2 d2
31

c23 m12 “ 2 d2
31

c12

(7.119)

Matrix M contains coefficients and vector m contains the monomials.
Notice in Equation 7.117 that the last five monomials contain only on η12. We have deliberately

ordered monomials to achieve this. Next, we do Gaussian elimination (with pivoting) of matrix M
and get a new matrix M1.

One can verify that that the 10th row of M1 has the first nine elements equal to zero. Therefore

M1
10,: m “ 0 (7.120)

is a polynomial only in η12. In fact, it is exactly a non-zero multiple of polynomials obtained in cases
A, B1, B2.1 and B2.2 above.

Discussion of the cases happens in the Gaussian elimination with pivoting, which avoids dividing
by elements close to zero. The resulting polynomial may be of degree four (case A) but will have
lower degrees in other cases.

§12 Computing camera orientation and camera center Having quantities η1, η2, η3, we shall

compute camera projection center ~Cδ and camera rotation R from Equation 7.24.
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The three points X1, X2 and X3 are represented in the world coordinate system pO, δq by vectors
~X1δ, ~X2δ and ~X3δ. With known η1, η2, η3, we can represent them also in the camera (orthonormal)
coordinate system pC, ǫq by vectors

~Yiǫ “ ηi ~yiǫ “ ηi
~xiǫ

||~xiǫ||
“ ηi

f ~xiγ

|| f ~xiγ|| “ ηi

~xiγ

||~xiγ|| , i “ 1, 2, 3 (7.121)

Coordinate vectors ~Xiδ are related to coordinate vectors ~Yiǫ as follows

~Y1ǫ “ R p~X1δ ´ ~Cδq (7.122)

~Y2ǫ “ R p~X2δ ´ ~Cδq (7.123)

~Y3ǫ “ R p~X3δ ´ ~Cδq (7.124)

There are three vector equations in R3, which is nine scalar equations, and 12 unknowns in R and ~Cδ.
Additional seven equations are provided by the fact that R is an orthonormal matrix, i.e. RJR “ I and
|R| “ 1.

To compute R, we shall next eliminate ~Cδ from Equations 7.122–7.124

~Y2ǫ ´ ~Y1ǫ “ R p~X2δ ´ ~X1δq (7.125)

~Y3ǫ ´ ~Y1ǫ “ R p~X3δ ´ ~X1δq (7.126)

and use the property (Equation 2.50 in Section 2.3)

~Xǫ ˆ ~Yǫ “ R´J

|R´J| p~Xδ ˆ ~Yδq “ R p~Xδ ˆ ~Yδq (7.127)

of the vector product of any two vectors ~X, ~Y in R3 and an orthonormal matrix R to write

p~Y2ǫ ´ ~Y1ǫq ˆ p~Y3ǫ ´ ~Y1ǫq “
´

R p~X2δ ´ ~X1δq
¯

ˆ
´

R p~X3δ ´ ~X1δq
¯

(7.128)

“ R

´

p~X2δ ´ ~X1δq ˆ p~X3δ ´ ~X1δq
¯

(7.129)

which provides a triplet of independent vectors expressed in the two bases

~Z2ǫ “ ~Y2ǫ ´ ~Y1ǫ, ~Z2δ “ ~X2δ ´ ~X1δ (7.130)

~Z3ǫ “ ~Y3ǫ ´ ~Y1ǫ, ~Z3δ “ ~X3δ ´ ~X1δ (7.131)

~Z1ǫ “ ~Z2ǫ ˆ ~Z3ǫ, ~Z1δ “ ~Z2δ ˆ ~Z3δ (7.132)

Rotation R can then be recovered from
”

~Z1ǫ
~Z2ǫ

~Z3ǫ

ı

“ R
”

~Z1δ
~Z2δ

~Z3δ

ı

(7.133)

as

R “
”

~Z1ǫ
~Z2ǫ

~Z3ǫ

ı ”

~Z1δ
~Z2δ

~Z3δ

ı´1
(7.134)

With known Rwe get ~Cδ as
~Cδ “ ~Xiδ ´ RJ~Yiǫ, i “ 1, 2, 3 (7.135)
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8 Homography

We shall next investigate the relationship between projections of 3D points by two perspective cameras
into two images. In general, the projections depend on the shape of the scene and camera poses
and this relationship may be very difficult to describe. However, there are several very important
situations when the relationship can be given in a form of a special image transform, the homography.

Let us first consider the situation when two (different) cameras share a common projection center.
That means, the cameras may have different coordinate systems, different orientations but must have
the same projection center. This situation often arises when photographing with a camera rotating
around its projection center, e.g., when taking images for constructing a panorama capturing wide
view angle. We shall see that the corresponding projections will be related by a homography.

Next, we shall look at a different situation when the cameras are unconstrained, i.e. they can be
anywhere in the space and with completely different poses and coordinate systems, but 3D points
are forced to lie in a single plane not containing the camera centers. This situation arises, e.g., when
photographing a flat screen, a poster or a facade from different viewpoints. Again, the corresponding
projections of the points in the plane (but not the projections of the points out of the plane) will be
related by a homography.

8.1 Homography between images with the same center

Let us consider two perspective cameras with identical projection centers C “ C1, which project
point X from space to their respective image planes π and π1, Figure 8.1. We introduce image

coordinate systems po, αq with α “ r~b1,~b2s in π and po1, α1q with α1 “ r~b 1
1
,~b 1

2
s in π1 and use them to

construct the corresponding camera coordinate systems pC, βq with β “ r~b1,~b2,~b3 “ ÝÑ
Cos and pC, β1q

with β1 “ r~b 1
1
,~b 1

2
,~b 1

3
“ ÝÑ

Co1s.
Point X is projected to image points along the projection rays, which are intersected with π and π1.

The projection of X in π is represented by vector ~uα “ ru, vsJ. The projection of X in π1 is represented
by vector ~u1

α1 “ ru1, v1sJ.
Vectors ~x and ~x 1 are two direction vectors of the same ray and hence are linearly dependent. Since

they are both non-zero for X ‰ C, their linear dependence is equivalent with

Dλ P R : λ~x 1 “ ~x (8.1)

To arrive at the relationship between the available coordinates of vectors ~x and ~x1, we shall now
pass from vectors to their coordinates. There holds

λ~x 1 “ ~x (8.2)

λ~x 1
β 1 “ ~xβ 1 (8.3)

λ~x 1
β 1 “ H ~xβ (8.4)

true for some 3 ˆ 3 real matrix Hwith rank H “ 3, which transforms coordinates of a vector from basis
β to basis β1.

Considering the choices of camera coordinate systems, we see that

λ~x 1
β 1 “ H ~xβ (8.5)

λ

»

–

u1

v1

1

fi

fl “ H

»

–

u
v
1

fi

fl (8.6)
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π

π1

o

o1

~u

~u 1

~x

~x 1

~b1

~b2

~b3
~b 1

1
~b 1

2
~b 1

3

C “ C1

X

Figure 8.1: Cameras share a projections center. Image projections are related by a homography.

σ

π

~x

~u ~y

~b1

~b2
~b3

~d1

~d2

~d3

C

O
X ~X

Figure 8.2: All 3D points are in a single plane. Coordinates in the plane and in the image are related
by a homography.

We have obtained an interesting relationship. The above equations tell us that the image projections
are related by a transformation, which depends only on image projections, and to find it, we do not
need to know actual positions of points X in space. This is the consequence of having C “ C1.
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§1 Relating homography matrix to camera projection matrix Matrix H is related to camera
projection matrices. Consider two camera projections given by Equation 6.12

ζ ~xβ “ P

„

~Xδ

1



“
”

K R | ´ K R ~Cδ
ı

„

~Xδ

1



“ K R p~Xδ ´ ~Cδq (8.7)

ζ1~x 1
β 1 “ P 1

„

~Xδ

1



“
”

K1 R1 | ´ K1R1~Cδ

ı

„

~Xδ

1



“ K1 R1 p~Xδ ´ ~Cδq (8.8)

for all ~Xδ P R3, which gives

ζ RJ K´1 ~xβ “ ~Xδ ´ ~Cδ (8.9)

ζ1 R1JK1´1~x 1
β 1 “ ~Xδ ´ ~Cδ (8.10)

and therefore

ζ1 R1JK1´1~x 1
β 1 “ ζ RJ K´1 ~xβ (8.11)

ζ1

ζ
~xβ 1 “ K1 R1 RJK´1 ~xβ (8.12)

for all corresponding pairs of vectors ~xβ, ~x 1
β 1 . Let us now compare Equation 8.12 with Equation 8.5,

i.e. with
λ~x 1

β 1 “ H ~xβ (8.13)

We see that

H “ K1 R1 RJK´1 when λ “ ζ1

ζ
(8.14)

8.2 Homography between two images of a plane

8.2.1 One image of a plane

Let study the relationship between the coordinates of 3D points X, which all lie in a plane σ, and their
projections into an image, Figure 8.2. Coordinates of points X are measured in a coordinate system

pO, δq with δ “ r~d1, ~d2, ~d3s. Vectors ~d1, ~d2 span plane σ and therefore

~Xδ “

»

–

x
y
0

fi

fl (8.15)

for some real x, y.
The points X are projected by a perspective camera with projection matrix P into image coordinates

~uα “ ru, vsJ, w.r.t. an image coordinate system po, αq with α “ r~b1,~b2s. The corresponding camera

coordinate system is pC, βq with β “ p~b1,~b2,~b3q.

To find the relationship between the coordinates of ~Xδ and ~uα, we project points X by P into
projections ~xβ as

ζ

»

–

u
v
1

fi

fl “ ζ ~xβ “ P
„

~Xδ

1



“
“

p1 p2 p3 p4

‰

»

—

—

–

x
y
0
1

fi

ffi

ffi

fl

“
“

p1 p2 p4

‰

»

–

x
y
1

fi

fl “ H ~yτ (8.16)

where p1, p2, p3, p4 are the columns of P.
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y’

σ

π

π1
~x

~x 1

~u

~u 1

~y
~b1

~b2
~b3

~b 1
1

~b 1
2

~b 1
3

~d1

~d2

~d3

C

C1

O
X ~X

Figure 8.3: All 3D points are in a single plane. Two images of the points are related by a homography.

Notice that 3 ˆ 1 matrix ~yτ “ rx, y, 1sJ represents point X in the coordinate system pC, τq with the

basis τ “ p~d1, ~d2, ~d4q, where the ~d4 “ ÝÑ
CO is the vector assigned to the pair of points pC,Oq. If point C

is not in σ, then vectors ~d1, ~d2, ~d4 are independent and hence form a basis. Therefore, matrix

H “
“

p1 p2 p4

‰

(8.17)

represents a change of coordinates and has rank 3.
When we think about pair pC, σq as about a camera that shares its projection center with camera

pC, πq and imagine that points X are all (accidentally) in the projection plane σ, we see that we have
recovered the relationship between cameras sharing their projection center.

8.2.2 Two images of a plane

We shall now consider the situation when all points in the scene are in a single plane. Then, as we
shall see, the projections of the 3D points, which are in the plane, are again related by a homography
even when the camera centers are located at different points in the space.

Let us consider a plane σ and two perspective cameras with (in general different) projection centers
C and C1, which do not lie in σ and the corresponding projection matrices P and P1

P “
“

p1 p2 p3 p4

‰

(8.18)

P1 “
“

p 1
1
p 1

2
p 1

3
p 1

4

‰

(8.19)

where pi P R3 and p 1
i

P R3, i “ 1, . . . , 4 stand for the columns of P, P1.
We establish coordinate systems pO, δq, pC, βq, pC1, β1q in the standard way, see Figure 8.3 to get

~Xδ “

»

–

x
y
0

fi

fl (8.20)

59



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

for some real x, y.
Point X P σ is projected to the cameras as

ζ ~xβ “ P

„

~Xδ

1



“
“

p1 p2 p3 p4

‰

»

—

—

–

x
y
0
1

fi

ffi

ffi

fl

“
“

p1 p2 p4

‰

»

–

x
y
1

fi

fl “ G ~yτ

ζ1 ~x 1
β 1 “ P1

„

~Xδ

1



“
“

p 1
1
p 1

2
p 1

3
p 1

4

‰

»

—

—

–

x
y
0
1

fi

ffi

ffi

fl

“
“

p 1
1
p 1

2
p 1

4

‰

»

–

x
y
1

fi

fl “ G1 ~y 1
τ 1

for some ζ, ζ1 P Rzt0u and two new coordinate systems pC, τq with τ “ p~d1, ~d2, ~d4q, where the ~d4 “ ÝÑ
CO

and pC1, τ1q with τ1 “ p~d1, ~d2, ~d 1
4
q, where the ~d 1

4
“ ÝÝÑ

CO1.
We see that there are two different vectors, ~y and ~y 1, which appear on the right hand side of the

equations in different bases, i.e. as ~yτ and ~y 1
τ 1

ζ ~xβ “ G ~yτ (8.21)

ζ1~x 1
β 1 “ G1~y 1

τ 1 (8.22)

with G “ rp1, p2, p4s and G1 “ rp 1
1
, p 1

2
, p 1

4
s.

Coordinate systems pC, τq and pC1, τ1q are so special that

~yτ “ ~y 1
τ 1 (8.23)

for all points in σ. Consider that

~yτ “ p~X ` ÝÑ
COqτ “ ~Xτ ` ~d4τ “ ~X

p~d1,~d2,~d4q
` ~d

4p~d1,~d2,~d4q
“

»

–

x
y
1

fi

fl (8.24)

~y 1
τ 1 “ p~X ` ÝÝÑ

C 1Oqτ 1 “ ~Xτ 1 ` ~d 1
4τ 1 “ ~X

p~d1,~d2,~d 1
4
q

` ~d 1

4p~d1,~d2,~d 1
4
q

“

»

–

x
y
1

fi

fl (8.25)

and therefore, when C R σ and C1 R σ, we get

ζ1~x 1
β 1 “ G1 G´1ζ ~xβ (8.26)

which we can write as
λ~x 1

β 1 “ H ~xβ (8.27)

for λ “ ζ1

ζ and H “ G1 G´1. Clearly, H P R3ˆ3, rank H “ 3.
We could also interpret this situation such that two images of a plane are related by the homography,

which is a combination of the homographies relating the plane to its two images.

8.2.3 Cameras with the same center

In the derivation of Equation 8.27, we have never asked for centers C, C1 be different. Indeed,
Equation 8.26 is perfetly valid even when C “ C1. At the same time, however, there also holds
Equation 8.14 true, and thus we have

H “ G1 G´1 (8.28)

“
“

p 1
1
p 1

2
p 1

4

‰ “

p1 p2 p4

‰´1
(8.29)

H “ K1 R1 RJK´1 (8.30)

“
“

p 1
1
p 1

2
p 1

3

‰ “

p1 p2 p3

‰´1
(8.31)
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Let us see now purely algebraic argument why the above holds true. Since the cameras have the

same projection center ~Cδ “
“

c1 c2 c3

‰J
, we can write

p4 “ ´K R ~Cδ and p 1
4 “ ´K 1 R 1 ~Cδ (8.32)

and hence

H “ G1 G´1 (8.33)

“
“

p 1
1
p 1

2
p 1

4

‰ “

p1 p2 p4

‰´1
(8.34)

“ K 1 R 1
”

i j ´~Cδ
ı ”

i j ´~Cδ
ı´1
RJK´1 (8.35)

“ K1 R1 RJK´1 (8.36)

with i “
“

1 0 0
‰J

and j “
“

0 1 0
‰J

. We see that there always holds

“

p 1
1
p 1

2
p 1

4

‰ “

p1 p2 p4

‰´1 “
“

p 1
1
p 1

2
p 1

3

‰ “

p1 p2 p3

‰´1
(8.37)

true for two cameras with the same projection center irrespective of where actually the points in space
are since we would get the same images for points obtained by intersecting the rays with the plane
z “ 0 in the coordinate system pO, δq.

8.3 Spherical image

Consider a camera rotating around a center C and collecting n images all around such that every ray
from C is captured in some image. We can choose one camera, e.g. the first one, and relate all other
cameras to it as

λi ~xβ1 “ Hi ~xβi
, i “ 1, . . . ,n (8.38)

Since all vectors ~x were captured, there inevitably will appear a vector with coordinates

~xβ1 “

»

–

x
y
0

fi

fl (8.39)

Such vector does not represent any point in the affine image plane π1 of the first camera because it
does not have the third coordinate equal to one. To be able to represent rays in all directions, we
have to introduce spherical image, which is the set of all unit vectors in R3 (also called omnidirectional
image). We sometimes use only a subset of the sphere, typically a cylinder, to capture panoramic image.
In such a case, we can remap pixels onto such cylinder and then unwarp the cylinder into a plane.
Notice however, that in such a representation, straight lines in space do not project to straight lines
in images.

All equations we have developed so far work with minor modifications also for vectors with last
zero coordinate. We will come back to it later when studying projective plane which is somewhere
between the affine image plane and full spherical image.

8.4 Homography – summary

Let us summarize the findings related to homography to see where it appears.
Let us encounter one of the following situations

1. Two images with one projection center Let ru, vsJ and ru1, v1sJ be coordinates of the projections
of 3D points into two images by two perspective cameras with identical projection centers;
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2. Image of a plane. Let ru, vsJ be coordinates of 3D points all in one plane σ, w.r.t. a oordinate
system in σ and ru1, v1sJ coordinates of their projections by a perspective cameras with projection
center not in the plane σ;

3. Two images of a plane Let ru, vsJ and ru1, v1sJ be coordinates of the projections of 3D points all
in one plane σ, into two images by two perspective cameras with projection centers not in σ;

then there holds

D H P R3ˆ3, rank H “ 3, so that @ ru, vsJ corrØ ru1, v1sJ Dλ P R : λ

»

–

u1

v1

w1

fi

fl “ H

»

–

u
v
w

fi

fl (8.40)

true where w “ w1 “ 1 for perspective images and may be general for spherical images.
In all three cases, coordinates of points are related by a homography. We have used linear algebra to

derive the relationship between the coordinates of image points in the above form. The homography
can be also represented in a different way.

To see that, we shall eliminate λ as follows

λ

»

–

u1

v1

1

fi

fl “ H

»

–

u
v
1

fi

fl “

»

–

h11 h12 h13

h21 h22 h23

h31 h32 h33

fi

fl

»

–

u
v
1

fi

fl (8.41)

λu1 “ h11 u ` h12 v ` h13 (8.42)

λv1 “ h21 u ` h22 v ` h23 (8.43)

λ1 “ h31 u ` h32 v ` h33 (8.44)

u1 “ h11 u ` h12 v ` h13

h31 u ` h32 v ` h33
(8.45)

v1 “ h21 u ` h22 v ` h23

h31 u ` h32 v ` h33
(8.46)

We see that mapping h obtained as

„

u1

v1



“ h

ˆ„

u
v

˙

“

»

–

h11 u`h12 v`h13

h31 u`h32 v`h33

h21 u`h22 v`h23

h31 u`h32 v`h33

fi

fl (8.47)

is a mapping from a subset of R2 to R2 but it is not linear! It contains fractions of affine functions.
Although we can understand the homography as a linear mapping in certain sense, it is not a linear

mapping in the standard sense.
Matrix H represents a linear mapping from R3 to R3. However, we are not interested in the indi-

vidual vectors in R3 but in complete one-dimensional subspaces, which correspond to the direction
vectors representing projection rays.

Notice that λ can accommodate for any change of the length of
“

u v 1
‰J

(except for making it
zero) since it can be split into ξ, ξ1 and used as

ξ1

»

–

u1

v1

1

fi

fl “ H ξ

»

–

u
v
1

fi

fl (8.48)

x1 “ H x (8.49)
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We can now think about x and x1 as about one-dimensional subspaces ofR3 generated by ~x and ~x 1.
The “equation”1

x1 “ H x (8.50)

then actually means
D~x P x and D~x 1 P x 1 such that ~x 1 “ H ~x (8.51)

Thus the homography can be seen as a mapping between one-dimensional subspaces of R3. While
R3 itself is a linear space, the set of its one-dimensional subspaces, in the way we use them, is not a
linear space and therefore the homography is not a linear mapping although it is represented by a
matrix H, which is used to multiply vectors.

It is also important to notice the true relationship between homographies and 3 ˆ 3 real matrices.
Any 3 ˆ 3 real matrix of rank 3 represents a homography but many different matrices represent the
same homography. Let’s see why.

Let us consider H P R3ˆ3 and G P R3ˆ3 such that ξ H “ G for some ξ ‰ 0. We can write

ξ1 ~x1 “ H ~x (8.52)

ξ ξ1 ~x1 “ ξ H ~x (8.53)

ξ ξ1 ~x1 “ G ~x (8.54)

λ1 ~x1 “ G ~x (8.55)

We see that H and G represent the same homography. Indeed, two matrices related by a non-zero
multiple represent the same homography. Hence, it suggests itself to associate homographies with
one-dimensional subspaces of 3 ˆ 3 matrices.

8.5 Computing homography from image matches

Let us turn to the computational aspect of the homography relationship between images. Our goal is
to find the homography mapping from a few pairs of corresponding image points. We shall see that
this problem leads to solving a system of linear equations.

8.5.1 Basic procedure for computing general H

Our goal is to find matrix H in Equation 8.40 without assuming any knowledge about cameras. Let
us introduce symbols for rows of homography H

H “

»

—

—

–

hJ
1

hJ
2

hJ
3

fi

ffi

ffi

fl

and for the vector x “

»

–

u
v
1

fi

fl (8.56)

and rewrite the above matrix Equation 8.40 as

λu1 “ hJ
1 x (8.57)

λ v1 “ hJ
2 x (8.58)

λ “ hJ
3 x (8.59)

Eliminate λ from the first two equations using the third one

phJ
3 xq u1 “ hJ

1 x (8.60)

phJ
3 xq v1 “ hJ

2 x (8.61)

(8.62)

1Monograph [15] very often uses “=” exactly in this sense of equality of one-dimensional subspaces.
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move all to the left hand side and reshape it using xJy “ yJx

xJh1 ´ pu1xJq h3 “ 0 (8.63)

xJh2 ´ pv1xJq h3 “ 0 (8.64)

(8.65)

Introduce notation
h “

“

hJ
1
hJ

2
hJ

3

‰J
(8.66)

and express the above two equations in a matrix form

„

u v 1 0 0 0 ´u1u ´u1v ´u1

0 0 0 u v 1 ´v1u ´v1v ´v1



h “ 0 (8.67)

Every correspondence ru, vsJ corrØ ru1, v1sJ brings two rows to a matrix

»

—

–

u v 1 0 0 0 ´u1u ´u1v ´u1

0 0 0 u v 1 ´v1u ´v1v ´v1

...

fi

ffi

fl
h “ 0 (8.68)

M h “ 0 (8.69)

If ξ G “ H, ξ ‰ 0 then both G, H represent the same homography. We are therefore looking for one-
dimensional subspaces of 3 ˆ 3 matrices of rank 3. Each such subspace determines one homography.
Also note that the zero matrix, 0, does not represent an interesting mapping.

We need therefore at least 4 correspondences in a general position to obtain rank 8 matrix M. By
a general position we mean that the matrix M must have rank 8 to provide a single one-dimensional
subspace of its solutions. This happens when no 3 out of the 4 points are on the same line.

Notice that M can be written in the form

M “

»

—

—

—

—

—

—

—

—

–

u1 v1 1 0 0 0 ´u1
1
u1 ´u1

1
v1 ´u1

1
u2 v2 1 0 0 0 ´u1

2
u2 ´u1

2
v2 ´u1

2
...

0 0 0 u1 v1 1 ´v1
1
u1 ´v1

1
v1 ´v1

1
0 0 0 u2 v2 1 ´v1

2
u2 ´v1

2
v2 ´v1

2
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(8.70)

with indices naming different points, which can be rewritten more concisely as

M “

»

—

—

—

—

—

—

—

—

—

–

xJ
1
0J ´u1

1
xJ

1

xJ
2
0J ´u1

2
xJ

2
...

0J xJ
1

´v1
1
xJ

1

0J xJ
2

´v1
2
xJ

2
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(8.71)

with 0J “ r0, 0, 0s.
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8.5.2 Advanced procedure for computing a general H

Let us next give a more general procedure for computing H, which will be analogical to the general
procedure for computing Q in § 1.

We start from Equation 8.40
λ x 1 “ H x (8.72)

with x “ ru, v,wsJ and x 1 “ ru 1, v 1,w 1sJ and follow the derivation in § 1 to get

λ x 1 “ H x (8.73)

rx 1sˆ H x “ 0 (8.74)

xJHJ rx 1sJ
ˆ “ 0J (8.75)

vpxJHJ rx 1sJ
ˆq “ vp0Jq (8.76)

prx 1sˆb xJq vpHJq “ vp0Jq (8.77)
¨

˝

»

–

0 ´w 1 v 1

w 1 0 ´u 1

´v 1 u 1 0

fi

flb xJ

˛

‚vpHJq “ vp0Jq (8.78)

»

–

0J ´w 1xJ v 1xJ

w 1xJ 0J ´u 1xJ

´v 1xJ u 1xJ 0J

fi

fl vpHJq “ vp0Jq (8.79)

For more correspondences numbered by i, we then get

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0J ´w 1
1
xJ

1
v 1

1
xJ

1

0J ´w 1
2
xJ

2
v 1

2
xJ

2
...

w 1
1
xJ

1
0J ´u 1

1
xJ

1

w 1
2
xJ

2
0J ´u 1

2
xJ

2
...

´v 1
1
xJ

1
u 1

1
xJ

1
0J

´v 1
2
xJ

2
u 1

2
xJ

2
0J

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

vpHJq “ 0 (8.80)

which is, for w “ 1, equivalent to Equation 6.30. Notice that vpHJq “ h from Equation 8.69.

8.6 Advanced Homography Situations

8.6.1 Homographies conjugated to a rotations

Let us consider the situation when K “ K1 since then

H “ K R1 RJK´1 (8.81)

which implies that H is similar [5] to a rotation, i.e.

K´1H K “ R1 RJ (8.82)

and hence has one eigenvalue equal to one, the other two eigenvalues are complex conjugate with
modulae [3] equal to one.
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Let us study homographies H conjugated to rotations S “ R1 R as in Equation 8.82. We shall first
check that such homographies are characterized by the following condition

eigpHq “ p1, x ` i y, x ´ i yq for some real x, y such that x2 ` y2 “ 1 (8.83)

Eigenvalues of a rotation S can be written as p1, x ` i y, x ´ i yq for some real x, y such that x2 ` y2 “ 1.
Consider

|H´ λ I| “
ˇ

ˇK´1
ˇ

ˇ |H´ λ I| |K| “
ˇ

ˇK´1 H K´ K´1 λ I K
ˇ

ˇ “ |S´ λ I| (8.84)

an therefore eigenvalues of H are equal to eigenvalues of S.
Next, assume that eigenvalues of H are equal to eigenvalues of a rotation S. Then we can write

S U “ U Λ and H V “ V Λ (8.85)

for a matrix Λ with the eignvalues on the diagonal and matrices U, resp. V, of eigenvectors of S, resp.
H. Now, if y ‰ 0, the eigenvalues are pairwise distinct. Then it is possible [4, 5] to construct matrices
U, V, from the respective eigenvectors of unit length such that they are regular, and we can write

Λ “ Λ (8.86)

V´1H V “ U´1S U (8.87)

U V´1H V U´1 “ S (8.88)

Q´1 K´1H K Q “ S (8.89)

K´1H K “ Q S Q´1 (8.90)

We introduced an upper triangular matrix K and a rotation Q such that V U´1 “ K Q, which is always
possible by the Gramm-Schmid orthogonalization process [5]. Matrix Q S Q´1 is a rotation and thus H
is similar to a rotation by an upper triangular matrix.

If y “ 0 then the eigenvalues are either p1, 1, 1q or p1,´1,´1q. In the former case, S “ I and hence
K´1H K “ I implies H “ I, and hence H is a rotation. In the latter case, S is a rotation by 180˝ and H is
thus similar to a rotation.

Let us now characterize the homographies conjugated to a rotation algebraicly. The characteristic
polynomial of H is as follows

ppλq “ |λ I´ H| “ pλ´ 1q pλ´ x ´ y iq pλ´ x ` y iq (8.91)

“ λ3 ´ p2 x ` 1qλ2 ` p2 x ` 1qλ´ 1 (8.92)

“ λ3 ´ trace Hλ2 ` pH11 ` H22 ` H33qλ´ |H| (8.93)

since x2 ` y2 “ 1. Symbols Hi j denote minors after removing row i and column j. We are thus getting
two algebraic constraints on H

trace H “ H11 ` H22 ` H33 and |H| “ 1 (8.94)

which are polynomials of degree two and three in elements of H, respectively, which is a representative
of the homography. Clearly, any-nonzero multiple of H satisfying Equation 8.94 also represents the
same homography and therefore rank three matrices constrained by the first equation in Equation 8.94
are permissible representatives of homographies between images obtained by a rotating camera with
constant internal calibration.

Finally, when K “ K 1 “ I, then H “ S, i.e. a rotation, is a representative of such homography and
hence all non-zero multiples of rotations are permissible representatives of homographies between
images obtained by a rotating calibrated camera.
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8.6.2 Structure of homographies induced by a plane in the scene

8.6.3 General perspective cameras

Let us look at Equation 8.26 in more detail. We can write

ζ1

ζ
~x 1
β 1 “ G1 G´1 ~xβ “

“

p 1
1
p 1

2
p 1

4

‰ “

p1 p2 p4

‰´1
~xβ (8.95)

“ A 1

»

–

1 0
0 1
0 0

´~C 1
δ

fi

fl

»

–

1 0
0 1
0 0

´~Cδ

fi

fl

´1

A´1~xβ (8.96)

“ A 1

»

–

1 0 ´x1

0 1 ´y1

0 0 ´z1

fi

fl

»

–

1 0 ´x
0 1 ´y
0 0 ´z

fi

fl

´1

A´1~xβ (8.97)

We have introduced new symbols to represent vectors

~Cδ “
“

x y z
‰J

and ~C 1
δ “

“

x1 y1 z1
‰J

(8.98)

and have written the homography as a product of four matrices. Let us next compute the product of
the two middle matrices

ζ1

ζ
~x 1
β 1 “ A 1

»

–

1 0 px1 ´ xq{z
0 1 py1 ´ yq{z
0 0 z1{z

fi

fl A´1~xβ (8.99)

We see that the middle matrix on the right looks almost as the identity plus something. Let’s express
it in that way

ζ1

ζ
~x 1
β 1 “ A 1

»

–

1 0 px1 ´ xq{z
0 1 py1 ´ yq{z
0 0 1 ` pz1 ´ zq{z

fi

fl A´1~xβ (8.100)

We can now further rearrange expressions as follows

ζ1

ζ
~x 1
β 1 “ A 1

¨

˝I`

»

–

px1 ´ xq{z
py1 ´ yq{z
pz1 ´ zq{z

fi

fl

“

0 0 1
‰

˛

‚A´1~xβ (8.101)

“ A 1

˜

I` p~C 1
δ ´ ~Cδq

1

~Cδp3q
“

0 0 1
‰

¸

A´1~xβ (8.102)

“ A 1 A´1

˜

I´ p~Cβ ´ ~C 1
βq

1

~Cδp3q
“

0 0 1
‰

A´1

¸

~xβ (8.103)

We denoted the third coordinate of ~Cδ by ~Cδp3q.
Vector 1

~Cδp3q

“

0 0 1
‰

A´1 has a geometrical interpretation. Consider the equation of plane σ in

coordinate system pO, δq

“

0 0 1 0
‰

„

~Xδ

1



“ 0 (8.104)

where r0 0 1sJ is the normal vector of plane σ containing point ~Xδ written w.r.t. pO, δq, i.e. ~nJ
δ̄

“ r0 0 1s,
where δ̄ is the dual basis to basis δ, Chapter 2.
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Next, consider the camera coordinate system pC, βq with ~Yβ “ A p~Xδ ´ ~Cδq. We see that

“

0 0 1 0
‰

„

A´1 ~Yβ ` ~Cδ
1



“ 0 (8.105)

”

“

0 0 1
‰

A´1 ~Cδp3q
ı

„

~Yβ
1



“ 0 (8.106)

provides the unit normal ~n of plane σ in the dual basis β̄ to basis β

~nJ
β̄

“
“

0 0 1
‰

A´1 (8.107)

We have obtained the following formula for the homography between points ~xβ, ~x 1
β 1 in the two

images, which is generated by the plane σ

ζ1

ζ
~x 1
β 1 “ A 1 A´1

˜

I` p~C 1
β ´ ~Cβq

1

~Cδp3q
~nJ
β̄

¸

~xβ (8.108)

where ~nβ̄ is the normal vector of σ in β̄, ~Cδp3q is the distance of σ from the camera center C, and ζ,
ζ1 are the distances of points from the respective principal planes in multiples of the respective focal
lengths.

8.6.3.1 One internally calibrated camera

We will now consider Equation 8.108 for the situation when the first camera is internally calibrated,
i.e.

P1 “
”

I | ´ ~Cδ

ı

and P2 “
“

A 1 | a 1
‰

“
”

A 1 | ´ A 1 ~C 1
δ

ı

(8.109)

Then, bases β1 and δ become identical and Equation 8.108 can be written as

τ1~x 1
β 1 “ A 1

˜

I` p~C 1
δ ´ ~Cδq

~nJ
δ̄

d

¸

~xδ “
˜

A 1 ´
~tβ 1

d
~nJ
δ̄

¸

~xδ “
˜

A 1 ´
~tβ 1

d
~nJ
δ

¸

~xδ (8.110)

where~tβ 1 are the coordinates of the vector from C to C 1 in β 1. Notice that we have used the fact that δ

is the standard basis and therefore ~nδ̄ transforms by the same matrix as ~Xδ when changing a basis. To
stress that, we use ~nδ instead of ~nδ̄. Symbol d stands for the (non-zero) distance of the plane σ from
the center of the first camera, and a non-zero τ1 “ ζ1{ζ.

8.6.3.2 Two internally calibrated cameras

Let us next have a look at the situation when K “ K 1 “ I. Matrices A, A 1 become rotations, which we
stress by writing

P1 “
”

R | ´ R ~Cδ
ı

and P2 “
”

R 1 | ´ R 1 ~C 1
δ

ı

(8.111)

with orthonormal matrices R, R 1. Equation 8.108 now becomes

τ1~x 1
γ 1 “ R 1 R´1

˜

I` p~C 1
γ ´ ~Cγq 1

~Cδp3q
~nJ
γ̄

¸

~xγ “
˜

R 1 R´1 `
~tγ 1

d
~nJ
γ̄

¸

~xγ (8.112)

A question arises here. Does every rank three real 3 ˆ 3 matrix represent a homography between two
calibrated images induced by a plane in the scene? We see from the following that the answer is yes.
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Let us consider a real 3 ˆ 3 marix H and its SVD decomposition [5, p. 411]

H “ U

»

–

a
b

c

fi

fl VJ (8.113)

Now, if |H| ą 0, then we may ask for a ě b ě c ě 0 and |U| “ |V| “ 1. Otherwise, we replace c by ´c to
have a ě b ą 0 ą c and |U| “ |V| “ 1. Next, when any two of a, b, c are equal, e.g. a “ b, then we can
write the decomposition as follows

H “ U

»

–

a
b

c

fi

fl VJ “ U

»

–

b
b

c

fi

fl VJ (8.114)

“ U

¨

˝b

»

–

1
1

1

fi

fl `

»

–

0
0

c ´ b

fi

fl

“

0 0 1
‰

˛

‚VJ (8.115)

“ b U VJ ` U

»

–

0
0

c ´ b

fi

fl

“

0 0 1
‰

VJ (8.116)

Hence, we need to consider only the situation when a, b, c are pairwise distinct. We can write

H “ b U S VJ ` U u vJ VJ “ b R` t nJ

S “

»

—

—

–

a c`b2

b pa`cq 0 ´
?

b2´c2
?

a2´b2

b pa`cq

0 1 0?
b2´c2

?
a2´b2

b pa`cq 0 a c`b2

b pa`cq

fi

ffi

ffi

fl

u “

»

—

—

–

?
a2´b2

a`c

0
´

?
b2´c2

a`c

fi

ffi

ffi

fl

vJ “
”

a

a2 ´ b2 0
a

b2 ´ c2
ı

Notice that b is non-zero since it must be greater than c else we would have b “ c, which we excluded.
Moreover, a ` c ą 0 since they are either both positive or |a| ą |c| and a is positive. Hence all the
formulas above are meaningful. It is easy to verify that SJS “ I and |S| “ 1 and therefore R “ U S VJ

is a rotation.
Consider a rank three real 3 ˆ 3 matrix H. We see that it must be possible to write a non-zero

multiple of H as S ` ~vγ 1 ~nJ
γ̄ for some rotation S and vectors ~vγ̄ P R3 and unit ~nγ̄ P R3. Hence, the

following equations

´

ξ H´ ~vγ 1 ~nJ
γ̄

¯J ´

ξ H´ ~vγ 1 ~nJ
γ̄

¯

“ I,
ˇ

ˇ

ˇ

´

ξ H´ ~vγ 1 ~nJ
γ̄

¯ˇ

ˇ

ˇ “ 1, ~nJ
γ̄ ~nγ̄ “ 1 (8.117)

have to be satisfied for some real ξ and some vectors ~vγ 1 P R3 and unit ~nγ̄ P R3. This is a set
of eight algebraic equations in seven variables. Clearly, the constraint ~nJ

γ̄ ~nγ̄ “ 1 can be replaced

by
“

0 0 1
‰

~nγ̄ “ ´1 to enforce that the plane normal faces the first camera. To get polynomial
equations, we multiply the left equation by ψ2 “ 1{ξ2 and the middle equation in Equation 8.117 by
ψ3 “ 1{ξ3 to get

´

H´ ~uγ 1 ~nJ
γ̄

¯J ´

H´ ~uγ 1 ~nJ
γ̄

¯

“ ψ2I,
ˇ

ˇ

ˇ

´

H´ ~uγ 1 ~nJ
γ̄

¯ˇ

ˇ

ˇ “ ψ3,
“

0 0 1
‰

~nγ̄ “ ´1 (8.118)
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with ~uγ1 “ ψ~vγ1 . Interestingly, this system has2 12 solutions in general. Even more interestingly,
there are only four real solutions but with only two oposite values for ψ. Taking into account that
point scales ζ, ζ1 have to be positive, we get only two solutions with only one positive ψ and two
corresponding solutions. Hence, the relative orientation of two calibrated cameras can be in a generic
situation obtained from four coplanar points up to two solutions.

2The following Maple [18] run demonstrates the structure of solutions to the system of equa-
tions 8.118.

Linear algebra shortcuts

>with(ListTools):with(LinearAlgebra):with(Groebner):

>E:=LinearAlgebra[IdentityMatrix](3):

>det:=LinearAlgebra[Determinant]:

>trn:=LinearAlgebra[Transpose]:

>M2L:=proc(M) convert(convert(M,Vector),list); end proc:

>X :=proc(u) <<0|-u[3]|u[2]>,<u[3]|0|-u[1]>,<-u[2]|u[1]|0>> end proc:

>c2R:=c->simplify((E-X (c)).MatrixInverse(E+X (c))):

All solutions to a triangular Groebner Basis

>TriangularGBSolve:=proc(Eq,So)

local s, so, Si;

if nops(Eq)>0 then

Si:=[];

if nops(So)=0 then

Si:=[solve([Eq[1]])];

else

for so in So do

s:=[solve(subs(so,[Eq[1]]))];

Si:=[op(Si),op(map(f->f union so,s))];

end do;

end if;

TriangularGBSolve(Eq[2..],Si);

else

So;

end if

end proc:

Simulate a calibrated homography

>R0:=c2R(RandomVector(3,generator=-10..10)):

>t0:=RandomVector(3,generator=-10..10):

>n0:=<-1,-2,-2>/3:

>s0:=3:

>H0:=s0*(R0+t0.trn(n0));

H0 :“

»

–

´ 25
31

` 30
31

` 129
31

´ 300
31

´ 539
31

´ 560
31

84
31

´ 14
31

` 70
31

fi

fl

Formulas for H and R

>n:=<n1,n2,n3>:

>t:=<t1,t2,t3>:

>R:=H0-t.trn(n):

>H:=R+t.trn(n):

Equations

>eq:=convert(convert(expand([op(M2L(trn(R).R-s2*E)),det(R)-s3,n3+1]),set),list);

eq :“ rn3`1, 3151{31`p50{31q˚t1˚n1`n12 ˚t12 `p600{31q˚n1˚t2`n12 ˚t22 ´p168{31q˚n1˚t3`n12 ˚t32 ´s2, 9407{31´
p60{31q˚t1˚n2`n22˚t12`p1078{31q˚n2˚t2`n22˚t22`p28{31q˚n2˚t3`n22˚t32´s2, 10811{31´p258{31q˚t1˚n3`n32˚
t12 `p1120{31q˚n3˚t2`n32 ˚t22 ´p140{31q˚t3˚n3`n32 ˚t32 ´s2, 5154{31`p25{31q˚t1˚n2´p30{31q˚t1˚n1`n1˚n2˚
t12 `p300{31q˚n2˚t2`p539{31q˚n1˚t2`n2˚n1˚t22 ´p84{31q˚n2˚t3`p14{31q˚n1˚t3`n2˚n1˚t32, 5505{31`p25{31q˚
t1˚n3´p129{31q˚t1˚n1`n1˚n3˚t12 `p300{31q˚n3˚t2`p560{31q˚n1˚t2`n3˚n1˚t22 ´p84{31q˚t3˚n3´p70{31q˚n1˚
t3`n3˚n1˚t32, 9830{31´p30{31q˚t1˚n3´p129{31q˚t1˚n2`n2˚n3˚t12 `p539{31q˚n3˚t2`p560{31q˚n2˚t2`n2˚n3˚
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8.7 Advanced Homography Computations

Let us now look at some situations when cameras have constant internal calibration or are fully
calibrated.

8.7.1 Computing homography induced by rotating a calibrated camera

This is a simple situation. Let us construct a rotation matrix representing a homography from one
and half matching image points. Consider two distinct image points x, y in the first image that are
mapped on points x 1, y 1 in the second image as

“

x 1{||x 1|| y 1{||y 1||
‰

“ R
“

x{||x|| y{||y||
‰

by a rotation
R. We can decompose R into a composition of two simple rotations R “ R2 R1 such that

“

x 1{||x 1|| y 1{||y 1||
‰

“ R2

»

–

0 0
0 ξ 1

1 ψ 1

fi

fl ,

»

–

0 0
0 ξ
1 ψ

fi

fl “ R1

“

x{||x|| y{||y||
‰

(8.119)

with ξ, ψ such that ξ2 ` ψ2 “ ξ 12 ` ψ 12 “ 1. Write

R1 “
“

r11 r12 r13

‰J
and R2 “

“

r21 r22 r23

‰

(8.120)

t22 `p14{31q˚t3˚n3´p70{31q˚n2˚t3`n2˚n3˚t32,´p725{31q˚t3˚n3`p840{31q˚t1˚n2`p126{31q˚n1˚t2`p1470{31q˚
t1˚n1´p1701{31q˚n1˚ t3`p406{31q˚n2˚ t2`p1700{31q˚n2˚ t3´p70{31q˚n3˚ t2´p1596{31q˚ t1˚n3`7014{31´s3s

The number of solutions

>G:=Groebner[Basis](eq,plex(op([t1,t2,t3,n1,n2,n3,s]))):

>Id:=PolynomialIdeals[PolynomialIdeal]([op(G)]):

>print("Hilbert dimension =",PolynomialIdeals[HilbertDimension](Id));

>print("The number of solutions =",PolynomialIdeals[NumberOfSolutions](Id));

”Hilbert dimension =”, 0
”The number of solutions =”, 12

Solve it

>S:=TriangularGBSolve(G,[]):

and substite the solutions to get s, R, n, t and select the real solutions only

>sRnt:=map(f->evalf(subs(f,[s,R/s,n,t/s])),S):

>select(f->foldl(‘and‘,true,op(MTM[isreal]˜(f))),sRnt);

»

– `3.0

»

–

´0.610 ´0.220 0.761
´0.152 ´0.910 ´0.385

0.778 ´0.350 0.522

fi

fl

»

–

´0.545
´0.867
´1.000

fi

fl

»

–

´0.626
5.640

´0.230

fi

fl

fi

fl

»

– `3.0

»

–

´0.602 ´0.344 0.720
´0.559 ´0.462 ´0.688

0.570 ´0.817 0.860

fi

fl

»

–

´0.500
´1.000
´1.000

fi

fl

»

–

´0.667
5.330

´0.667

fi

fl

fi

fl

»

– ´3.0

»

–

0.737 0.421 ´0.529
´0.517 ´0.153 ´0.842
´0.435 0.894 0.105

fi

fl

»

–

´0.545
´0.867
´1.000

fi

fl

»

–

0.858
´6.860

0.858

fi

fl

fi

fl

»

– ´3.0

»

–

0.636 0.411 ´0.654
´0.765 ´0.809 ´0.583
´0.768 0.421 ´0.483

fi

fl

»

–

´0.500
´1.000
´1.000

fi

fl

»

–

0.734
´6.600

0.270

fi

fl

fi

fl
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to see that

r11 “ s1 px{||x|| ˆ y{||y||q{||px{||x|| ˆ y{||y||q|| (8.121)

r12 “ px{||x|| ˆ r11q{||px{||x|| ˆ r11q|| (8.122)

r13 “ r11 ˆ r12 (8.123)

r21 “ s2 px 1{||x 1|| ˆ y 1{||y 1||q{||px 1{||x 1|| ˆ y 1{||y 1||q|| (8.124)

r22 “ px 1{||x 1|| ˆ r21q{||px 1{||x 1|| ˆ r21q|| (8.125)

r23 “ r21 ˆ r22 (8.126)

where the signs s1, s2 P t`1,´1u are chosen to make, e.g., ξ ą 0, ξ 1 ą 0. Notice that this procedure sets
R even when vectors

“

x{||x|| y{||y||
‰

can’t be exactly transformed to vectors
“

x 1{||x 1|| y 1{||y 1||
‰

by
a rotation, which is often the case when they are estimated form noisy measurements. Nevertheless,
if the error affecting the vectors is small, R so obtained is still close to the true rotation between the
cameras.

8.7.2 Computing homography for rotating a camera with constant internal calibration

Consider a point x “
“

x y 1
‰J

in the first image that is mapped on a point x 1 “
“

x1 y1 1
‰J

in
the second image by λ x 1 “ K´1R K x with rotation R and a camera calibration matrix K.

We have seen, Equation 8.94, that the following two equations have to be satisfied

0 “ trace H´ pH11 ` H22 ` H33q
“ h11 ` h22 ` h33 ´ h11 h22 ´ h11 h33 ` h12 h21 ` h13 h31 ´ h22 h33 ` h23 h32

1 “ |H| (8.127)

“ h11 h22 h33 ´ h11 h23 h32 ´ h12 h21 h33 ` h12 h23 h31 ` h13 h21 h32 ´ h13 h22 h31

with hi j, i, j “ 1, 2, 3 denoting the elements of H. It is easy to check in the Maple [18] computer algebra
system3 that the Hilbert dimension [2] of the system 8.127 is equal to seven. Therefore, we will
need seven independent linear equations to reduce the Hilbert dimension to zero and thus obtain a
finite number of solutions [2]. We see that we can use four points to add eight independent linear
equations and so obtain a single solution. However, if point measurements in images were affected by

3 Maple [18] script analyzing the computation of a homography induced by a rotating camera with constant in-
ternal parameters. We note that some of the functions used here have been defined in previous Maple exam-
ples.

Setup the equations

>H:=<<h11|h12|h13>,<h21|h22|h23>,<h31|h32|h33>>:

>Heq:=[det(H)-1,simplify(det(H-E),[det(H)=1])];

>HilbertDimension(Heq);

7

Simulate projections

>K:=<<10|1|5>,<0|12|6>,<0|0|1>>:

>R1:=c2R(<1,2,3>): R2:=c2R(<3,4,5>): t:=<<2,1,3>>:

>P1:=K.<R1|-R1.t>: P2:=K.<R2|-R2.t>:

>X:=<<0|1|1|0>,<0|0|1|1>,<0|0|0|0>,<1|1|1|1>>:

>x1:=a2h(h2a(P1.X)):

>x2:=a2h(h2a(P2.X)):

>H0:=P2[..,[1,2,4]].inv(P1[..,[1,2,4]]):

Check eigenvalues of H0

e:=Eigenvalues(H0),abs˜(trn(e));
»

–

1
77
85

´ 36
85

i
77
85

` 36
85

i

fi

fl ,
“

1 1 1
‰

Add two independent linear equations per a corresponding pair of image points

eq:=[op(Heq), op(Flatten(map(i->M2L((X (x2[..,i]).H.x1[..,i])[1..2]),[1,2,3,4])))];
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measurement noise, using all eight equations would almost surely produce an inconsistent system.
Therefore, it make sense to use only seven linear equations, which give six solutions and produce six
homographies conjugated to a rotation for any four (or more precisely, 3 ` 1

2 ) points in two images.
If the error in the measurement is small, one of the so obtained H is close to the actual homography
between the images.

eq :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

h11 ` h22 ` h33 ´ h11 h22 ´ h11 h33 ` h12 h21 ` h13 h31 ´ h22 h33 ` h23 h32

h11 h22 h33 ´ h11 h23 h32 ´ h12 h21 h33 ` h12 h23 h31 ` h13 h21 h32 ´ h13 h22 h31 ´ 1

´ 22
5

h21 ` 54252
565

h31 ´ 74
5

h22 ` 182484
565

h32 ´ h23 ` 2466
113

h33

` 22
5

h11 ´ 24068
565

h31 ` 74
5

h12 ´ 80956
565

h32 ` h13 ´ 1094
113

h33

´ 52
7

h21 ` 7176
35

h31 ´ 18 h22 ` 2484
5

h32 ´ h23 ` 138
5

h33

` 52
7

h11 ´ 832
7

h31 ` 18 h12 ´ 288 h32 ` h13 ´ 16 h33

´ 23
5

h21 ` 9522
41

h31 ´ 126
5

h22 ` 52164
41

h32 ´ h23 ` 2070
41

h33

` 23
5

h11 ´ 16261
205

h31 ` 126
5

h12 ´ 89082
205

h32 ` h13 ´ 707
41

h33

´ 53
35

h21 ` 130698
2765

h31 ´ 666
35

h22 ` 1642356
2765

h32 ´ h23 ` 2466
79

h33

` 53
35

h11 ´ 31853
2765

h31 ` 666
35

h12 ´ 400266
2765

h32 ` h13 ´ 601
79

h33

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Solve it

>Basis(eq,plex(op(indets(H))));

r3825 h11 ´3319, 450 h12 ´43, 3825 h13 ´7337, 85 h21 `36, 5 h22 ´4, 85 h23 ´522, 3825 h31 `38, 450 h32 `11, 3825 h33 ´4376s

We are getting one solution but we have used eight linear equations although seven linear

equations should be sufficient to get a finite number of solutions. Let us use seven linear

equations only.

>Basis(eq[1..nops(eq)-1],plex(op(indets(H)))):

We see that we are getting a degree six polynomial in h33

>B[1];

1384905521719726207524518830400390625 h6
33

` 4889332606744002799184541025140000000 h5
33

´
3004780464450070944458597429463562500 h4

33 ´ 62963310535984882573971620665889376000 h3
33

´
1098716737305688573847805032564563200 h2

33 ` 231760248490986847248483050694397009920 h33 ´
176966810281848547933751731455841501184

and six solutions for H

>S:=TriangularGBSolve(B,[]):

>dg:=Digits: eDigits:=10:

>Sr:=convert (map(s->evalf(subs(s,H)),S),rational);

>Digits:=dg:
»

—

—

–

3319
3825

43
450

7337
3825

´ 36
85

4{5 522
85

´ 38
3825

´ 11
450

4376
3825

fi

ffi

ffi

fl

,

»

—

—

–

27989
113075

11116
68877

46056
11543

´ 55317
33688

29162
29109

62207
6739

´ 4819
93927

´ 3479
158824

9932
7517

fi

ffi

ffi

fl

,

»

—

—

–

´ 51941
3866

174177
144175

213038
5423

´ 40431
1690

36210
11627

710577
12973

´ 57914
70849

6959
87760

43100
19401

fi

ffi

ffi

fl

»

—

—

–

40441
1236

´ 20953
8193

´ 69409
809

132430
2457

´ 26276
4897

´ 1327299
11857

72875
39356

´ 5270
22337

´ 94659
37021

fi

ffi

ffi

fl

,

»

—

—

–

91103
21006

´ 63957
17956

i ´ 19612
29061

` 16799
28267

i ´ 137213
6863

` 23642
1355

i

178138
16263

´ 43433
4596

i ´ 114375
43187

` 27263
11331

i ´ 78611
2342

` 135829
4558

i

15541
42367

´ 5675
17974

i 3263
533530

´ 4388
462787

i ´ 24252
8569

` 122693
46803

i

fi

ffi

ffi

fl

»

—

—

–

91103
21006

` 63957
17956

i ´ 19612
29061

´ 16799
28267

i ´ 137213
6863

´ 23642
1355

i

178138
16263

` 43433
4596

i ´ 114375
43187

´ 27263
11331

i ´ 78611
2342

´ 135829
4558

i

15541
42367

` 5675
17974

i 3263
533530

` 4388
462787

i ´ 24252
8569

´ 122693
46803

i

fi

ffi

ffi

fl

Notice that the first solution is equal to the simulated homography, while the other solutions

(shown only up to 10 digits precision to avoid too long expressions) are ‘‘artifacts’’ of the

formulation.
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8.7.3 Computing homography induced by a plane observed by a calibrated camera

Let us first consider a point x “
“

x y 1
‰J

in the first image that is mapped on a point x 1 “
“

x1 y1 1
‰J

in the second image by λ x 1 “ pR` u nJq xwith rotation R, unit real vector n and a vector
u.

Paragraph 8.6.3.2 shows how to decompose a homoghraphy, represented by H, between two cal-

ibrated images induced by a plane in the scene into R, ~tγ1{~Cδ and ~nγ̄. Let us now show how to
compute parameters of H directly from image data. We will parameterize rotations using the Cayley
parameterization [19]

Rpc1, c2, c3q “

»

—

—

—

—

–

c2
1
´c2

2
´c2

3
`1

c2
1
`c2

2
`c2

3
`1

2 pc1 c2`c3q

c2
1
`c2

2
`c2

3
`1

2 pc1 c3´c2q

c2
1
`c2

2
`c2

3
`1

2 pc1 c2´c3q

c2
1
`c2

2
`c2

3
`1

´c2
1
`c2

2
´c2

3
`1

c2
1
`c2

2
`c2

3
`1

2 pc2 c3`c1q

c2
1
`c2

2
`c2

3
`1

2 pc1 c3`c2q

c2
1
`c2

2
`c2

3
`1

2 pc2 c3´c1q

c2
1
`c2

2
`c2

3
`1

´c2
1
´c2

2
`c2

3
`1

c2
1
`c2

2
`c2

3
`1

fi

ffi

ffi

ffi

ffi

fl

(8.128)

for c1, c2, c3 P R, which excludes rotations by 180˝, since two perspective cameras can’t look the
opposite directions when seeing a non-degenerate piece of a plane in space. Similarly, we will
assume that ~nγ̄3 “ 1 since the first (as well as the second) camera has to look at the plane. We are free
to orient the plane normal towards the first camera to remove unnecessary ambiguity and to reduce
the number of solutions to one half.

When the data is exact, we see that we are getting 11 solutions in general, out of which three are
real4. The ideal generated by the equations from four co-planar points is radical but it is not prime [2].

4Maple [18] script analyzing the computation of a homography between two calibrated images induced by a plane in a
scene observed by the cameras. We note that some of the functions used here have been defined in previous Maple
examples.

Constraints on a homography induced by a plane between calibrated images

>n:=<n1,n2,n3>:

>t:=<t1,t2,t3>:

>R:=c2R(<c1,c2,c3>):

>H:=R+t.trn(n);

H :“

»

—

—

–

c12´c22´c32`1

c12`c22`c32`1
` t1 n1 2 c1 c2`c3

c12`c22`c32`1
` t1 n2 2 c1 c3´c2

c12`c22`c32`1
` t1 n3

2 c1 c2´c3

c12`c22`c32`1
` t2 n1 ´ c12´c22`c32´1

c12`c22`c32`1
` t2 n2 2 c2 c3`c1

c12`c22`c32`1
` t2 n3

2 c1 c3`c2

c12`c22`c32`1
` t3 n1 ´2 ´c2 c3`c1

c12`c22`c32`1
` t3 n2 ´ c12`c22´c32´1

c12`c22`c32`1
` t3 n3

fi

ffi

ffi

fl

Simulate projections
>R1:=c2R(<1,2,3>): C1:=<<2,1,3>>: P1:=<R1|-R1.C1>:

>R2:=c2R(<3,4,5>): C2:=<<2,3,1>>: P2:=<R2|-R2.C2>:

>H0:=P2[..,[1,2,4]].inv(P1[..,[1,2,4]]);

>X:=<<0|10|10|0>,<0|0|10|10>,<0|0|0|0 >,<1|1|1|1>>:

>x1:=a2h(h2a(P1.X)):

>x2:=a2h(h2a(P2.X)):

Setup equations
>eq:=[n3+1,op(numer(normal(Flatten(

map(i->M2L((X (x2[..,i]).H.x1[..,i])[1..2]),[1,2,3,4])

))))]:

Solve them

>B:=Basis(eq,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)):

and analyze the ideal

>Bi:=PolynomialIdeals[PolynomialIdeal]([op(B)]):

print("Hilbert dimension =",PolynomialIdeals[HilbertDimension](Bi));

print("The number of solutions =",PolynomialIdeals[NumberOfSolutions](Bi));

print("Is radical =",PolynomialIdeals[IsRadical](Bi));

print("Is prime =",PolynomialIdeals[IsPrime](Bi));

print("Is primary =",PolynomialIdeals[IsPrimary](Bi));

print("Is maximal =",PolynomialIdeals[IsMaximal](Bi));

”Hilbert dimension =”, 0
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We see that the corresponding variety is a union of three irreducible variaties, each consisting of a
single real point, and a component consisting of eight non-real points.

When the data are affected by measurement noise, however, the same formulation produces 12
solutions, out of which, now, four are real. The ideal generated by corrupted measurements is now
prime, primary and maximal [2].

We also see that for small noise, one of the four solutions is reasonably close to the true simulated
solution.

”The number of solutions =”, 11
”Is radical =”, true
”Is prime =”, false
”Is primary =”, false
”Is maximal =”, false
We see that the ideal can be obtained as an intersection of four prime ideals

>Bd:=PolynomialIdeals[PrimeDecomposition](Bi):

BB:=map(i->Basis(i,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)),[Bd]):

map(b->[HilbertDimension(b),

PolynomialIdeals[NumberOfSolutions](PolynomialIdeals[PolynomialIdeal](b))],
BB);

[[0, 1], [0, 1], [0, 1], [0, 8]]

which consists of single and eight points, respectively. There are 11 solutions for t3

>PolyVarMonomials([B[1]],plex(op(indets(B[1]))));

rt311, t310, t39, t38, t37, t36, t35, t34, t33, t32, t3, 1s

Let us get solutions to all variables

>S:=TriangularGBSolve(B,[]): nops(S);

11

We see that we are also getting 11 solutions. Let’s select the real ones and substitute back to

H, R, n, t

>sH:=map(f->evalf([subs(f,H),subs(f,R),subs(f,n),subs(f,t)]),S):

>sH:=select(f->MTM[isreal](f[1]),sH): nops(sH);

3

to see that we are left with only three solutions. Let’s compare it to the simulation.

>[H0,R0,-n0/n0[3],-t0*n0[3]];
»

–

»

–

247
255

104
255

4
17

´ 316
765

113
765

´ 2
153

´ 32
765

76
765

167
153

fi

fl

»

–

145
153

40
153

28
153

´ 232
765

701
765

40
153

´ 76
765

´ 232
765

145
153

fi

fl

»

–

´ 2
5

´ 14
5

´1

fi

fl

»

–

´ 8
153
14
51

´ 22
153

fi

fl

fi

fl

>convert(sH,rational);
»

–

»

–

247
255

104
255

4
17

´ 316
765

113
765

´ 2
153

´ 32
765

76
765

167
153

fi

fl

»

–

145
153

40
153

28
153

´ 232
765

701
765

40
153

´ 76
765

´ 232
765

145
153

fi

fl

»

–

´ 2
5

´ 14
5

´1

fi

fl

»

–

´ 8
153
14
51

´ 22
153

fi

fl

fi

fl

»

–

»

–

´ 247
255

´ 104
255

´ 4
17

316
765

´ 113
765

2
153

32
765

´ 76
765

´ 167
153

fi

fl

»

–

´ 37
45

´ 428
765

´ 16
153

´ 16
45

496
765

´ 103
153

4
9

´ 79
153

´ 112
153

fi

fl

»

–

´ 28
25
29
25

´1

fi

fl

»

–

20
153

´ 35
51
55
153

fi

fl

fi

fl

»

—

—

–

»

—

—

–

247
255

104
255

4
17

´ 316
765

113
765

´ 2
153

´ 32
765

76
765

167
153

fi

ffi

ffi

fl

»

—

—

–

2249
3825

3068
3825

´ 16
153

´ 596
765

403
765

´ 52
153

´ 832
3825

1076
3825

143
153

fi

ffi

ffi

fl

»

—

—

–

´ 28
25

29
25

´1

fi

ffi

ffi

fl

»

—

—

–

´ 52
153

´ 50
153

´ 8
51

fi

ffi

ffi

fl

fi

ffi

ffi

fl

We see that the first solution equals the sumulation. Let’s next add noise of about 0.1% of the

measurement range.

>x1:=x1+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0|0|0|0>>:

>x2:=x2+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0|0|0|0>>:

>eq:=[n3+1,op(numer(normal(Flatten(map(i->M2L((X (x2[..,i]).H.x1[..,i])[1..2]),[1,2,3,4])))))]:

and analyze the ideal

>B:=Basis(eq,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)):

Bi:=PolynomialIdeals[PolynomialIdeal]([op(B)]):

print("Hilbert dimension =",PolynomialIdeals[HilbertDimension](Bi));

print("The number of solutions =",PolynomialIdeals[NumberOfSolutions](Bi));

print("Is radical =",PolynomialIdeals[IsRadical](Bi));
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8.8 Constraint on two homographies induced by two planes

Let us now consider the situation when there are two planes σ1 and σ2 in the scene, Figure 8.4. Then,
the planes induce two homographies H1, H2 between the two images. We can write, Equation 8.108,

τ1
1
~x 1
β 1 “ A 1 A´1

˜

I` p~C 1
β ´ ~Cβq

1

~Cδ1
p3q

~nJ
1β̄

¸

~xβ “ H1 ~xβ

τ1
2 ~x

1
β 1 “ A 1 A´1

˜

I` p~C 1
β ´ ~Cβq

1

~Cδ2
p3q

~nJ
2β̄

¸

~xβ “ H2 ~xβ (8.129)

which means that thare are matrices H1, H2 such that for every point ~xβ in image one and the corre-
sponding point ~x 1

β 1 in image two there are real τ1
1
, τ1

2
such that Equaitons 8.129 hold true.

print("Is prime =",PolynomialIdeals[IsPrime](Bi));

print("Is primary =",PolynomialIdeals[IsPrimary](Bi));

print("Is maximal =",PolynomialIdeals[IsMaximal](Bi));

”Hilbert dimension =”, 0
”The number of solutions =”, 12
”Is radical =”, true
”Is prime =”, true
”Is primary =”, true
”Is maximal =”, true
We see that the ideal is prime and consists of a single component of 12 points

>Bd:=PolynomialIdeals[PrimeDecomposition](Bi):

BB:=map(i->Basis(i,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)),[Bd]):

map(b->[HilbertDimension(b),

PolynomialIdeals[NumberOfSolutions](PolynomialIdeals[PolynomialIdeal](b))],

BB);

[[0, 12]]

There are 12 solutions for t3

>PolyVarMonomials([B[1]],plex(op(indets(B[1]))));

rt312, t311, t310, t39, t38, t37, t36, t35, t34, t33, t32, t3, 1s
>S:=TriangularGBSolve(B,[]): nops(S); map(f->simplify(eval(B,f)),S);

12
out of which four are real

>sH:=map(f->evalf([subs(f,H),subs(f,R),subs(f,n),subs(f,t)]),S):

>sH:=select(f->MTM[isreal](f[1]),sH): nops(sH);

4
Let’s compare them to the simulation.

>[evalf[3](H0),evalf[3](R0),evalf[3](-n0/n0[3]),evalf[3](-t0*n0[3])];
»

–

»

–

0.969 0.408 0.235
´0.413 0.148 ´0.013
´0.042 0.099 1.090

fi

fl

»

–

0.948 0.261 0.183
´0.303 0.916 0.261
´0.099 ´0.303 0.948

fi

fl

»

–

´0.400
´2.800
´1.000

fi

fl

»

–

´0.052
0.274

´0.144

fi

fl

fi

fl

>map(f->print(evalf[3](f)),sH):
»

–

»

–

´0.969 ´0.410 ´0.237
0.413 ´0.147 0.014
0.042 ´0.099 ´1.090

fi

fl

»

–

´0.833 0.543 0.105
0.543 0.767 0.342
0.105 0.342 ´0.934

fi

fl

»

–

´0.398
´2.790
´1.000

fi

fl

»

–

0.342
0.328
0.158

fi

fl

fi

fl

»

–

»

–

´0.969 ´0.410 ´0.237
0.413 ´0.147 0.014
0.042 ´0.099 ´1.090

fi

fl

»

–

´0.820 ´0.563 ´0.104
´0.358 0.646 ´0.674

0.446 ´0.516 ´0.731

fi

fl

»

–

´1.120
1.150

´1.000

fi

fl

»

–

0.133
´0.688

0.361

fi

fl

fi

fl

»

–

»

–

0.969 0.410 0.237
´0.413 0.147 ´0.014
´0.042 0.099 1.090

fi

fl

»

–

0.948 0.261 0.183
´0.303 0.916 0.262
´0.099 ´0.304 0.948

fi

fl

»

–

´0.398
´2.790
´1.000

fi

fl

»

–

´0.053
0.276

´0.145

fi

fl

fi

fl

»

–

»

–

0.969 0.410 0.237
´0.413 0.147 ´0.014
´0.042 0.099 1.090

fi

fl

»

–

0.568 0.803 ´0.105
´0.780 0.525 ´0.342
´0.219 ´0.282 0.934

fi

fl

»

–

´1.120
1.150

´1.000

fi

fl

»

–

´0.341
´0.328
´0.158

fi

fl

fi

fl

We see that the third solution corresponds to the simulation.
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σ1

σ2

π

π1
~x1

~x 1
1

~x2

~x 1
2

~u1

~u 1
1

~y1

~y 1
1~y2

~y 1
2

~b1

~b2
~b3

~b 1
1

~b 1
2

~b 1
3

~d1

~d2

~d3

C

C1

O
X1

X2

~X1

Figure 8.4: There are two planes in the scene σ1 and σ2 inducing two homographies H1, H2 between
the two images.

We are interested in finding the constraints on arbitrary representatives of the two homographies,
i.e. matrices G1 “ λ1 H1 and G2 “ λ2 H2 for some real λ1, λ2. We see that there follows from Equa-
tions 8.129 that

λ1G1 “ A 1 A´1

˜

I` p~C 1
β ´ ~Cβq

1

~Cδ1
p3q

~nJ
1β̄

¸

“ A pI`~tβ ~vJ
1β̄

q

λ2G2 “ A 1 A´1

˜

I` p~C 1
β ´ ~Cβq

1

~Cδ2
p3q

~nJ
2β̄

¸

“ A pI`~tβ ~vJ
2β̄

q (8.130)

and thus

G´1
2
G1 “ λ2

λ1
pI`~tβ ~vJ

2β̄
q´1pI`~tβ ~vJ

1β̄
q (8.131)

which can be rewritten using

´

I`~tβ ~vJ
2β̄

¯´1
“ I´

~tβ ~vJ
2β̄

1 ` ~vJ
2β̄
~tβ

(8.132)

as

λ1

λ2
G´1

2
G1 “ I´

~tβp~vJ
1β̄

´ ~vJ
2β̄

q

1 ` ~vJ
2β̄
~tβ

(8.133)

Now, we see that for ~v1β̄ ‰ ~v2β̄ there is a two-dimensional space of eigenvectors ~wβ of G´1
2
G1 since for

every non-zero ~wβ̄ such that p~v1β̄ ´ ~v2β̄qJ~wβ “ 0 are getting

λ1

λ2
G´1

2
G1~wβ “

¨

˝I´
~tβp~vJ

1β̄
´ ~vJ

2β̄
q

1 ` ~vJ
2β̄
~tβ

˛

‚ ~wβ “ ~wβ (8.134)
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We also see that ~tβ is an eigenvector.
Vectors ~wβ represent projections of the points on the intersection line l of planes σ1, σ2 into the first

image. Line l is in both planes and therefore maps identically by H1 and H2.

78



9 Projective plane

9.1 Motivation – perspective projection in affine space

§1 Geometric model of perspective projection in affine space The perspective projection of a
point X by a camera with projection center C can be obtained geometrically in 3D affine space by
taking all lines passing through the points C and X and finding the intersections with the (affine)
image plane π.

Three different situations may arise, Figure 9.1.

1. If X “ C, then there is an infinite number of lines passing through C “ X, which intersect π in
all its points, and therefore the projection of X contains the whole plane π.

2. If point Y ‰ C lies in the plane σ, which is parallel to π and passing through C, then the line
passing trough C and Y (which there is exactly one) does not intersect the projection plane π, and
therefore, the projection of X is empty.

3. If X does not lie in the plane σ, then there is exactly one line passing through points C and X
and this line intersects the projection plane π in exactly one point x. Hence the projection of X
contains exactly one point x.

Let us compare this affine geometrical model of the perspective projection with the algebraic model
of the perspective projection, which we have developed before.

§2 Algebraic model of perspective projection in affine space The projection ~xβ of ~Xδ by a
perspective camera with image projection matrix

Pβ “
”

A | ´ A ~Cδ
ı

(9.1)

is

η ~xβ “
”

A | ´ A ~Cδ
ı

„

~Xδ

1



(9.2)

for some η P R.
We shall analyze the three situations, which arise with the geometrical model of affine projection.

1. If X “ C, then

η ~xβ “
”

A | ´ A ~Cδ
ı

„

~Cδ
1



“ ~0 (9.3)

i.e. we obtain the zero vector. What does it say about ~xβ? Clearly, ~xβ can be completely arbitrary
(even the zero vector) when we set η “ 0. Alternatively, we can choose η ‰ 0 and thus enforce

~xβ “ ~0. Both choices are possible. We shall use the latter one since we will see that it better fits

the other cases. We will use ~xβ “ ~0 to (somewhat strangely) represent all non-zero vectors in
R3.

2. If point Y ‰ C lies in the plane σ, then

η ~xβ “
”

A | ´ A ~Cδ
ı

„

~Yδ
1



“ A p~Yδ ´ ~Cδq (9.4)
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C

X

Y
x

π

σ

~x

~y

Figure 9.1: Geometric model of perspective projection in affine space. Point C has infinite (i.e. not
unique) projection, point X has exactly one projection x. Point Y has no projection.

which, taking into account rank A “ 3, implies

η A´1~xβ “ ~Yδ ´ ~Cδ (9.5)

Matrix A´1 transforms ~xβ into ~xδ and therefore its columns

A´1 “
”

~b1δ
~b2δ

~b3δ

ı

(9.6)

are the basic vectors of the camera coordinate system in the world basis δ. Hence

η
”

~b1δ
~b2δ

~b3δ

ı

~xβ “ ~Yδ ´ ~Cδ (9.7)

which means that vector ~Yδ´ ~Cδ can be written as a linear combination of the camera coordinate
system basic vectors

η p~b1δ ` η q~b2δ ` η r~b3δ “ ~Yδ ´ ~Cδ (9.8)

with p, q, r P R. Now, since Y lies in a plane parallel to π, vector ~Yδ ´ ~Cδ can be written as a
linear combination of the first two basic vectors of the camera coordinate system, and therefore
r “ 0, i.e.

~xβ “

»

–

p
q
0

fi

fl (9.9)

We also see that η ‰ 0 since otherwise we would get the zero vector on the left but that would
correspond to Y “ C, which we have excluded.

3. If X does not lie in the plane σ, then the coefficient r P R in the linear combination

η A´1 ~xβ “ ~Xδ ´ ~Cδ (9.10)

η p~b1δ ` η q~b2δ ` η r~b3δ “ ~Xδ ´ ~Cδ (9.11)
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Table 9.1: Comparison of the geometrical and algebraic projection models in affine space.

Point position Projection

Geometrical model in aff. space Algebraic model in aff. space

X R σ one point of π η ‰ 0, ~xβ “

»

–

u
v
1

fi

fl, (~xβ ‰ ~0)

C ‰ X P σ no point η ‰ 0, ~xβ “

»

–

u
v
0

fi

fl, ~xβ ‰ ~0

X “ C all points of π η ‰ 0, ~xβ “ ~0

is non-zero. In that case we can write

η

»

–

p
q
r

fi

fl “ A p~Xδ ´ ~Cδq (9.12)

pη rq

»

—

—

–

p
r
q
r
1

fi

ffi

ffi

fl

“ A p~Xδ ´ ~Cδq (9.13)

η1

»

–

u
v
1

fi

fl “ A p~Xδ ´ ~Cδq (9.14)

As in the case two, η ‰ 0 since otherwise we would get the zero vector on the left and that
would correspond to X “ C, which we have excluded.

The comparison of the two models of perspective projection, Table 9.1 shows that

1. We can always assume η ‰ 0.

2. The “projection” of C is represented by the zero vector while the projections of all other points
are represented by non-zero vectors.

3. The algebraic projection model can represent projections of all points in the affine space.

4. The geometrical projection model is less capable than the algebraic projection model since it
can’t model the projection of points in σ different from C.

The previous analysis clearly shows that the affine geometrical model of the perspective projection is
somewhat deficient. It can’t model projections of some points in the space. This deficiency leads to
inventing a generalized model of the geometry around us in order to model the perspective projection
completely by intersections of geometrical entities. This generalization of the affine space is called
the projective space.

Let us look at the most important projective space, which is the projective plane. We shall first
develop a concrete projective plane by improving the affine plane exactly as much as necessary to
achieve what we want, i.e. to be able to distinguish projections of all points in the space. In fact, this
will be extremely easy since we have already done all the work, and we only need to “upgrade” the
notion of point, line, intersection and join (i.e. making the line from two distinct points). Later, we
shall observe that such an “upgrade” will also lead to an interesting simplification and generalization
of the principles of geometry.
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(e)(c)(b)(a) (d)

A2A2A2
A2A2

A3 A3 A3 A3A3

O OOO

Figure 9.2: (a) Two dimensional affine planeA2 can be (b) embedded in the three dimensional affine
spaceA3. There is a point O P A3, O R A2. (c) For each point X inA2, there is exactly one
line through X and O inA3. (d) There is exactly one pencil of lines through O, which do
not correspond to any point in A2, in A3. (e) Each line in the pencil corresponds to a set
of parallel lines with the same direction inA2.

9.2 Real projective plane

9.2.1 Geometrical model of the real projective plane

A real affine plane A2 can be imagined as a subset of a real affine space A3, Figure 9.2. There is a
point O inA3, which is not inA2. For each point X inA2, there is exactly one line inA3, which passes
through X and O. Now, there is a set of lines in A3, which pass through O but do not pass through
any point ofA2. This is the set of lines parallel toA2 that pass through O. These lines fill the plane
ofA3, which is parallel toA2 and which contains the point O.

The set of all lines in A3 passing through O will be called the real projective plane and denoted as
P2. The lines ofA3 passing through O will be called the points of the real projective plane.1

The lines in A3 passing through O, which intersect A2, are in one-to-one correspondence with
points in the affine plane A2 and hence will be called the affine points of the projective plane2 of the
projective plane. The set of lines in A3 passing through O, which do not intersect A2, are the
“additional” points of the projective plane and will be called the ideal points of the projective plane3.4

To each ideal point P (i.e. a line l of A3 through O parallel to A2), there corresponds exactly one
set of parallel lines in A2 which are parallel to l in A3. Different sets of parallel lines in A2 are
distinguished by their direction. In this sense, ideal points correspond to directions in A2 and can
also be understood as points where parallel lines ofA2 intersect. Notice that the parallel lines of A2

do not intersect inA2, because P is not inA2, but they intersect in the real projective plane obtained
as the extension ofA2.

9.2.2 Algebraic model of the real projective plane

We shall now move from the geometrical model in A3 to an algebraic model in R3 which allows us
to do computations.

1The previous definition can be given without referring to any affine plane. We can take a point O in A3 and the set of
all lines in A3 passing through O and call it a projective plane. In the above example, however, we have obtained the
projective plane as an extension of a given affine planeA2. In such a case, we can distinguish two sets of points – affine
points and ideal points – in the projective plane.

2Vlastnı́ body in Czech. Finite points in [15].
3Nevlastnı́ body in Czech. Points at infinity in [15].
4Notice that words “point” and “line” actually need to be accompanied by adjectives for the above to make sense beacause

lines of A3 become points of A2. Also notice that this division of the points of the projective plane makes sense only
when we start with a given affine plane or when we start with a projective plane and select one plane of lines inA3 as
the set of ideal points.
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Figure 9.3: Algebraic model of the real projective plane.

Let us choose a coordinate system pO,~b1,~b2,~b3q inA3 with the origin in O, with basic vectors ~b1,~b2

from the coordinate system po,~b1,~b2q inA2 and with ~b3 “ ϕpO, oq, Figure 9.3.
Lines inA3, which pass through O, correspond to one-dimensional subspaces of R3 and therefore,

in R3, points of the real projective plane will be represented by one-dimensional subspaces.
The real projective plane is the set of all one-dimensional subspaces of R3.
The affine plane is a subset of the set of all one-dimensional subspaces ofR3, which we obtain after

removing all one-dimensional subspaces that lie in a two-dimensional subspace of R3.
There are (infinitely) many possible choices of sets of one-dimensional subspaces which can model

the affine plane within the real projective plane. The choice of a particular subset, which will model
a concrete1 affine plane, can be realized by a choice of a basis in R3.

Let us select a basis β “ p~b1,~b2,~b3q of R3. Then, all the one-dimensional subspaces generated by
vectors

~xβ “

»

–

x
y
1

fi

fl x, y P R (9.15)

will represent affine points, point X in Figure 9.4, and all the one-dimensional subspaces generated
by vectors

~xβ “

»

–

x
y
0

fi

fl x, y P R, x ‰ 0 or y ‰ 0 (9.16)

will represent the ideal points, e.g. point Y in Figure 9.4.
It is clear that the affine points are in one-to-one correspondence with all points in a two-dimensional

affine space (plane) and the ideal points are exactly what we need to add to the affine points to get all
one-dimensional subspaces of R3.

9.2.3 Lines of the real projective plane

Let us look at lines now. Lines, e.g. l in Figure 9.5, in the affine plane contain points represented
by one-dimensional subspaces generated, e.g., by ~x and ~y. This set of one-dimensional subspaces of
points on l fills almost a complete two-dimensional subspace of R3 with the exception of one one-
dimensional subspace, generated by ~z, which represents an ideal point. After adding the subspace
generated by ~z to the set of all one-dimensional subspaces representing points on l, we completely fill
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~b2

~b3
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Y

Figure 9.4: Points of the real projective plane are represented by one-dimensional subspaces of R3.
One selected two-dimensional affine subspace determines the ideal points.

A3

A2

O

~x
~y

~z

l

~l

Figure 9.5: Lines of the real projective plane correspond to two-dimensional subspaces of R3 but can
be also represented by one-dimensional subspaces of R3.

a two-dimensional subspace of R3, which hence corresponds to the projective completion of the affine
line l, which we will further call line, too.

Hence, in the real projective plane, lines correspond to two-dimensional subspaces of R3.
We would like to do calculations with lines as we do calculations with points. Let us develop a

convenient representation of lines now. A straightforward way how to represent a two-dimensional
subspace in R3 is to select a basis (i.e. two linearly independent vectors) of the subspace, e.g. ~x and ~y
for the line l. There are many ways how to choose a basis and therefore the representation is far from
unique. Moreover, having two bases, it is not apparent whether they represent the same subspace.

For instance, two pairs of linearly independent vectors p~x1, ~y1q and p~x2, ~y2q represent the same line
if and only if they generate the same two-dimensional subspace. To verify that, we, for instance, may
check whether

rank
“

~x1β ~y1β ~x2β ~y2β
‰

“ 2 (9.17)

where we write all the four vectors ~x1, ~y1, ~x2, ~y2 w.r.t. a basis β of R3.
Yet, there is another quite convenient way how to represent a two dimensional subspace in R3.

Since 3 “ 2 ` 1, we can find for each two-dimensional subspace, specified by a basis p~x, ~yq, exactly
one one-dimensional subspace of the three-dimensional dual linear space. Call the basis of this new
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A3

σ

A2

O

~l8

Figure 9.6: The ideal line is the set of all projective points (i.e. all lines of A3 through C, which have
no intersection with A2. It is a plane σ. There is exactly one, which is perpendicular to
sigma, which is generated by vector l8.

one-dimensional subspace~l. Then there holds

~l
J

β̄

“

~xβ ~yβ
‰

“ 0 (9.18)

where β̄ is the dual basis to β. Therefore, we can represent lines in the real projective plane by
one-dimensional subspaces in this way.

We have developed an interesting representation of points and lines where both points and lines
are represented by one-dimensional subspaces of R3. Points are represented by one-dimensional
subspaces of V “ R3, which is connected by ϕ to the three-dimensional spaceA3 of the geometrical
model of the real projective plane. The lines are represented by one-dimensional subspaces of the
space V̄, which is the space dual to V. Using the basis β̄ in V̄, which is dual to basis β in V, the

coordinates~lβ̄ as well as coordinates of ~xβ become vectors in R3 which satisfy Equation 9.18.

The line of A3 generated by ~l in Figure 9.5 is shown as perpendicular5 to the plane generated
by ~x, ~y. Indeed, in the geometrical model of the real projective plane, we can use the notion of
perpendicularity to uniquely construct the (perpendicular) line to the plane corresponding to l inA2.

9.2.4 Ideal line

The set of all one-dimensional subspaces ofR3, which do not correspond to points in the affine plane,
i.e. the set of all ideal points, forms itself a two-dimensional subspace of R3 an hence a line in the
projective plane, which is not in the affine plane. It is the ideal line6 of the projective plane associated

with the selected affine plane in that projective plane. It is represented by vector~l8 in Figure 9.6.
For each affine plane, there is exactly one ideal line (a two-dimensional subspace ofR3). Conversely,

by selecting one line in a projective plane (i.e. one two-dimensional subspace of R3) the associated
affine plane is determined as the set of all points (one-dimensional subspaces of R3) which are not
contained in the selected ideal line (two-dimensional subspace).

5InA3, line and plane are perpendicular when they contain the right angle. The right angle is one quarter of a circle.
6Nevlastnı́ přı́mka in Czech, line at infinity in [15].
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9.2.5 Homogeneous coordinates

Once a coordinate system is fixed in an affine plane, every point of the affine plane has unique
coordinates, which are the coordinates of its vector in the basis of the coordinate system.

A point in a real projective plane is represented by a one-dimensional subspace of R3. One-
dimensional subspaces are represented by their bases consisting of a single non-zero vector. There
are infinitely many bases representing the same one-dimensional subspace. Two basic vectors of the
same one-dimensional subspace are related by a non-zero multiple.

Hence, when talking about coordinates of a point in the projective space, we actually talk about
coordinates of a particular basic vector of the one-dimensional subspace that represents the point.

For instance, vectors
»

–

1
0
1

fi

fl and

»

–

2
0
2

fi

fl (9.19)

are basic vectors of the same one-dimensional subspace since they are related by a non-zero multiple.
These are two different “coordinates” of the same point in the real projective plane.

Hence, the “coordinates” of a point in the real projective plane are not unique. This is so radically
departing from the fundamental property of coordinates, their uniqueness, that it deserves a new
name. To distinguish the coordinates of a point in the affine plane, which are unique, from the
“coordinates” of a point in the projective plane, which are not unique, we shall introduce new name
homogeneous coordinates.

Homogeneous coordinates of a point in the real projective plane are the coordinates of a basic vector of
the one-dimensional subspace, which represents the point.

Homogeneous coordinates of a line in the real projective plane are the coordinates of a basic vector of
the one-dimensional subspace, which represents the line.

A point in an affine plane can be represented by affine as well as by homogeneous coordinates. Let
us see the relationship between the two.

Let us have a point X in a two-dimensional real affine plane, which is represented by coordinates
„

x
y



(9.20)

By extending the real affine plane to the real projective plane with the ideal line identified with the
two-dimensional subspace z “ 0, we can represent point X by a one-dimensional subspace of R3

generated by its basic vector
»

–

x
y
1

fi

fl (9.21)

Thus, X has affine coordinates
“

x y
‰J

and homogeneous coordinates
“

u v w
‰J

, where u “ λ x,
v “ λ y, and w “ λ 1 for some λ P R, λ ‰ 0.

Ideal points do not have affine coordinates. Their homogeneous coordinates are
“

x y 0
‰J

(9.22)

where x, y P R and either x ‰ 0 or y ‰ 0.

The zero vector ~0 is not a basis of any one-dimensional space and thus represents neither a point
nor a line.

9.2.6 Incidence of points and lines

We say that a point x is incident with line l if and only if it can generate the line with another point y,
Figure 9.7. In the representation of subspaces of R3, it means that

~l
J

β̄
~xβ “ 0 (9.23)
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A3

A2

O

~x

l

~l

Figure 9.7: A point x is incident with a line l if and only if it can generate the line with another point
y. Lines inA3 representing the point and the line are perpendicular to each other.

This means that the one-dimensional subspace of R3 representing the line is orthogonal to the one-
dimensional subspace of R3 representing the point w.r.t. the standard (Euclidean) scalar product.
In the geometrical model of the real projective plane it means that the line of A3 representing x is
perpendicular to line ofA3 representing l.

Let us write explicitly the coordinates of the bases generating the one-dimensional subspaces as

~xβ “

»

–

x
y
z

fi

fl
~lβ̄ “

»

–

a
b
c

fi

fl

then we get
a x ` b y ` c z “ 0

and for affine points represented with z “ 1 this formula reduces to

a x ` b y ` c “ 0

which is the familiar equation of a line in the two dimensional real affine plane.

9.2.7 Join of points

Every two distinct points x and y in the real projective plane are incident with exactly one line l. The
join of two distinct points is the unique line passing through them.

In the real projective plane, two distinct points are represented by two different one-dimensional
subspaces with bases ~x and ~y.

The homogeneous coordinates of this line, i.e. the coordinates of the basic vectors of the one-
dimensional subspace representing the line, can be obtained by solving the following system of

homogeneous equations for coordinates of the vector~l

~l
J

β̄
~xβ “ 0 (9.24)

~l
J

β̄
~yβ “ 0 (9.25)

w.r.t. β and β̄ in R3. The set of solutions forms the one-dimensional subspace that represents the line
l.
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A2

O

~x~y

l

~l

Figure 9.8: The join of two distinct points is the unique line passing through them.

A3

A2

O

~x

~l

~k

l

k

Figure 9.9: The meet of two distinct lines is the unique point incident with them.

We have seen in Section 2.3 that vector~lβ̄ can be conveniently constructed by the vector product as

~lβ̄ “ ~xβ ˆ ~yβ (9.26)

Notice, that in the real projective plane as well as in the real affine plane, there is exactly one line incident with
two distinct points.

9.2.8 Meet of lines

Every two distinct lines k and l in a projective plane are incident exactly to one point x. The meet of
two distinct lines is the unique point incident with them.

In the real projective plane, two distinct lines are represented by two different one-dimensional

subspaces with bases ~k and~l.
The homogeneous coordinates of this point, i.e. the coordinates of the vectors in the one-dimensional

subspace representing the point, can be obtained by solving the following system of homogeneous

88



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

equations for coordinates of the vector ~x w.r.t. β in R3

~k
J

β̄
~xβ “ 0

~l
J

β̄
~xβ “ 0

The set of solutions forms the one-dimensional subspace that represents point x. To get one basic
vector in the subspace, we may again employ the vector product in R3 and compute

~xβ “ ~kβ̄ ˆ~lβ̄

Notice, that in the real projective plane there is exactly one point incident to two distinct lines.
This is not true in an affine plane because there are (parallel) lines that have no point in common!

9.3 Line coordinates under homography

Let us now investigate the behavior of homogeneous coordinates of lines in projective plane mapped
by a homography.

Let us have two points represented by vectors ~xβ, ~yβ. We now map the points, represented by
vectors ~xβ, ~yβ, by a homography, represented by matrix H, to points represented by vectors ~x 1

β 1 , ~y
1
β 1

such that there are λ1, λ2 P R, λ1λ2 ‰ 0

λ1 ~x
1
β 1 “ H ~xβ (9.27)

λ2 ~y
1
β 1 “ H ~yβ (9.28)

Homogeneous coordinates ~pβ̄ of the line passing through points represented by ~xβ, ~yβ̄ and homo-

geneous coordinates ~p 1
β̄ 1 of the line passing through points represented by ~x 1

β 1 , ~y
1
β 1 are obtained by

solving the linear systems

~pJ
β̄
~xβ “ 0 and ~p 1

β̄ 1

J
~x 1
β 1 “ 0 (9.29)

~pJ
β̄
~yβ “ 0 ~p 1

β̄ 1

J
~y 1
β 1 “ 0 (9.30)

for a non-trivial solutions. Writing down the incidence of points and lines, we get

λ1 ~p
J
β̄
H´1 ~x 1

β 1 “ 0 ô ~pJ
β̄
H´1 ~x 1

β 1 “ 0

λ2 ~p
J
β̄
H´1 ~y 1

β 1 “ 0 ô ~pJ
β̄
H´1 ~y 1

β 1 “ 0

We see that ~p 1
β̄ 1 and H´J~pβ̄ are solutions of the same set of homogeneous equations. When ~xβ, ~yβ are

independent, then there is λ P R such that

λ~p 1
β̄ 1 “ H´J~pβ̄ (9.31)

since the solution space is one-dimensional. Equation 9.31 gives the relationship between homoge-
neous coordinates of a line and its image under homography H.

9.3.1 Join under homography

Let us go one step further and establish formulas connecting line coordinates constructed by vector
products. Construct joins as

~pβ̄ “ ~xβ ˆ ~yβ and ~p 1
β̄ 1 “ ~x 1

β 1 ˆ ~y 1
β 1 (9.32)
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and use Equation 2.50 to get

~xβ 1 ˆ ~yβ 1 “ H´J

|H´J| p~xβ ˆ ~yβq (9.33)

pλ1 ~x
1
β 1q ˆ pλ2 ~y

1
β 1q “ H´J

|H´J| p~xβ ˆ ~yβq (9.34)

~x 1
β 1 ˆ ~y 1

β 1 “ H´J

λ1 λ2 |H´J| p~xβ ˆ ~yβq (9.35)

~p 1
β̄ 1 “ H´J

λ1 λ2 |H´J| ~pβ̄ (9.36)

9.3.2 Meet under homography

Let us next look at the meet. Let point ~x be the meet of lines ~p and ~q with line cordinates ~pβ̄, ~qβ̄, which

are related by a homography H to line coordinates ~p 1
β̄ 1 and ~q 1

β̄ 1 by

λ1 ~p
1
β̄ 1 “ H´J ~pβ̄ (9.37)

λ2 ~q
1
β̄ 1 “ H´J ~qβ̄ (9.38)

for some non-zero λ1, λ2. Construct meets as

~xβ “ ~pβ̄ ˆ ~qβ̄ and ~x 1
β 1 “ ~p 1

β̄ 1 ˆ ~q 1
β̄ 1 (9.39)

and, similarly as above, use Equation 2.50 to get

~x 1
β 1 “ pH´Jq´J

λ1 λ2 |pH´Jq´J| ~xβ “ H

λ1 λ2 |H| ~xβ (9.40)

9.3.3 Meet of join under homography

We can put the above together to get meet of join under homography. We consider two pairs of
points represented by their homogeneous coordinates ~xβ, ~yβ, and ~zβ, ~wβ and the corresponding pairs
of points with their homogeneous coordinates ~x 1

β 1 , ~y
1
β 1 , and ~z 1

β 1 , ~w
1
β 1 related by homography H as

λ1 ~x
1
β 1 “ H ~xβ , λ2 ~y

1
β 1 “ H ~yβ , λ3~z

1
β 1 “ H~zβ , λ4 ~w

1
β 1 “ H ~wβ (9.41)

Let us now consider point

~v 1
β 1 “ p~x 1

β 1 ˆ ~y 1
β 1q ˆ p~z 1

β 1 ˆ ~w 1
β 1q (9.42)

“
ˆ

H´J

λ1 λ2 |H´J| p~xβ ˆ ~yβq
˙

ˆ
ˆ

H´J

λ3 λ4 |H´J| p~zβ ˆ ~wβq
˙

(9.43)

“ H |H|
λ1 λ2 λ3 λ4

p~xβ ˆ ~yβq ˆ p~zβ ˆ ~wβq (9.44)

“ H |H|
λ1 λ2 λ3 λ4

~vβ (9.45)

9.3.4 Note on homographies that are rotations

First notice that homogeneous coordinats of points and lines constructed as combinations of joins
and meets indeed behave under a homography as homogeneous coordinates constructed from affine
coordinates of points.

Secondly, when the homography is a rotation and homogeneous coordinates are unit vecors, all
λ’s become equal to one, the determinant of H is one and H´J “ H. Therefore, all homogeneous
coordinates in the previous formulas become related just by H.
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Figure 9.10: Vanishing point v is the point towards projections x an y tend as X and Y move away
from π but which they never reach.

9.4 Vanishing points

When modeling perspective projection in the affine space with affine projection planes, we meet
somewhat unpleasant situations. For instance, imagine a projection of two parallel lines K,L, which
are in a plane τ in the space into the projection plane π through the center C, Figure 9.10.

The lines K,L project to image lines k, l. As we go with two points X,Y along the lines k, l away
from the projection plane, their images x, y get closer and closer to the point v in the image but they
do not reach point v. We shall call this point of convergence of lines K, L the vanishing point7.

9.5 Vanishing line and horizon

If we take all sets of parallel lines in τ, each set with a different direction, then all the points of
convergence in the image will fill a complete line h.

The line h is called the vanishing line or the horizon8 when τ is the ground plane.
Now, imagine that we project all points from τ to π using the affine geometrical projection model.

Then, no point from τ will project to h. Similarly, when projecting in the opposite direction, i.e. π to
τ, line h has no image, i.e. it does not project anywhere to τ.

When using the affine geometrical projection model with the real projective plane to model the
perspective projection (which is equivalent to the algebraic model in R3), all points of the projective
plane τ (obtained as the projective completion of the affine plane τ) will have exactly one image in
the projective plane π (obtained as the projective completion of the affine plane π) and vice versa.
This total symmetry is useful and beautiful.

7Úběžnı́k in Czech.
8Horizont in Czech
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Figure 9.11: Vanishing line (horizon) h is the line of vanishing points.
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10 Projective space

10.1 Motivation – the union of ideal points of all affine planes

Figure 10.1(a) shows a perspective image of three sets of parallel lines generated by sides of a cube
in the three-dimensional real affine space. The images of the three sets of parallel lines converge to
vanishing points V1, V2 and V3. The cube has six faces. Each face generates two pairs of parallel lines
and hence two vanishing points. Each face generates an affine plane which can be extended into a
projective plane by adding the line of ideal points of that plane. The projection of the three ideal lines
are vanishing lines l12 “ V1 _ V2, l23 “ V2 _ V3 and l31 “ V3 _ V1. Imagine now all possible affine
planes of the three-dimensional affine space and their corresponding ideal points. Let us take the
union V of the sets of ideal points of all such planes. There is exactly one ideal point for every set of
parallel lines in V, i.e. there is a one-to-one correspondence between elements of V (ideal points) and
directions in the three-dimensional affine space. Notice also that every plane π generates one ideal
line l8 of its ideal points and that all other planes parallel with π generate the same l8, Figure 10.1.

It suggests itself to extend the three-dimensional affine space by adding the set V to it, analogically
to how we have extended the affine plane. In this new space, all parallel lines will intersect. We will
call this space the three-dimensional real projective space and denote it P3. Let us develop an algebraic
model of P3. It is practical to require this model to encompass the model of the real projective plane.
The real projective plane is modeled algebraically by subspaces of R3. Let us observe that subspaces
of R4 will be a convenient algebraic model of P3.

We start with the three-dimensional real affine space A3 and fix a coordinate system pO, δq with

δ “ p~d1, ~d2, ~d3q. An affine plane π is a set of points ofA3 represented in pO, δq by the set of vectors

π “ trx, y, zsJ | a x ` b y ` c z ` d “ 0, a, b, c, d P R, a2 ` b2 ` c2 ‰ 0u (10.1)

We see that the point of π represented by vector rx, y, zsJ can also be represented by one-dimensional
subspace tλ rx, y, z, 1sJ|λ P Ru of R4 and hence π can be seen as the set

π “ ttλ rx, y, z, 1sJ|λ P Ru | ra, b, c, ds rx, y, z, 1sJ “ 0, a, b, c, d P R, a2 ` b2 ` c2 ‰ 0u (10.2)

of one-dimensional subspaces of R4.
Notice that we did not require λ ‰ 0 in the above definition. This is because we establish the

correspondence between a vector rx, y, zs and the corresponding complete one-dimensional subspace
tλ rx, y, z, 1sJ, λ P Ru of R4 and since every linear space contains zero vector, we admit zero λ.

Every rx, y, zsJ P R3 represents in pO, δq a point ofA3 and hence the subset

A3 “ ttλ rx, y, z, 1sJ|λ P Ru | x, y, z P Ru (10.3)

of one-dimensional subspaces of R4 representsA3.
We observe that we have not used all one-dimensional subspaces ofR4 to representA3. The subset

π8 “ ttλ rx, y, z, 0sJ|λ P Ru | x, y, z P R, x2 ` y2 ` z2 ‰ 0u (10.4)

of one-dimensional subspaces of R4 is in one-to-one correspondence with all non-zero vectors of R3,
i.e. in one-to-one correspondence with the set of directions inA3. This is the set of ideal points which
we add toA3 to get the three-dimensional real projective space

P3 “ ttλ rx, y, z,wsJ|λ P Ru | x, y, z,w P R, x2 ` y2 ` z2 ` w2 ‰ 0u (10.5)

which is the set of all one-dimensional subspaces of R4. Notice that P3 “ A3 Y π8.
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V1 V2

V3

π8

π8

A3

A2 l8

(a) (b)

Figure 10.1: (a) A perspective image of a cube generates three vanishing points V1, V2 and V3 and
hence also three vanishing lines l12, l23 and l31. (b) Every plane adds one line of ideal points
to the three-dimensional affine space. Every ideal point corresponds to one direction, i.e.
to a set of parallel lines. Each ideal line corresponds to a set of parallel planes.

§1 Points Every non-zero vector of R4 generates a one-dimensional subspace and thus represents
a point of P3. The zero vector r0, 0, 0, 0sJ does not represent any point.

§2 Planes Affine planes πA3 , Equation 10.2, are in one-to-one correspondence to the subset

πA3 “ ttλ ra, b, c, dsJ|λ P Ru | a, b, c, d P R, a2 ` b2 ` c2 ‰ 0u (10.6)

of the set of one-dimensional subspaces of R4. There is only one one-dimensional subspace of R4,
tλ r0, 0, 0, 1sJ|λ P Ru missing in πA3 . It is exactly the one-dimensional subspace corresponding to the
set π8 of ideal points of P3

π8 “ ttλ rx, y, z,wsJ|λ P Ru | x, y, z,w P R, x2 ` y2 ` z2 ‰ 0, r0, 0, 0, 1s rx, y, z,wsJ “ 0u (10.7)

We can take another view upon planes and observe that affine planes are in one-to-one correspondence
with the three-dimensional subspaces of R4. The set π8 also corresponds to a three-dimensional
subspace of R4. Hence π8 can be considered another plane, the ideal plane of P3.

The set of planes of P3 can be hence represented by the set of one-dimensional subspaces of R4

πP3 “ ttλ ra, b, c, dsJ|λ P Ru | a, b, c, d P R, a2 ` b2 ` c2 ` d2 ‰ 0u (10.8)

but can also be viewed as the set of three-dimensional subspaces of R4.
We see that there is a duality between points and planes of P3. They both are represented by

one-dimensional subspaces of R4 and we see that point X represented by vector ~X “ rx, y, x,wsJ is
incident to plane π represented by vector ~π “ ra, b, c, dsJ, i.e. X ˝ π, when

~πJ ~X “
“

a b c d
‰

»

—

—

–

x
y
z
w

fi

ffi

ffi

fl

“ a x ` b y ` c z ` d w “ 0 (10.9)

§3 Lines Lines in P3 are represented by two-dimensional subspaces of R4. Unlike in P2, lines are
not dual to points.
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11 Camera auto-calibration

Camera auto-calibration is a process when the parameters of image formation are determined from
properties of the observed scene or knowledge of camera motions. We will study camera auto-
calibration methods and tasks related to metrology in images. We have seen in Chapter 7 that to
measure the angle between projection rays we needed only matrix K. Actually, it is enough to know
matrix1

ω “ K´JK´1

to measure the angle between the rays corresponding to image points ~x1β, ~x2β as

cos =p~x1, ~x2q “
~xJ

1β K
´JK´1~x2β

}K´1~x1β}}K´1~x2β}
“

~xJ
1βω~x2β

b

~xJ
1β
ω~x1β

b

~xJ
2βω~x2β

(11.1)

Knowing ω is however (almost) equivalent to knowing K since K can be recovered from ω up to two
signs as follows.

§1 Recovering K from ω Let us give a procedure for recovering K from ω. Assuming

K “

»

–

k11 k12 k13

0 k22 k23

0 0 1

fi

fl (11.2)

we get

K´1 “

»

–

k11 k12 k13

0 k22 k23

0 0 1

fi

fl

´1

“

»

—

—

–

1
k11

´k12

k11k22

k12 k23´k13 k22

k11 k22

0 1
k22

´k23

k22

0 0 1

fi

ffi

ffi

fl

“

»

–

m11 m12 m13

0 m22 m23

0 0 1

fi

fl (11.3)

for some real m11,m12,m13,m22 and m23. Equivalently, we get

K “

»

—

—

–

1
m11

´m12

m11m22

m12 m23´m13 m22

m11 m22 m23

0 1
m22

´m23

m22

0 0 1

fi

ffi

ffi

fl

(11.4)

Introducing the following notation

ω “ K´JK´1 “

»

–

ω11 ω12 ω13

ω12 ω22 ω23

ω13 ω23 ω33

fi

fl (11.5)

yields
»

–

ω11 ω12 ω13

ω12 ω22 ω23

ω13 ω23 ω33

fi

fl “

»

–

m2
11

m11 m12 m11 m13

m11 m12 m2
12

` m2
22

m12 m13 ` m22 m23

m11 m13 m12 m13 ` m22 m23 m2
13

` m2
23

` 1

fi

fl (11.6)

1In [15], ω is called the image of the absolute conic.
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which can be solved for K´1 up to the sign of the rows of K´1 as follows. Equation 11.6 provides
equations

ω11 “ m2
11 ñ m11 “ s1

?
ω11

ω12 “ m11 m12 ñ m12 “ ω12{ps1
?
ω11q “ s1ω12{ ?

ω11

ω13 “ m11 m13 ñ m13 “ ω13{ps1
?
ω11q “ s1ω13{ ?

ω11

ω22 “ m2
12 ` m2

22 ñ m22 “ s2

b

ω22 ´ m2
12

“ s2

b

ω22 ´ ω2
12

{ω11

ω23 “ m12 m13 ` m22 m23 ñ m23 “ s2 pω23 ´ ω12ω13{ω11q{
b

ω22 ´ ω2
12

{ω11

“ s2 pω11ω23 ´ ω12ω13q{
b

ω2
11
ω22 ´ ω11ω2

12

which can be solved for mi j with s1 “ ˘1 and s2 “ ˘1. Hence

K “

»

—

—

–

s1
?
ω11 s1ω12{ ?

ω11 s1ω13{ ?
ω11

0 s2

b

ω22 ´ ω2
12

{ω11 s2 pω23 ´ ω12ω13{ω11q{
b

ω22 ´ ω2
12

{ω11

0 0 1

fi

ffi

ffi

fl

´1

(11.7)

Signs s1, s2 are determined by the choice of the image coordinate system. The standard choice is
s1 “ s2 “ 1, which corresponds to k11 ą 0 and k22 ą 0.

Notice that
?
ω11 is never zero for a real camera since m11 “ 1

k11
‰ 0. There also holds true

b

ω22 ´ ω2
12

{ω11 “
b

m2
11

´ m2
12

“

g

f

f

e

1

k2
11

´
k2

12

k2
11

k2
22

“ 1

k11 k22

b

k2
22

´ k2
12

‰ 0 (11.8)

since |k12| is much smaller than |k22| for all real cameras.

11.1 Constraints on ω

Matrixω is a 3ˆ3 symmetric matrix and by this it has only six independent elementsω11, ω12, ω13, ω22, ω23

and ω33. Let us next investigate additional constratints on ω, which follow from different choices of
K.

§1 Constraints on ω for a general K Even a general K yields a constraint on ω. Equation 11.6
relates the six parameters of ω to only five parameters m11,m12,m13,m22 and m23 and hence the six
parameters of ω can’t be independent. Indeed, let us see that the following identity holds true

pω2
23 ´

ω2
13
ω2

12

ω2
11

´ pω22 ´
ω2

12

ω11
q pω33 ´

ω2
13

ω11
´ 1qq2 ´ 4

ω2
13
ω2

12

ω2
11

pω22 ´
ω2

12

ω11
q pω33 ´

ω2
13

ω11
´ 1q

“
˜

pm12m13 ` m22m23q2 ´ pm11m13q2pm11m12q2

m4
11

´pm2
12 ` m2

22 ´ pm11m12q2

m2
11

qpm2
13 ` m2

23 ` 1 ´ pm11m13q2

m4
11

´ 1q
¸2

´ 4
pm11m13q2pm11m12q2

m4
11

pm2
12 ` m2

22 ´ pm11m12q2

m2
11

qpm2
13 ` m2

23 ` 1 ´ pm11m13q2

m4
11

´ 1q

“
`

pm12m13 ` m22m23q2 ´ pm12m13q2 ´ pm22m23q2
˘2 ´ 4 pm12m13q2pm22m23q2

“ p2 pm12m13qpm22m23qq2 ´ 4 pm12m13q2pm22m23q2

“ 0 (11.9)
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Since ω11 ‰ 0, we get the following equivalent identity

pω2
11ω

2
23 ´ ω2

13ω
2
12 ´ pω11ω22 ´ ω2

12q pω11ω33 ´ ω2
13 ´ ω11qq2

´ 4ω2
13ω

2
12 pω11ω22 ´ ω2

12q pω11ω33 ´ ω2
13 ´ ω11q “ 0 (11.10)

which is a polynomial equation of degree eight in elements of ω.
We shall see next that it makes sense to introduce a new matrix

Ω “

»

–

1 o12 o13

o12 o22 o23

o13 o23 o33

fi

fl “

»

—

—

–

1 ω12

ω11

ω13

ω11

ω12

ω11

ω22

ω11

ω23

ω11

ω13

ω11

ω23

ω11

ω33

ω11

fi

ffi

ffi

fl

(11.11)

which contains only five unknowns, and use Equation 11.10 to get the positive ω11 from Ω by solving
the following quadratic equation

a2ω
2
11 ` a1ω11 ` a0 “ 0 (11.12)

with

a2 “ ´4 o23
2o13

2o12
2 ` o23

4 ´ 2 o23
2o22 o33 ` 2 o13

2o12
2o22 o33 (11.13)

´2 o22
2o33o13

2 ` o12
4o33

2 ` 2 o23
2o22 o13

2 ` 2 o23
2o12

2o33

`o22
2 o13

4 ` o22
2o33

2 ´ 2 o22 o33
2o12

2

a1 “ 2 o13
2o12

2 o22 ` 2 o23
2o22 ´ 2 o22

2 o33 ´ 2 o12
4 o33 (11.14)

`4 o22 o33o12
2 ´ 2 o23

2o12
2 ` 2 o22

2o13
2

a0 “ ´2 o22 o12
2 ` o22

2 ` o12
4 (11.15)

§2 Constraints on ω for K from square pixels Cameras have often square pixels, i.e. }~b1} “ |~b2} “
1 and =p~b1,~b2q “ π{2, which implies, Equations 7.13, 7.15, 7.16, a simplified

K “

»

–

k11 0 k13

0 k11 k23

0 0 1

fi

fl (11.16)

This gives also simpler

ω “ 1

k2
11

»

–

1 0 ´k13

0 1 ´k23

´k13 ´k23 k2
11

` k2
13

` k2
23

fi

fl (11.17)

We see that we get the following three identities

ω12 “ 0 (11.18)

ω22 ´ ω11 “ 0 (11.19)

ω2
13 ` ω2

23 ´ ω11ω33 ` ω11 “ 0 (11.20)

We also get simpler

Ω “

»

–

1 0 o13

0 1 o23

o13 o23 o33

fi

fl “ k2
11ω “

»

–

1 0 ´k13

0 1 ´k23

´k13 ´k23 k2
11

` k2
13

` k2
23

fi

fl (11.21)

and use Equation 11.21 to get

k2
11 “ o33 ´ o2

13 ´ o2
23 (11.22)

k13 “ ´o13 (11.23)

k23 “ ´o23 (11.24)
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σ

π

K

Lk
l

C

~v σ

π

K1

L1

K2

L2k1
l1

k2

l2C

~v1

~v2

(a) (b)

Figure 11.1: (a) Parallel lines K, L are projected to lines k, l with vanishing point represented by ~v.
Vector ~v is parallel to k, l. (b) Vectors ~v1, ~v2 contain the same angle as pairs of lines K1, K2

or L1, L2.

11.2 Camera calibration from angles between projection rays

We will now show how to calibrate a camera by finding the matrix ω “ K´JK´1.
In general, matrix ω is constrained by knowing angles contained between pairs of projection rays.

Consider two projection rays with direction vectors ~x1, ~x2. Then the angle between them is related to
ω and Ω by

cos =p~x1, ~x2q “
~xJ

1βω~x2β
b

~xJ
1β
ω~x1β

b

~xJ
2βω~x2β

“
~xJ

1β Ω ~x2β
b

~xJ
1β
Ω ~x1β

b

~xJ
2β Ω ~x2β

(11.25)

Squaring the above and clearing the denominators gives

pcos =p~x1, ~x2qq2p~xJ
1β Ω ~x1βq p~xJ

2β Ω ~x2βq “ p~xJ
1β Ω ~x2βq2 (11.26)

which is a second order equation in elements of Ω. To find Ω, which has five independent parameters
for a general K, we need to be able to establish five pairs of rays with known angles and solve a system
of five quadratic equations 11.26 above.

§1 Camera with square pixels A simpler situation arises when the camera has square pixels.
Then, we can use constraints from § 2 to recover ω and K from three pairs of rays containing known
angles. That amounts to solving three second order equations 11.26 in o13, o23, o33.

However, this is actually exactly the same problem as we have already solved in Section 7.3.

Figure 11.2 shows an image plane πwith a coordinate system po, δ 1q with δ 1 “ p~b1,~b2,~b 1
3
q derived from

the image coordinate system po, αq. Having square pixels, vectors ~b1, ~b2 can be complemented with
~b 1

3
to form an orthogonal coordinates system pO “ o, δ 1q. Next, we choose the global orthonormal

coordinate system, pO “ o, δq, δ “ p~d1, ~d2, ~d3q, such that

~d1 “
~b1

||~b1||
, ~d2 “

~b2

||~b1||
, and ~d3 “

~b 1
3

||~b1||
(11.27)

and hence

~xδ “

»

—

–

||~b1|| 0 0

0 ||~b1|| 0

0 0 ||~b1||

fi

ffi

fl
~xδ 1 (11.28)
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π

~x1

~x2

~x3

~b1

~b2

~b 1
3

~d1

~d2

~d3

d12

d23

d31

O “ o

C

~C X1

X2

X3

~X2

Figure 11.2: Images of three points with known angles between their rays can be used to calibrate

cameras with square pixels. The position of image center ~Cδ 1 can be computed in the
ortogonal coordinate system po, δ 1q using the absolute pose problem from Chapter 7.3.

Matrix K is composed from coordinates of ~Cδ 1 .

We know angles =p~x1, ~x2q, =p~x2, ~x3q and =p~x3, ~x1q. We also know image points ~u1α “ ~X1δ 1 , ~u2α “
~X2δ 1 , ~u3α “ ~X3δ 1 and thus we can compute distances d12 “ ||~X2δ 1 ´ ~X1δ 1 ||, d23 “ ||~X3δ 1 ´ ~X2δ 1 || and

d31 “ ||~X3δ 1 ´ ~X1δ 1 ||. Having that, we can find the pose ~Cδ 1 “ rc1, c2, c3sJ of the camera center C in
pO, δ 1q by solving the absolute pose problem from Chapter 7.3. We will select a solution with c3 ă 0
and, if necessary, use a fourth point in π to choose the right solution among them. To find K, we can
form the following equation

»

–

0
0
1

fi

fl “ 1

f

”

K R | ´ K R ~Cδ
ı

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

(11.29)

since point o is represented by r0, 0, 1sJ in β and by r0, 0, 0sJ in δ. Coordinate system pO, δq is chosen

such that R “ I and ~Cδ “ ||~b1|| ~Cδ 1 and thus we get

K´1

»

–

0
0
1

fi

fl “ ´||~b1||
f
~Cδ 1 (11.30)

Now, let us consider matrix K as in Equation 11.16 and use the intepretation of elements of K from
Chapter 7, Equations 7.16, 7.17. We can write

K “

»

—

—

–

f

}~b1}
0 k13

0
f

}~b1}
k23

0 0 1

fi

ffi

ffi

fl

an thus K´1 “

»

—

—

–

}~b1}
f 0 ´ }~b1}

f k13

0
}~b1}

f ´ }~b1}
f k23

0 0 1

fi

ffi

ffi

fl

(11.31)
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and use it in Equation 11.30 to get
»

—

–

k13

k23

´ f

}~b1}

fi

ffi

fl
“

»

–

c1

c2

c3

fi

fl (11.32)

and thus

K “

»

–

´c3 0 c1

0 ´c3 c2

0 0 1

fi

fl (11.33)

11.3 Camera calibration from vanishing points

Let us first make an interesting observation about parallel lines in space an its corresponding vanishing
point in an image. Let us consider a pair of parallel lines K, L in space as shown in Figure 11.1(a).
There is an affine plane σ containing the lines. The lines K, L are projected to image plane π into lines
k, l, respectively.

Now, first extend affine plane σ to a projective plane Σ using the camera center C. Then, define

a coordinate system pC, δq with orthonormal basis δ “ p~d1, ~d2, ~d3q such that vectors ~d1, ~d2 span affine
plane σ.

Let ~Kδ̄, ~Lδ̄ be homogeneous coordinates of lines K, L w.r.t. δ̄. Then

~wδ “ ~Kδ̄ ˆ~Lδ̄ (11.34)

are homogeneous coordinates of the intersection of lines K, L in Σ.
Next, extend the affine plane π to a projective planeΠ using the camera center C with the (camera)

coordinate system pC, βq.

Let ~kβ̄,~lβ̄ be homogeneous coordinates of lines k, l w.r.t. β̄. Then

~vβ “ ~kβ̄ ˆ~lβ̄ (11.35)

are homogeneous coordinates of the intersection of lines k, l in Π.
Now, consider Equation 8.14 for planes Σ and Π. Since δ is orthonormal, we have K 1 “ I and thus

that there is a homoghraphy
H “ K R (11.36)

which maps plane Σ to plane Π. Matrices K and R of the camera are here w.r.t. the world coordinate
system pC, δq.

We see that there is a real λ such that there holds

λ~vβ “ K R ~wδ (11.37)

true.

§1 Pairs of “orthogonal” vanishing points and camera with square pixels Let us have two
pairs of parallel lines in space, Figure 11.1(b), such that they are also orthogonal, i.e. let K1 be parallel
with L1 and K2 be parallel with L2 and at the same time let K1 be orthogonal to K2 and L1 be
orthogonal to L2. This, for instance, happens when lines K1,L1,K2,L2 form a rectangle but they also
may be arranged in the three-dimensional space as non-intersecting.

Let lines k1, l1, k2, l2 be the projections of K1,L1,K2,L2, respectively, represented by the corresponding

vectors~k1β̄,~l1β̄,~k2β̄,~l2β̄ in the camera coordinates system with (in general non-orthogonal) basis β. Lines
k1 and l1, resp. k2 and l2, generate vanishing points

~v1β “ ~k1β̄ ˆ~l1β̄
~v2β “ ~k2β̄ ˆ~l2β̄
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The perpendicularity of ~w1 to ~w2 is, in the camera orthogonal basis δ, modeled by

~wJ
1δ ~w2δ “ 0 (11.38)

We therefore get from Equation 11.37

~vJ
1β K

´JR´JR´1K´1~v2β “ 0 (11.39)

~vJ
1β K

´JK´1~v2β “ 0 (11.40)

~vJ
1βω~v2β “ 0 (11.41)

which is a linear homogeneous equation in ω. Assuming further square pixels, we get, § 2,

~vJ
1βω~v2β “ 0

~vJ
1βΩ ~v2β “ 0

“

v11 v12 v13

‰

»

–

1 0 o13

0 1 o23

o13 o23 o33

fi

fl

»

–

v21

v22

v23

fi

fl “ 0

“

v23 v11 ` v21 v13 v23 v12 ` v22 v13 v23 v13

‰

»

–

o13

o23

o33

fi

fl “ ´pv21 v11 ` v22 v12q

Now, we need only 3 pairs of perpendicular vanishing points, e.g. to observe 3 rectangles not all in
one plane to compute o13, o23, o33 and then

k13 “ ´o13

k23 “ ´o23

k11 “
b

o33 ´ k2
13

´ k2
23

11.4 Camera calibration from images of squares

Let us exploit the relationship between the coordinates of points X, which all lie in a plane σ and

are measured in a coordinate system pO, ~d1, ~d2q in σ, Figure 8.2. The points X are projected by a

perspective camera with the camera coordinate system is pC, βq, β “ p~b1,~b2,~b3q and projection matrix

P into image coordinates
“

u v
‰J

, w.r.t. an image coordinate system po,~b1,~b2q, Equation 8.16. See
paragraph § 1 to recall that the columns of P can be writen as

P “
”

K R | ´ K R ~Cδ
ı

“
”

~d1ν
~d2ν

~d3ν ´~Cν
ı

(11.42)

and therefore we get the columns

h1 “ p1 “ ~d1ν (11.43)

h2 “ p2 “ ~d2ν (11.44)

h3 “ p4 “ ´~Cν (11.45)

of the homography Hmapping σ to π as defined in Equation 8.17.
Now imagine that we are observing a square with 4 corner points X1, X2, X3 and X4 in the plane σ

and we construct the coordinate system in σ by assigning coordinates to the corners as

~X1δ “
“

0 0 0
‰

(11.46)

~d1δ “ ~X2δ “
“

1 0 0
‰

(11.47)

~d2δ “ ~X3δ “
“

0 1 0
‰

(11.48)

~X4δ “
“

1 1 0
‰

(11.49)
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We see that we get two constraints on ~d1δ, ~d2δ

~dJ
1δ
~d2δ “ 0 (11.50)

~dJ
1δ
~d1δ ´ ~dJ

2δ
~d2δ “ 0 (11.51)

which lead to

~dJ
1ν K

´J K´1 ~d2ν “ 0 (11.52)

~dJ
1β K

´J K´1 ~d1β ´ ~dJ
2ν K

´J K´1 ~d2ν “ 0 (11.53)

by using ~diν “ K R ~diδ for i “ 1, 2, and RJ R “ I.
These are two linear equations on ω and hence also, see § 1, on Ω

~dJ
1ν Ω

~d2ν “ 0 (11.54)

~dJ
1ν Ω

~d1ν ´ ~dJ
2ν Ω

~d2ν “ 0 (11.55)

on ω in terms of estimated λ H

hJ
1 Ω h2 “ 0 (11.56)

hJ
1 Ω h1 ´ hJ

2 Ω h2 “ 0 (11.57)

One square provides two equations and therefore three squares in two planes in a general position
suffice to calibrate full K. Actually, such three squares provide one more equations than necessary
since Ω has only five parameters. Hence, it is enough observe two squares and one rectangle to get
five constraints. Similarly, one square and one rectangle in a plane then suffice to calibrate K when
pixels are square.

Notice also that we have never used the special choice of coordinates of ~Xδ. Indeed, point X4 could

be anywhere provided that we know how to assign it coordinates in pO, ~d1, ~d2q.
To calibrate the camera, we first assign coordinates to the corners of the square as above, then find

the homography H from the plane to the image

λi ~xiβ “ H ~Xiδ (11.58)

for αi “ 1, . . . , 4 and finally use columns of H the find Ω.

102



12 Two-view scene reconstruction

Imagine two cameras giving two images of the space from two different view points. We will next
investigate how to (re-)construct camera projection matrices and meaningful coordinates of points in
the space such that the reconstructed cameras and the reconstructed points generate the images.

12.1 Epipolar geometry

Figure 12.1 shows two cameras with different centers C1, C2 and image planes π1, π2, observing a
general point X as u1, u2. Baseline b connecting image centers C1, C2 intersects π1, π2 in epipoles e1,
e2. Points C1, C2 and X form epipolar plane σ, which intersects π1 in epipolar line l1 and π2 in epipolar
line l2. Epipolar line l1 passes through epipole e1 and through image point u1. Epipolar line l2 passes
through epipole e2 and through image point u2.

Let us next find the relationship between image points, epipoles, epipolar lines as a function of
camera parameters, Figure 12.2. Assume a world coordinate system pO, δq and cameras C1, C2 with
camera projection matrices

P1 “
”

K1R1 | ´ K1R1
~C1δ

ı

and P2 “
”

K2R2 | ´ K2R2
~C2δ

ı

(12.1)

Point X is projected to image planes π1, π2, with respective coordinate systems po1, β1q, po2, β2q, as

ζ1 ~x1β1
“ P1

„

~Xδ

1



and ζ2 ~x2β2 “ P2

„

~Xδ

1



(12.2)

for some ζ1 ą 0 and ζ2 ą 0, which then leads to

ζ1 ~x1β1
“ K1R1p~Xδ ´ ~C1δq and ζ2 ~x2β2 “ K2R2p~Xδ ´ ~C2δq (12.3)

ζ1 R
J
1 K

´1
1
~x1β1

“ ~Xδ ´ ~C1δ ζ2 R
J
2 K

´1
2
~x2β2 “ ~Xδ ´ ~C2δ (12.4)

π1 π2

σ

C1 C2
b

u1 u2

l1 l2

e1 e2

X

Figure 12.1: Epipolar geometry of two cameras.
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π1 π2

C1 C2

~x1 ~x2

~l1 ~l2

~e1 ~e2

X

~C2 ´ ~C1

~X ´ ~C1
~X ´ ~C2

Figure 12.2: Vectors of the epipolar geometry.

Consider now that vectors ~Xδ ´ ~C1δ, ~Xδ ´ ~C2δ and ~C2δ ´ ~C1δ form a triangle and hence

~C2δ ´ ~C1δ “ p~Xδ ´ ~C1δq ´ p~Xδ ´ ~C2δq (12.5)

~C2δ ´ ~C1δ “ ζ1 R
J
1 K

´1
1
~x1β1

´ ζ2 R
J
2 K

´1
2
~x2β2 (12.6)

with ζ1 ą 0 and ζ2 ą 0 for the standard choice of camera coordinate systems.
We shall next eliminate depths ζ1, ζ2 by exploiting the vector product identities, see Paragraph 2.3,

~0 “ ~x ˆ ~x “ r~xsˆ ~x (12.7)

~0 “ ~yJp~x ˆ ~yq “ ~yJ r~xsˆ ~y (12.8)

for all ~x, ~y P R3.

We first vector-multiply Equation 12.6 by ~C2δ ´ ~C1δ from the left to get

0 “
”

~C2δ ´ ~C1δ

ı

ˆ
ζ1 R

J
1 K

´1
1
~x1β1

´
”

~C2δ ´ ~C1δ

ı

ˆ
ζ2 R

J
2 K

´1
2
~x2β2 (12.9)

and then multiply Equation 12.9 by ζ2 ~xJ
2β2
K´J

2
R2 from the left to get

0 “ ζ2 ~x
J
2β2
K´J

2
R2

”

~C2δ ´ ~C1δ

ı

ˆ
ζ1 R

J
1 K

´1
1
~x1β1

(12.10)

which, since ζ1 ‰ 0 and ζ2 ‰ 0, is equivalent with

0 “ ~xJ
2β2
K´J

2
R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ

1 K
´1
1
~x1β1

(12.11)

0 “ ~xJ
2β2
K´J

2
E K´1

1
~x1β1

(12.12)

0 “ ~xJ
2β2
F ~x1β1

(12.13)

where we introduced the essential matrix E P R3ˆ3 as

E “ R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ

1 (12.14)

and the fundamental matrix F P R3ˆ3 as

F “ K´J
2
R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ

1 K
´1
1

(12.15)
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Let us next introduce epipoles to pass from vectors in δ to vectors in β1, β2, which are measurable
in images.

The projection e1 of the the camera center ~C2 to the first image as well as the projection e2 of the the

camera center ~C1 to the second image are obtained as

ζ1~e1β1
“ P1

„

~C2δ

1



“ K1R1p~C2δ ´ ~C1δq (12.16)

ζ2~e2β2 “ P2

„

~C1δ

1



“ K2R2p~C1δ ´ ~C2δq (12.17)

for some ζ1 ą 0 and ζ2 ą 0.
We can now substitute Equation 12.16 into Equation 12.15 to get

F “ K´J
2
R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ

1 K
´1
1

(12.18)

“ K´J
2
R2

”

ζ1 R
J
1 K

´1
1
~e1β1

ı

ˆ
RJ

1 K
´1
1

(12.19)

“ ζ1K
´J
2
R2

pRJ
1
K´1

1
q´J

ˇ

ˇ

ˇpRJ
1
K´1

1
q´J

ˇ

ˇ

ˇ

“

~e1β1

‰

ˆ
(12.20)

“ ζ1

|K1|K
´J
2
R2R

J
1 K

J
1

“

~e1β1

‰

ˆ
(12.21)

We used the result from § 2, which shows how the vector product behaves under the change of a
basis.

Analogically, we substitute Equation 12.17 into Equation 12.15 to get

F “ K´J
2
R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ

1 K
´1
1

(12.22)

“ K´J
2
R2

”

´ζ2 R
J
2 K

´1
2
~e2β2

ı

ˆ
RJ

1 K
´1
1

(12.23)

“
ˆ

”

ζ2 R
J
2 K

´1
2
~e2β2

ı

ˆ
RJ

2 K
´1
2

˙J

RJ
1 K

´1
1

(12.24)

“
ˆ

ζ2

|K2|R
J
2 K

J
2

“

~e2β2

‰

ˆ

˙J

RJ
1 K

´1
1

(12.25)

“ ´ ζ2

|K2|
“

~e2β2

‰

ˆ
K2R2R

J
1 K

´1
1

(12.26)

We used additional properties of the linear representation of the vector product from § 3.
We see from Equations 12.21 and 12.26 that it is possible to recover homogeneous coordinates of

the epipoles from F by solving equations

F~e1β1
“ 0 and FJ~e2β2 “ 0 (12.27)

for a non-zero multiples of ~e1β1
, ~e2β2 . We also see that matrix F has rank smaller than three since it has

a non-zero null space ~e1β1
. Since, rank of

”

~C2δ ´ ~C1δ

ı

ˆ
is two for non-zero ~C2δ ´ ~C1δ, F has rank two

when camera centers do not coincide.
Let us look at the epipolar lines. Epipolar lines pass through the corresponding points in images

and the epipoles, i.e. l1 “ x1 _ e1 and l2x “ x2 _ e2. Consider that there holds

~xJ
2β2
F~e1β1

“ 0 and ~xJ
1β1
FJ~e2β2 “ 0 (12.28)

~xJ
2β2
F ~x1β1

“ 0 ~xJ
1β1
FJ~x2β2 “ 0 (12.29)

(12.30)
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and therefore homogeneous coordinates ~l1β̄1
~l2β̄2

of epipolar lines generated by ~x2β2 and ~x1β1
, respec-

tively, are obtained as
~l1β̄1

“ FJ~x2β2 and ~l2β̄2
“ F ~x1β1

(12.31)

for ~x2β2 ‰ ~e2β2 and ~x1β1
‰ ~e1β1

.

12.2 Computing epipolar geometry from image matches

Let us look at how to compute the epipolar geometry between images from image matches. Our goal
is to find matrix G “ τF for some real non-zero τ using Equation 12.13. Let us introduce

G “

»

–

g11 g12 g13

g21 g22 g23

g31 g32 g33

fi

fl (12.32)

and write Equation 12.13 as

0 “ ~xJ

2iβ2
G ~x1iβ1

“
“

u2i v2i w2i

‰

»

–

g11 g12 g13

g21 g22 g23

g31 g32 g33

fi

fl

»

–

u1i

v1i

w1i

fi

fl (12.33)

0 “
“

u2i u1i u2i v1i u2i w1i v2i u1i v2i v1i v2i w1i w2i u1i w2i v1i w2i w1i

‰

»

—

—

—

–

g11

g12

...
g33

fi

ffi

ffi

ffi

fl

for the i-th pair of the corresponding points ~x1iβ1
, ~x2iβ2

in the two images. Notice that we can work
even with ideal points when w1i “ 0 or w2i “ 0.

We can solve this way for a non-zero multiple of F from eight correspondences in a general position,
i.e. not all on a plane or on some special quadrics passing through camera centers [15]. If there is
noise in image coordinates, we in general get a rank three matrix.

To avoid this problem, we can use only seven point correspondences to compute a two dimensional
space of solutions

G “ G1 ` α G2 (12.34)

generated form its basis G1, G2 by α. Then we use the constraint

0 “ |G| “ |G1 ` α G2| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

g111 g112 g113

g121 g122 g123

g131 g132 g133

fi

fl ` α

»

–

g211 g212 g213

g221 g222 g223

g231 g232 g233

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(12.35)
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to find α by solving a third order polynomial

0 “ a3 α
3 ` a2 α

2 ` a1 α` a0 (12.36)

a3 “ |G2|
a2 “ g221 g232 g113 ´ g221 g212 g133 ` g211 g222 g133 ` g231 g112 g223

`g231 g212 g123 ´ g211 g223 g132 ´ g231 g122 g213 ´ g231 g222 g113

´g211 g123 g232 ` g121 g232 g213 ` g221 g132 g213 ` g131 g212 g223

´g121 g212 g233 ´ g111 g223 g232 ´ g221 g112 g233 ` g211 g122 g233

`g111 g222 g233 ´ g131 g222 g213

a1 “ g111 g122 g233 ` g111 g222 g133 ` g231 g112 g123 ´ g121 g112 g233

´g211 g123 g132 ´ g221 g112 g133 ´ g231 g122 g113 ` g211 g122 g133

`g121 g132 g213 ` g121 g232 g113 ` g131 g212 g123 ´ g121 g212 g133

´g131 g222 g113 ` g221 g132 g113 ´ g111 g123 g232 ´ g131 g122 g213

`g131 g112 g223 ´ g111 g223 g132

a0 “ |G1|
That will give us up to three rank two matrices G.

Notice that we assumed that Gwas constructed with a non-zero coefficient at G1. We therefore also
need to check G “ G2 for a solution.

12.3 Ambiguity in two-view reconstruction

The goal of scene reconstruction from its two views is to find camera projection matrices P1, P2,

and coordinates of points in the scene ~Xδ such that the points ~Xδ are projected by cameras P1, P2 to
observed image points ~x1β1

, ~x2β2

ζ1 ~x1β1
“ P1

„

~Xδ

1



and ζ2 ~x2β2 “ P2

„

~Xδ

1



(12.37)

for some positive real ζ1, ζ2.

Assume that there are some cameras P1, P2, and coordinates of points in the scene ~Xδ such that
Equation 12.37 holds true. Then, for every 4 ˆ 4 real regular matrix Hwe can get new camera matrices

P 1
1
, P 1

2
and new point coordinates ~X 1

δ as

P 1
1 “ P1 H

´1 P 1
2 “ P2 H

´1

«

~X 1
δ

1

ff

“ H
„

~Xδ

1



(12.38)

which also project to the same image points

ζ1 ~x1β1
“ P1

„

~Xδ

1



“ P1 H
´1H

„

~Xδ

1



“ P 1
1

«

~X 1
δ

1

ff

(12.39)

ζ2 ~x2β2 “ P2

„

~Xδ

1



“ P2 H
´1H

„

~Xδ

1



“ P 1
2

«

~X 1
δ

1

ff

(12.40)

We see that in general we can reconstruct the cameras and the scene points only up to some
unknown transformation of the space. We also see that the transformation is more general than just

changing a basis in R3 where we represent affine points ~Xδ. Matrix H acts in the three-dimensional
affine space exactly as homography on two-dimensional affine space.

Let us next look at a somewhat simpler situation when camera calibration matrices K1, K2 are
known. In such a case we can make sure that H has a special form which corresponds to a special
change of a coordinate system in the three-dimensional affine space.
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12.4 Reconstruction from two calibrated views

Let us further assume that camera calibration matrices K1, K2 are known. Hence we can pass from F
to E using Equations 12.14, 12.15 as

E “ KJ
2 F K1 (12.41)

then recover the relative pose of the cameras, set their coordinate systems and finally reconstruct
points of the scene.

12.4.1 Camera computation

To simplify the setting, we will first pass from “uncalibrated” image points ~x1β1
, ~x2β2 using K1, K2 to

“calibrated”
~x1γ1

“ K´1
1
~x1β1

and ~x2γ2 “ K´1
2
~x2β2 (12.42)

and then use camera projection matrices as follows

ζ1 ~x1γ1
“ P1γ1

„

~Xδ

1



and ζ2 ~x2γ2 “ P2γ2

„

~Xδ

1



(12.43)

Matrix H allows us to choose the global coordinate system of the scene as pC1, ǫ1q. Setting

H´1 “
«

RJ
1

~C1δ

~0J 1

ff

(12.44)

we get from Equation 12.38

P1γ1
“

”

I |~0
ı

(12.45)

P2γ2 “
”

R2 R
J
1

| ´ R2 p~C2δ ´ ~C1δq
ı

“
”

R2 R
J
1

| ´ R2R
J
1

p~C2ǫ1 ´ ~C1ǫ1
q
ı

(12.46)

“
”

R | ´ R ~Cǫ1

ı

(12.47)

and the corresponding essential matrix

E “ R
”

~Cǫ1

ı

ˆ
(12.48)

From image measurements, ~x1γ1
, ~x2γ2 , we can compute, Section 12.2, matrix

G “ τ E “ τ R
”

~Cǫ1

ı

ˆ
(12.49)

and hence we can get E only up to a non-zero multiple τ. Therefore, we can recover ~Cǫ1 only up to τ.
We will next fix τ up to its sign s1. Consider that the Frobenius norm of a matrix G

}G}F “

g

f

f

e

3
ÿ

i, j“1

G2
i j

“
b

trace pGJGq “
d

trace

ˆ

τ2
”

~Cǫ1

ıJ

ˆ
RJR

”

~Cǫ1

ı

ˆ

˙

“
d

τ2 trace

ˆ

”

~Cǫ1

ıJ

ˆ

”

~Cǫ1

ı

ˆ

˙

(12.50)

“ |τ|
b

2 }~Cǫ1}2 “ |τ|
?

2 }~Cǫ1} (12.51)

We have used the following identities

GJG “ τ2
”

~Cǫ1

ıJ

ˆ
RJR

”

~Cǫ1

ı

ˆ
“ τ2

”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ
(12.52)

“ τ2

»

–

0 z ´y
´z 0 x

y ´x 0

fi

fl

»

–

0 ´z y
z 0 ´x

´y x 0

fi

fl “ τ2

»

–

y2 ` z2 ´x y ´x z
´x y x2 ` z2 “ y z
´x z ´y z x2 ` y2

fi

fl
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We can now construct normalized matrix Ḡ as

Ḡ “
?

2 G
b

ř3
i, j“1 G

2
i j

“ τ

|τ| R
«

~Cǫ1

}~Cǫ1}

ff

ˆ

“ s1 R

”

~tǫ1

ı

ˆ
(12.53)

with new unknown s1 P t`1,´1u and ~tǫ1 denoting the unit vector in the direction of the second
camera center in ǫ1 basis.

We can find vector ~vǫ1 “ s2~tǫ1 with new unknown s2 P t`1,´1u by solving

Ḡ ~vǫ1 “ 0 subject to }~vǫ1} “ 1 (12.54)

to get

Ḡ “ s1 R

„

1

s2
~vǫ1



ˆ

“ s1

s2
R r~vǫ1

sˆ (12.55)

s Ḡ “ R r~vǫ1
sˆ (12.56)

“

s g1 s g2 s g3

‰

“ R
“

v1 v2 v3

‰

(12.57)

with unknown s P t`1,´1u, unknown rotation R and known matrices
“

g1 g2 g3

‰

“ Ḡ and
“

v1 v2 v3

‰

“ r~vǫ1
sˆ.

This is a matricial equation. Matrices Ḡ, r~vǫ1
sˆ are of rank two and hence do not determine R

uniquely unless we use RJR “ I and |R| “ 1. That leads to a set of polynomial equations. They can
be solved but we will use the property of vector product, § 2, to directly construct regular matrices
that will determine R uniquely for a fixed s.

Consider that for every regular A P R3ˆ3, we have, § 2,

pA ~xβq ˆ pA ~yβq “ ~xβ 1 ˆ ~yβ 1 “ A´J

|A´J| p~xβ ˆ ~yβq (12.58)

which for R gives

pR ~xβq ˆ pR ~yβq “ R p~xβ ˆ ~yβq (12.59)

Using it for i, j “ 1, 2, 3 to get

ps giq ˆ ps g jq “ pR viq ˆ pR v jq (12.60)

s2 pgi ˆ g jq “ R pvi ˆ v jq (12.61)

pgi ˆ g jq “ R pvi ˆ v jq (12.62)

i.e. three more vector equations. Notice how s disappeared in the vector product.
We see that we can write
“

s g1 s g2 s g3 g1 ˆ g2 g2 ˆ g3 g1 ˆ g3

‰

“
“ Rs

“

v1 v2 v3 v1 ˆ v2 v2 ˆ v3 v1 ˆ v3

‰

(12.63)

There are two solutions R` for s “ `1 and R´ for s “ ´1. We can next compute two solutions
~t`ǫ1 “ `~vǫ1 and ~t´ǫ1 “ ´~vǫ1 and combine them together to four possible solutions

P2γ2`` “ R`

”

I | ´~t`ǫ1

ı

(12.64)

P2γ2`´ “ R`

”

I | ´~t´ǫ1

ı

(12.65)

P2γ2´` “ R´

”

I | ´~t`ǫ1

ı

(12.66)

P2γ2´´ “ R´

”

I | ´~t´ǫ1

ı

(12.67)

The above four camera projection matrices are compatible with Ḡ. The one which corresponds to the
actual matrix can be selected by requiring that all reconstructed points lie in front of the cameras, i.e.
that the reconstructed points are all positive multiples of vectors ~x1ǫ1

and ~x2ǫ2 for all image points.
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12.4.2 Point computation

Let us assume having camera projection matrices P1, P2 and image points ~x1β1
, ~x2β2 such that

ζ1 ~x1β1
“ P1

„

~Xδ

1



and ζ2 ~x2β2 “ P2

„

~Xδ

1



(12.68)

We can get ~Xδ, and ζ1, ζ2 by solving the following system of (inhomogeneous) linear equations

«

~x1β1
~0 ´P1

~0 ~x2β2 ´P2

ff

»

—

—

–

ζ1

ζ2

~Xδ

1

fi

ffi

ffi

fl

“ 0 (12.69)

12.5 Calibrated relative camera pose computation

In the previous chapter, we had first computed a multiple of the fundamental matrix from seven point
correspondences and only then used camera calibration matrices to recover a multiple of the essential
matrix. Here we will use the camera calibration right from the beginning to obtain a multiple of the
essential matrix directly from only five image correspondences. Not only that five is smaller than
seven but using the calibration right from the beginning permits all points of the scene generating
the correspondences to lie in a plane.

We start from Equation 12.42 to get ~x1γ1
and ~x2γ2 from Equation 12.43 which are related by

~xJ
2β2
K´J

2
E K´1

1
~x1β1

“ 0 (12.70)

~xJ
2γ2
E ~x1γ1

“ 0 (12.71)

The above equation holds true for all pairs of image points p~x1γ1
, ~x2γ2q that are in correspondence, i.e.

are projections of the same point of the scene.

12.5.1 Constraints on E

Matrix E has rank two, and therefore there holds

|E| “ 0 (12.72)

true.
We will now derive additional constraints on E. Let us consider that we can write, Equation 12.48,

E “ R

”

~Cǫ1

ı

ˆ
(12.73)

Let us introduce ~Cǫ1 “
“

x y z
‰J

and evaluate

EJE “
ˆ

R

”

~Cǫ1

ı

ˆ

˙J

R

”

~Cǫ1

ı

ˆ
“
”

~Cǫ1

ıJ

ˆ
RJR

”

~Cǫ1

ı

ˆ
“
”

~Cǫ1

ıJ

ˆ

”

~Cǫ1

ı

ˆ
(12.74)

“

»

–

0 z ´y
´z 0 x

y ´x 0

fi

fl

»

–

0 ´z y
z 0 ´x

´y x 0

fi

fl “

»

–

z2 ` y2 ´x y ´x z
´x y z2 ` x2 ´y z
´x z ´y z y2 ` x2

fi

fl

“

»

–

x2 ` y2 ` z2

x2 ` y2 ` z2

x2 ` y2 ` z2

fi

fl ´

»

–

x x x y x z
x y y y y z
x z y z z z

fi

fl

“ }~Cǫ1}2I´ ~Cǫ1
~CJ
ǫ1

(12.75)
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We can multiply the above expression by E from the left again to get an interesting equation

E EJE “ E

´

}~Cǫ1}2I´ ~Cǫ1
~CJ
ǫ1

¯

“ }~Cǫ1}2E “ 1

2
trace pEJEq E (12.76)

or equivalently
2 E EJE “ trace pEJEq E (12.77)

which provides nine equations on elements of E.
In fact, these equations also imply |E| “ 0. Consider that Equation 12.77 implies

`

2 E EJ ´ trace pEJEq I
˘

E “ 0 (12.78)

For Equation 12.78 to hold true, either E can’t have the full rank, i.e. |E| “ 0, or 2 E EJ´trace pEJEq I “ 0.
The latter case gives

0 “ trace p2 E EJ ´ trace pEJEq Iq “ 2 trace pE EJq ´ 3 trace pEJEq (12.79)

Let us check the relationship between trace pEJEq and trace pE EJq now. We write

trace pEJEq “ pE2
11 ` E2

21 ` E2
31q ` pE2

12 ` E2
22 ` E2

32q ` pE2
13 ` E2

23 ` E2
33q

“ pE2
11 ` E2

12 ` E2
13q ` pE2

21 ` E2
22 ` E2

23q ` pE2
31 ` E2

32 ` E2
33q

“ trace pE EJq (12.80)

Substituting the above into Equation 12.79 gets us

0 “ 2 trace pE EJq ´ 3 trace pEJEq “ ´trace pEJEq (12.81)

Equation 2 E EJ ´ trace pEJEq I “ 0 also implies

2 E EJ “ trace pEJEq I (12.82)

|2 E EJ| “ |trace pEJEq I| (12.83)

23|E|2 “ ptrace pEJEqq3 (12.84)

23|E|2 “ 0 (12.85)

|E| “ 0 (12.86)

Therefore, Equation 12.77 implies |E| “ 0.
Let us now look at constraints on matrix G “ τ E, for some non-zero real τ. We can multiply

Equation 12.78 by τ3 to get

τ3
`

2 E EJ ´ trace pEJEq I
˘

E “ 0 (12.87)
`

2 pτ Eq pτ EJq ´ trace ppτ EJq pτ Eqq I
˘

pτ Eq “ 0 (12.88)
`

2 G GJ ´ trace pGJGq I
˘

G “ 0 (12.89)

Clearly, rank pGq “ rank pτ Eq “ rank pEq “ 2.
We conclude that constraints on E and G are the same.

12.5.2 Geometrical interpretation of Equation 12.77

Let us provide a geometrical interpretation of Equation 12.77. We will mutiply both sides of Equa-
tion 12.77 by a vector ~y P R3 and write

2 E EJE ~y “ trace pEJEq E ~y (12.90)

2 R
”

~Cǫ1

ı

ˆ

”

~Cǫ1

ıJ

ˆ

”

~Cǫ1

ı

ˆ
~y “ 2 }~Cǫ1}2 R

”

~Cǫ1

ı

ˆ
~y (12.91)

´R
”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ
~y “ R }~Cǫ1}2

”

~Cǫ1

ı

ˆ
~y (12.92)

”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ
~y “ ´}~Cǫ1}2

”

~Cǫ1

ı

ˆ
~y (12.93)
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~y

~C

~C ˆ ~y

~C ˆ p~C ˆ ~yq
~C ˆ p~C ˆ p~C ˆ ~yqq

Figure 12.3: Identity ~Cǫ1 ˆ p~Cǫ1 ˆ p~Cǫ1 ˆ ~yqq “ ´}~Cǫ1}2p~Cǫ1 ˆ ~yq.

Now, we use that for every two vectors ~x, ~y P R3 there holds r~xsˆ ~y “ ~x ˆ ~y true to get

~Cǫ1 ˆ p~Cǫ1 ˆ p~Cǫ1 ˆ ~yqq “ ´}~Cǫ1}2p~Cǫ1 ˆ ~yq (12.94)

which is a familiar identity of the vector pruduct in R3, Figure 12.3.

12.5.3 Characterization of E

Let us next see that a non-zero 3 ˆ 3 real matrix satisfying Equation 12.77 has rank two and can be
written in the form of Equation 12.73 for some rotation R and some vector Cǫ1 .

Consider a real 3 ˆ 3 matrix E such that Equation 12.77 holds true. We will make here use of the
SVD decomposition [5, p. 411] of real matrices. We can write

E “ U

»

–

a
b

c

fi

fl VJ (12.95)

for some real non-negative a, b, c and some orthogonal real 3 ˆ 3 matrices U, V, such that UJ U “ I, and
VJ V “ I [5, p. 411]. One can see that UJ U “ I, and VJ V “ I implies |U| “ ˘1, |V| “ ˘1.

Using Equation 12.95 we get

E EJ “ U

»

–

a2

b2

c2

fi

fl UJ, EJE “ V

»

–

a2

b2

c2

fi

fl VJ (12.96)

and trace pEJEq “ trace pV D2VJq “ trace pV D2V´1q “ trace pD2q since matrices D2 and E EJ are similar
and hence their traces, which are the sums of their eigenvalues, are equal. Now, we can rewrite
Equation 12.77 as

¨

˝2 U

»

–

a2

b2

c2

fi

fl UJ ´ pa2 ` b2 ` c2q I

˛

‚U

»

–

a
b

c

fi

fl VJ “ 0 (12.97)

2 U

»

–

a3

b3

c3

fi

fl VJ ´ pa2 ` b2 ` c2q U

»

–

a
b

c

fi

fl VJ “ 0 (12.98)

Matrices U, V are regular and thus we get

2

»

–

a3

b3

c3

fi

fl ´ pa2 ` b2 ` c2q

»

–

a
b

c

fi

fl “ 0 (12.99)
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which finally leads to the following three equations

a3 ´ a b2 ´ a c2 “ a pa2 ´ b2 ´ c2q “ 0 (12.100)

b3 ´ b a2 ´ b c2 “ b pb2 ´ c2 ´ a2q “ 0 (12.101)

c3 ´ c a2 ´ c b2 “ c pc2 ´ a2 ´ b2q “ 0 (12.102)

We see that there are the following two exclusive cases:

1. If any two of a, b, c are zero, then the third one is zero too. For instance, if a “ b “ 0, then
Equation 12.102 gives c3 “ 0. This can’t happen for a non-zero E.

2. If any two of a, b, c are non-zero, then the two non-zero are equal and the third is zero. For
instance, if a ‰ 0 and b ‰ 0, then Equations 12.100, 12.101 imply c2 “ 0 and thus a2 “ b2, which
gives a “ b since a, b are non-negative, i.e. rank pEq “ 2.

We thus conclude that E can be written as

E “ U

»

–

a
a

0

fi

fl VJ “ U

»

–

0 1 0
´1 0 0

0 0 1

fi

fl

»

–

0 ´a 0
a 0 0
0 0 0

fi

fl VJ (12.103)

“ W

»

–

»

–

0
0
a

fi

fl

fi

fl

ˆ

VJ “ W

»

–VJV

»

–

0
0
a

fi

fl

fi

fl

ˆ

VJ “ W pVJq´J

|pVJq´J|

»

–V

»

–

0
0
a

fi

fl

fi

fl

ˆ

(12.104)

“ psign p|W|qq2 W VJ sign p
ˇ

ˇVJ
ˇ

ˇq ra v3sˆ (12.105)

“ sign p|W|q W VJ sign p
ˇ

ˇVJ
ˇ

ˇq rsign p|W|q a v3sˆ (12.106)

“ R rsign p|U|q a v3sˆ (12.107)

for some non-negative a and the third column v3 of V. Parameter a is zero for E “ 0 and positive for
rank two matrices E. We introduced a new matrix W in Equation 12.104, which is the product of U and
a rotation round the z axis. We also used VJV “ I, and finally Equation 2.56. In Equation 12.105 we
used psign p|W|qq2 “ 1, V´J “ V for VJV “ I. Matrix R “ sign p|pWq|q W VJ sign p

ˇ

ˇVJ
ˇ

ˇq in Equation 12.107
is a rotation since sign p|pWq|q W as well as VJ sign p

ˇ

ˇVJ
ˇ

ˇq are both rotations. Finally, we see that
sign p|W|q “ sign p|U|q.

12.5.4 Computing a non-zero multiple of E

Let us now disscuss how to compute a non-zero multiple of matrix E from image matches.

12.5.4.1 Selecting equations

Every pair of image matches p~x1γ1
, ~x2γ2q provides a linear constratint on elements of E in the form of

Equation 12.71 and matricial Equation 12.77 gives nine polynomial constraints for elements of E.
We have already seen in Paragraph 12.2 that a non-zero multiple of E can be obtained from seven

absolutely accurate point correspondences using the constraint |E| “ 0. The solution was obtained by
solving a set of polynomial equations out of which seven were linear and the eighth one was a third
order polynomial.

Let us now see how to exploit Equation 12.77 in order to compute a non-zero multiple of E from as
few image matches as possible.

An idea might be to use Equations 12.77 instead of |E| “ 0. It would be motivated by the fact that
Equations 12.77 imply equation |E| “ 0 for real 3 ˆ 3 matrices E. Unfortunately, this implication does
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not hold true when we allow complex numbers in E1, which we have to do if we want to obtain E as a
solution to a polynomial system without using any additional constraints. We have to therefore use
|E| “ 0 as well.

The next question is whether we have to use all nine Equations 12.77. It can be shown similarly as
above that indeed none of the equations 12.77 is in the ideal [2] generated by the others2. Therefore,
we have to use all Equations 12.77 as well as |E| “ 0. Hence we have altogether ten polynomial
equations of order higher than one.

We have more equations than unknowns but they still do not fully determine E. We have to add
some more equations from image matches. To see how many equations we have to add, we evaluate
the Hilbert dimension [2] of the ideal generated by Equations 12.77 and |E| “ 0. We know [2] that a
system of polynomial equations has a finite number of solutions if and only if the Hilbert dimension
of the ideal generated by the system is zero.

1Equation |E| “ 0 can’t be generated from Equations 12.77 as their algebraic combination, i.e. |E| “ 0 is not in the ideal [2]
generated by Equations 12.77. It means that there might be some matrices E satisfying Equations 12.77 which do not
satisfy |E| “ 0. We know that such matrices can’t be real. The proof of the above claim can be obtained by the following
program in Maple [18]

>with(LinearAlgebra):
>with(Groebner):
>E:=ăăe11|e12|e13ą,ăe21|e22|e23ą,ăe31|e32|e33ąą:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM,Vector),list)):
>v:=indets(eq):
>mo:=tdeg(op(v)):
>G:=Basis(eq,mo):
>Reduce(Determinant(E),G,mo);
e11 e22 e33 - e11 e23 e32 + e21 e32 e13 - e21 e12 e33 + e31 e12 e23 - e31 e22 e13

which computes the Groebner basis G of the ideal generated by Equations 12.77 and verifies that the remainder on
division of |E| by G is non-zero [2].

2To show that none of the equations 12.77 is in the ideal generated by the others, we run the following test in
Maple.

>with(LinearAlgebra):
>with(Groebner):
>E:=ăăe11|e12|e13ą,ăe21|e22|e23ą,ăe31|e32|e33ąą:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM,Vector),list)):
>

>ReduceEqByEqn:=proc(eq,eqn)
local mo,G;
mo:=tdeg(op(indets(eqn)));
G:=Basis(eqn,mo);
Reduce(eq,G,mo);

end proc:
>

>for i from 1 to 9 do
ReduceEqByEqn(eq[i],eq[[op({$1..9}minus {i})]]);

end;

e113 ` e11 e122 ` e11 e132 ` e11 e212 ` 2 e21 e12 e22 ` 2 e21 e13 e23 ` e11 e312 ` 2 e31 e12 e32 ` 2 e31 e13 e33 ´ e11 e222 ´ e11 e322 ´ e11 e232 ´ e11 e332

e112 e21 ` 2 e11 e12 e22 ` 2 e11 e13 e23 ` e213 ` e21 e222 ` e21 e232 ` e21 e312 ` 2 e31 e22 e32 ` 2 e31 e23 e33 ´ e21 e122 ´ e21 e322 ´ e21 e132 ´ e21 e332

e112 e31 ` 2 e11 e12 e32 ` 2 e11 e13 e33 ` e212 e31 ` 2 e21 e22 e32 ` 2 e21 e23 e33 ` e313 ` e31 e322 ` e31 e332 ´ e31 e122 ´ e31 e222 ´ e31 e132 ´ e31 e232

e12 e112 ` e123 ` e12 e132 ` 2 e22 e11 e21 ` e12 e222 ` 2 e22 e13 e23 ` 2 e32 e11 e31 ` e12 e322 ` 2 e32 e13 e33 ´ e12 e212 ´ e12 e312 ´ e12 e232 ´ e12 e332

2 e12 e11 e21 ` e122 e22 ` 2 e12 e13 e23 ` e22 e212 ` e223 ` e22 e232 ` 2 e32 e21 e31 ` e22 e322 ` 2 e32 e23 e33 ´ e22 e112 ´ e22 e312 ´ e22 e132 ´ e22 e332

2 e12 e11 e31 ` e122 e32 ` 2 e12 e13 e33 ` 2 e22 e21 e31 ` e222 e32 ` 2 e22 e23 e33 ` e32 e312 ` e323 ` e32 e332 ´ e32 e112 ´ e32 e212 ´ e32 e132 ´ e32 e232

e13 e112 ` e13 e122 ` e133 ` 2 e23 e11 e21 ` 2 e23 e12 e22 ` e13 e232 ` 2 e33 e11 e31 ` 2 e33 e12 e32 ` e13 e332 ´ e13 e212 ´ e13 e312 ´ e13 e222 ´ e13 e322

2 e13 e11 e21 ` 2 e13 e12 e22 ` e132 e23 ` e23 e212 ` e23 e222 ` e233 ` 2 e33 e21 e31 ` 2 e33 e22 e32 ` e23 e332 ´ e23 e112 ´ e23 e312 ´ e23 e122 ´ e23 e322

2 e13 e11 e31 ` 2 e13 e12 e32 ` e132 e33 ` 2 e23 e21 e31 ` 2 e23 e22 e32 ` e232 e33 ` e33 e312 ` e33 e322 ` e333 ´ e33 e112 ´ e33 e212 ´ e33 e122 ´ e33 e222
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The Hilbert dimension of the ideal generated by Equations 12.77 and |E| “ 0 is equal to six3. An
extra linear equation reduces the Hilbert dimension by one [2]. Hence, five additional (independent)
linear equations from image matches will reduce the Hilbert dimension of the system to one.

Since all equations 12.71, 12.77 and |E| “ 0 are homogeneous, we can’t reduce the Hibert dimension
below one by adding more equations 12.77 from image matches. This reflects the fact that E is fixed
by image measurements only up to a non-zero scale.

To conclude, five independent linear equations 12.71 plus Equations 12.77 and |E| “ 0 fix E up to a
non-zero scale.

The scale of E has to be fixed in a different way. For instance, one often knows that some of the
elements of E can be set to one. By doing so, an extra independent linear equation is obtained and the
Hilbert dimension is reduced to zero. Alternatively, one can ask for }E}2 “ 1, which adds a second
order equation. That also reduces the Hilbert dimension to zero but doubles the number of solutions
for E.

12.5.4.2 Solving the equations

We will next describe one way how to solve equations

~xJ
i,2γ2
E ~xi,1γ1

“ 0,
`

2 E EJ ´ trace pEJEq I
˘

E “ 0, |E| “ 0, i “ 1, . . . , 5 (12.108)

We will present a solution based on [20], which is somewhat less efficient than [21, 22] but requires
only eigenvalue computation.

First, using Equation 2.95 from Paragraph 2.5, we can write

»

—

—

—

—

—

—

—

—

–

~xJ
1,1γ1

b ~xJ
1,2γ2

~xJ
2,1γ1

b ~xJ
2,2γ2

~xJ
3,1γ1

b ~xJ
3,2γ2

~xJ
4,1γ1

b ~xJ
4,2γ2

~xJ
5,1γ1

b ~xJ
5,2γ2

~aJ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

vpEq “

»

—

—

—

—

—

—

–

0
0
0
0
0
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(12.109)

to obtain a 6 ˆ 9 matrix of a system of linear equations on vpEq. Row ~aJ can be chosen randomly to fix
the scale of vpEq. There is only a negligible chance that it will be chosen in the orthogonal complement
of the span of the solutions to force the solutions be trivial. If so, it can be detected and a new ~aJ

generated.
Assuming that the rows of the matrix of the system are linearly independent, we obtain a 3-

dimensional affine space of solutions. After rearranging the particular solution, resp. the basis of the
solution of the associated homogeneous system, back to 3 ˆ 3 matrices G0, resp. G1, G2, G3, we will get
all solutions compatible with Equation 12.109 in the form

G “ G0 ` x G1 ` y G2 ` z G3 (12.110)

for x, y, z P R.

3The Hilber Dimension of the ideal is computed in Maple as follows

>with(LinearAlgebra):
>E:=ăăe11|e12|e13¿,ăe21|e22|e23ą,ăe31|e32|e33ąą:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM,Vector),list)):
>with(PolynomialIdeals):
>HilbertDimension(¡op(eq),Determinant(E)¿);

6
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Now, we can substitute G for E into the two remaining equations in 12.108. We get ten trird-order
polynomial equations in three unknowns and with 20 monomials. We can write it as

M m “ 0 (12.111)

where M is a constant 10 ˆ 20 matrix4 and

mJ “ rx3, y x2, y2x, y3, z x2, z y x, z y2, z2x, z2y, z3, x2, y x, y2, z x, z y, z2, x, y, z, 1s (12.112)

is a vector of 20 monomials.
Next, we rewrite the system 12.112 as

pz3C3 ` z2C2 ` z C1 ` C0q c “ 0 (12.113)

with

C “ z3C3 ` z2C2 ` z C1 ` C0 (12.114)

containing 10 monomials. Matrices C0, . . . , C4 are constant 10 ˆ 10 matrices

C0 “
“

m1 m2 m3 m4 m11 m12 m13 m17 m18 m20

‰

(12.115)

C1 “
“

0 0 0 0 m5 m6 m7 m14 m15 m19

‰

(12.116)

C2 “
“

0 0 0 0 0 0 0 m8 m9 m16

‰

(12.117)

C3 “
“

0 0 0 0 0 0 0 0 0 m10

‰

(12.118)

where mi are columns of M.
Since m contains all monomials in x, y, z up to degree three, we could have written similar equations

as Equation 12.113 with x and y.
Equation 12.113 is known as a Polynomial Eigenvealue Problem (PEP) [23] of degree three. The

strandard solution to such a problem is to relax it into a generelized eigenvalue problem of a larger
size as follows.

We can write z2c “ z pzcq and zc “ z pcq altogether with Equation 12.113 in a matrix form as

»

–

0 I 0

0 0 I

´C0 ´C1 ´C2

fi

fl

»

–

c

zc
z2c

fi

fl “ z

»

–

I 0 0

0 I 0

0 0 C3

fi

fl

»

–

c

zc
z2c

fi

fl (12.119)

A v “ z B v (12.120)

This is a Generelized Eigenvalue Problem (GEP) [23] of size 30 ˆ 30, which can be solved for z and
v. Values of x, y can be recovered from v as x “ c8{c10 and x “ c9{c10. It provides 30 solutions in
general.

4Matrix M can be obtained by the following Maple [18] program

>with(LinearAlgebra):
>G0:=ăăg011—g012—g013ą,ăg021—g022—g023ą,ăg031—g032—g033ąą:
>G1:=ăăg111—g112—g113ą,ăg121—g122—g123ą,ăg131—g132—g133ąą:
>G2:=ăăg211—g212—g213ą,ăg221—g222—g223ą,ăg231—g232—g233ąą:
>G3:=ăăg311—g312—g313ą,ăg321—g322—g323ą,ăg331—g332—g333ąą:
>trc:=E-¿simplify((2*E.Transpose(E)-Trace(Transpose(E).E)*IdentityMatrix(3,3)).E):
>eq:=[op(convert(trc(G),listlist)),Determinant(G)]:
>mo:=tdeg(x,y,z);
>m:=PolyVarMonomials(eq,mo);

m :“ rx3 , y x2 , y2x, y3 , z x2 , z y x, z y2 , z2x, z2 y, z3 , x2 , y x, y2 , z x, z y, z2 , x, y, z, 1s

>M:=PolyCoeffMatrix(eq,m,mo):
>M[1,1];

2 g122 g112 g121 ` 2 g133 g113 g131 ´ g1232 g111 ´ g1222 g111 ` 2 g132 g112 g131 ´ g1322 g111 ` g1312 g111 ` g1122 g111 ` g1113 ` 2 g123 g113 g121 ´ g1332 g111 `

g1212 g111 ` g1132 g111
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When C0 is regular, we can pass to a standard eigenvalue problem for a non-zero z by inverting A
and using w “ 1{z

»

–

´C´1
0
C1 ´C´1

0
C2 ´C´1

0
C3

I O 0

0 I 0

fi

fl

»

–

w2c

wc
c

fi

fl “ w

»

–

w2c

wc
c

fi

fl (12.121)
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[8] Gilbert Strang. Introduction to Linear Algebra. Wellesley Cambridge, 3rd edition, 2003.

[9] Seymour Lipschutz. 3,000 Solved Problems in Linear Algebra. McGraw-Hill, 1st edition, 1989.

[10] Jim Hefferon. Linear Algebra. Virginia Commonwealth University Mathematics, 2009.

[11] Michael Artin. Algebra. Prentice Hall, Upper Saddle River, NJ 07458, USA, 1991.

[12] Yoshiaki Ueno and Kazuhisa Maehara. An elementary proof of the generalized Laplace expansion formula.
Tokyo Polytechnic University Bulletin, 25(1):61–63, 2003. http://www.t-kougei.ac.jp/research/bulletin e/.

[13] Cyrus Colton MacDuffee. The Theory of Matrices. Dover Publications Inc., 2004.
http://books.google.cz/books?id=8hQG7ByP53oC.

[14] Saunders MacLane and Garret Birkhoff. Algebra. Chelsea Pub. Co., 3rd edition, 1988.

[15] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge, 2nd
edition, 2003.

[16] J. A. Grunert. Das pothenotische problem in erweiterter gestalt nebst über seine anwendungen in der
geodäsie. Grunerts Archiv für Mathematik und Physik, 1:238–248, 1841.

[17] David Cox, John Little, and Donald O’Shea. Using Algebraic Geometry. Springer, 1998.

[18] Ltd. Cybernet Systems Co. Maple. http://www.maplesoft.com/products/maple/.

[19] M. Hazewinkel, editor. Encyclopaedia of Mathematics. Kluwer, Springer Netherlands, 2002.

[20] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Polynomial eigenvalue solutions to minimal prob-
lems in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.

[21] D. Nistér. An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(6):756–770, June 2004.

[22] H. Stewenius, C. Engels, and D. Nistér. Recent developments on direct relative orientation. ISPRS J. of
Photogrammetry and Remote Sensing, 60:284–294, 2006.

[23] Z. Bai, J. Demmel, J. Dongorra, A. Ruhe, and H. van der Vorst. Templates for the Solution of Algebraic
Eigenvalue Problems. SIAM, Philadelphia, 2000.

118



Index

rns, 5
determinat, 5
sign, 6
cycle, 5
determinant, 7
inversion, 7
monotonic, 8
permutation, 5
transposition, 6

affine coordinate system, 23
affine function, 16
affine space, 21
axioms of linear space, 19
axioms of affine space, 22

basis, 19
bound vector, 17

camera pose, 40
camera calibration matrix, 40
camera cartesian coordinate system, 40
camera calibration, 40
camera coordinate system, 33
camera projection matrix, 43
coordinate linear space, 2
coordinates, 19
cross product, 8

dual basis, 11
dual space, 11

epipolar plane, 103
epipolar geometry, 103
epipolar line, 103
epipole, 103
essential matrix, 104

focal length, 40
free vector, 20
Frobenius norm, 108
fundamental matrix, 104

geometric scalars, 17
geometric vector, 17

homogeneous coordinates, 86
homogeneous coordinates of a line, 86

homogeneous coordinates of a point, 86
homography, 56
horizon, 91

ideal line, 85
ideal plane, 94
image calibration matrix, 43
image plane, 33
image projection matrix, 36

join, 87

Kronecker product, 14

line at infinity, 85
linear function, 16
linear space, 19

marked ruler, 16
meet, 88

omnidirectional image, 61
origin of affine coordinate system, 23

panoramic image, 61
partition, 20
perspective camera, 33
point at infinity, 82
position vector, 23
principal plane, 33
principal point, 42
projection center, 33
projective space, 81

real projective plane
affine point, 82, 83
algebraic model, 83
geometrical model, 82
ideal point, 82, 83
line, 84
point, 82

spherical image, 61
standard basis, 2

three-dimensional real projective space, 93

vanishing point, 91
vanishing line, 91
vector product, 8
vector product, 9
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world coordinate system, 33
world unit length, 47

zero bound vector, 17

END
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