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1 Notation

(A0, ®,0)
(V,®m,0)
AZ

A3

]PZ

[51, b, 53]

HERT @ @
i

<y

X x i
[
%]

the empty set [1]

the set of all subsets of set U [1]
Cartesian product of sets U and V [1]
whole numbers [1]

non-negative Z [2] (i.e. 0,1,2,...)
rational numbers [3]]

real numbers [3]]

imaginary unit [3]

space of geometric scalars

affine space (space of geometric vectors)
space of geometric vectors bound to point o
space of free vectors

real affine plane

three-dimensional real affine space
real projective plane
three-dimensional real projective space
vector

matrix

ij element of A

transpose of A

conjugate transpose of A

determinant of A

identity matrix

rotation matrix

Kronecker product of matrices

basis (an ordered triple of independent generator vectors)
the dual basis to basis

column matrix of coordinates of ¥ w.r.t. the basis
Euclidean scalar product of ¥ and ¥/ (¥ - i = fg yginan
orthonormal basis f3)

cross (vector) product of ¥and i/

the matrix such that [X], = ¥ x

Euclidean norm of ¥ (|¥]| = VX X)

orthogonal vectors mutually perpendicular vectors

equi-orthogonal vectors ... orthogonal vectors of equal length

orthonormal vectors unit orthogonal vectors

orthogonal matrix ... matrix with non-zero equi-orthogonal columns and rows
orthonormal matrix matrix with orthonormal columns and rows

Pol ... point P is incident to line /

PvQ ... line(s) incident to points P and Q

kAl ... point(s) incident to lines k and [



2 Linear algebra

We rely on linear algebra [4,5,16,(7,18,9]. We recommend excellent text books [7, 4] for acquiring basic
as well as more advanced elements of the topic. Monograph [5] provides a number of examples and
applications and provides a link to numerical and computational aspects of linear algebra. We will
next review the most crucial topics needed in this text.

2.1 Change of coordinates induced by the change of basis

Let us discuss the relationship between the coordinates of a vector in a linear space, which is induced
by passing from one basis to another. We shall derive the relationship between the coordinates in a
three-dimensional linear space over real numbers, which is the most important when modeling the
geometry around us. The formulas for all other n-dimensional spaces are obtained by passing from
3ton.

§1 Coordinates Let us consider an ordered basis f = [51 by 53] of a three-dimensional vector

space V? over scalars R. A vector ¥ € V° is uniquely expressed as a linear combination of basic vectors
N = - >

of V3 by its coordinates x,y,z € R, i.e. v = x by + y by + zb3, and can be represented as an ordered

. . . S T
triple of coordinates, i.e.as Ug = [x y z] .
We see that an ordered triple of scalars can be understood as a triple of coordinates of a vector

. . . . T.

in V3 w.rt. a basis of V3. However, at the same time, the set of ordered triples [x y z] is
. . . . . T T

also a three-dimensional coordinate linear space R® over R with [x1 y1 z1] + [x 1 2] =

[x1+% yi+y z1+z] ands[x y z] = [sx sy sz] forse R Moreover, the ordered
triple of the following three particular coordinate vectors

1 0 0
a=110 1 0 (2.1)
0 0 1

) . S T,
forms an ordered basis of R3, the standard basis, and therefore a vector 7 = [x y z] is represented

byd, =[x y z] " w.rt. the standard basis in IR3. It is noticeable that the vector #and the coordinate
vector ¥, of its coordinates w.r.t. the standard basis of R3, are identical.

§2 Two bases Having two ordered bases § = [51 by 53] and g’ = [5{ E}é 55/5] leads to express-

ing one vector X in two ways as X = x b1 + y by +z bz and X = x'b] + y' b} + 2’ b}. The vectors of the
basis f can also be expressed in the basis f’ using their coordinates. Let us introduce

- >, >, >,
by = an bl + an b2 + aszq b3
b = ap b{ + dax bé + asp bé (2.2)
by = a3 b{ + a3 bé + a33 bé
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§3 Change of coordinates We will next use the above equations to relate the coordinates of ¥ w.r.t.
the basis f to the coordinates of X w.r.t. the basis f’

X x by + y by +7zbs

= x(an I;{ + ap l;é + a3 Eé) + v (ar2 l;{ +ax l;é + as l;?/)) + z (a13 l;{ + a3 I;é + a3 53/))

= (anx+any +a132)5{ + (a1 x4+ any + a3 z) Eé + (@31 X +azn y +az32) l;é

= x 1:7{ + v E)é +7 5§ (2.3)

Since coordinates are unique, we get

I = anx+apy+agsz (2.4)
I = A X +ax»y + a3z (2.5)
7 = anx+any+axpz (2.6)

Coordinate vectors X and ¥y are thus related by the following matrix multiplication

X a1 di2 a13 X
/

y = a1 Az a3 Y (2.7)
/

z asz1 asp 4ass z

which we concisely write as
f‘g/ = A 3?‘3 (2.8)

> > o
The columns of matrix A can be viewed as vectors of coordinates of basic vectors, by, b, bz of § in the
basis p’

L
A = blﬁ/ bzﬁ/ b3ﬁ/ (29)

and the matrix multiplication can be interpreted as a linear combination of the columns of A by
coordinates of ¥ w.r.t. 8

fﬁ/ = xblﬁ, + ybzﬁ, + Zbgﬁ, (2.10)

Matrix A plays such an important role here that it deserves its own name. Matrix A is very often called
the change of basis matrix from basis p to ' or the transition matrix from basis p to basis ' [5},[10] since it
can be used to pass from coordinates w.r.t. f to coordinates w.r.t. f’ by Equation

However, literature [6, [11] calls A the change of basis matrix from basis p’ to B, i.e. it (seemingly
illogically) swaps the bases. This choice is motivated by the fact that A relates vectors of § and vectors
of g’ by Equation2.2]as

[51 l_))z 53] = [an E{ + an; l_y)é + azq E)é ap E){ + app EZ + asp Eé

a13 Z_)){ + an3 EZ + as3 Eé] (2.11)
5 55 LS a1 a2 413
[bl by b3] = [b{ b, bé] ax1 axp 423 (2.12)

asz1 asy 4ass

and therefore giving

z?g] A (2.13)
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or equivalently
5 B By = |6 B Bs]a! (2.14)

where the multiplication of a row of column vectors by a matrix from the right in Equation has
the meaning given by Equation 2.1T] above. Yet another variation of the naming appeared in [8, 9]
where A~! was named the change of basis matrix from basis f to f'.

We have to conclude that the meaning associated with the change of basis matrix varies in the literature
and hence we will avoid this confusing name and talk about A as about the matrix transforming
coordinates of a vector from basis p to basis f’.

There is the following interesting variation of Equation[2.13]

b! by
liﬁ = AT liz (2.15)
b! bs

3

where the basic vectors of f and p’ are understood as elements of column vectors. For instance, vector
5
b; is obtained as

b = aj, by +aly by +ajy by (2.16)

where [a],, a7,, a],] is the first row of AT,

*
117

§4 Example We demonstrate the relationship between vectors and bases on a concrete example.
Consider two bases a and f represented by coordinate vectors, which we write into matrices

1 10
a = [ & B|=|011 (2.17)
0 01
1 11
B =[5 B B]=|00 1], (2.18)
011
and a vector ¥ with coordinates w.r.t. the basis o
1
= |1 (2.19)
1

We see that basic vectors of @ can be obtained as the following linear combinations of basic vectors of

p

1/?1 = +1l_7)1+0l_7)2+0l_7)3 (2.20)
B = +1b—1by+1bs (2.21)
gy = —1by+0by+1bs (2.22)
or equivalently
1 1 -1
(@ & @] = |6 b 8|0 -1 0| =[5 B B|a (2.23)
0o 1 1
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Coordinates of ¥ w.r.t. f are hence obtained as

1 1 -1
J?,; = AX,, A=1]0 -1 O (2.24)
0 1 1
1 1 1 -1 1
-1 = 0 -1 0 1 (2.25)
2 0 1 1 1
We see that
a = PA (2.26)
1 10 1 1 1 1 1 -1
011 = 0 01 0 -1 0 (2.27)
0 01 011 0 1 1

The following questions arises: When are the coordinates of a vector ¥ (Equation 2.8) and the basic
vectors themselves (Equation 2.15) transformed in the same way? In other words, when A = A= 7. We
shall give the answer to this question later in paragraph 2.4l

2.2 Determinant

Determinat [4] of a matrix A, denoted by |A|, is a very interesting and useful concept. It can be, for
instance, used to check the linear independence of a set of vectors or to define an orientation of the
space.

2.2.1 Permutations

A permutation [4] 7t on the set [n]= {1,...,n} of integers is a one-to-one function from [n] onto [n].
The identity permutation will be denoted by €, i.e. €(i) = i foralli € [n] .

§1 Composition of permutations Let ¢ and 7 be two permutations on [1]. Then, their composi-
tion, i.e. (o), is also a permutation on [r] since a composition of two one-to-one onto functions is a
one-to-one onto function. We see that if (o (i)) = nt(o(j)), then o(i) = o(j) and therefore i = j since
and ¢ are one-to-one functions. On the other hand, if i = j, then n(0(i)) = ®(o(j)). To simplify the
notation when composing a large number of permutations, we will sometimes write 7 ¢ for the com-
position 7(¢) and 7% for the sequence of k compositions of . For instance nt(r(i)) = nn(i) = 72 (i).
Let us not forget that m o # o 7 in general.

Let us next show that every permutation can be written as a composition of some simple permu-
tations. We first define particularly simple permutations.

§2 Cycles Take i € [n] and look at the values in the sequence [i, 7t(i), 72(i), .. .]. Since the range of
7 has n values, there must be 1 < j < m < n such that 7/(i) = 7" (i). Hence € = (r/(i)) ™' (7" (i)) =
n"~i(i). Let k be the smallest number among all such numbers m — j. Then, the sequence c(i) =
[i, (i), ..., 71(i)] has pairwise distinct elements. We can now define a new permutation Ti(i) as
follows. If j € c(i), then ;) (j) = m(j) and if j € [n] but j ¢ ¢, then 7. ;y(j) = j. Now, if k > 2,
then permutation 7 ;) is called the cycle of 7 generated by i. We could at this point also include the
permutations for k = 1, which are equal to the identity €, but then we would loose the nice property of
unique decomposition of permutations, which are not identities, into a composition of their disjoint
cycles. Notice that when j € c(i), then 7.y = m.(;), i.e. although sequences c(i) and c(j) are not the
same, functions 7t.(;) and 7t.(;) are equal. We say that 7t is a cycle of 7, or in short a cycle, when 7,
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is a cycle of  generated by some i € [n]. A cycle 7. of length k can be represented as a sequence of
numbers ¢ = [i1,1,...,i], such that i jmodk +1) = 7c(ij). To be economical, this representation does
not list the fixed elements of 7., i.e. those for which 7 (i) = i.

§3 Transpositions A shortest cycle, which is of length two, is called a transposition.

It is important to notice that every cycle can be written as a composition of transpositions. All
shortest cycles are transpositions. Consider a cycle of length k + 1 represented by the sequence
Ck+1 = [i1, 2, ..., 1k, ix+1] and the cycle ¢, = [iy, 12, .. ., ix| of length k and the transposition ¢ = [iy, ix41]-
We see that i, = 7;(7, ). Thus, by the principle of mathematical induction [1]], every cycle can be
written as a composition of transpositions.

There are many ways how to write a cycle as a composition of transpositions. A particularly useful
way is as follows. All shortest cycles are transpositions, which can be represented by [i1, ] for some
i1,ip € [n]. Consider a cycle of length k + 1 represented by the sequence cx.1 = [i1,d2, ..., i, ix+1] and
the cycle ¢ = [i1,12,...,i] of length k and the transposition t = [i, ix41]. We see that 7., , = 7o, ().
Thus, by the principle of mathematical induction [1] a cycle 7;, ;... ;,] can be written as a composition

of transpositions 7 = Tiy,in] T ST i, i for every k.

1112,/ ] iiz] "[iz i3] * f—2/0k—1]
§4 Decomposition of a permutation into disjoint cycles Let us now show that every permuta-
tion 7, which is not the identity, can be uniquely written as a composition of cycles of = and thus
also as a composition of permutations of 7. We introduce the equivalence relation [1] = on [n] by
i =n j when 7;) = 7(j)- This equivalence relation partitions [1]] [1z] uniquely into 1 < m < n disjoint
equivalence classes. We distinguish two types of the classes. There are classes of the size equal to
one, which correspond to €, and there are classes of the size larger than one, which are cycles. Let
C be the set of k < m classes c;, i = 1...,k corresponding to cycles of the size |c;| > 2, which are
uniquely represented by increasing sequences c; of integres. The set C is empty when 7 is the identity.

Otherwise C is non-empty and we claim that
TU= T, Tley -~ Tl (2.28)

To prove this, we have to show that the function on the left is equal to the function on the right. First,
j € [n] is exactly in one of the equivalence classes. If it is in the equivalence class corresponding to
€, then it is in no ¢; and therefore it is mapped by all 7, to itself, i.e. 7. (j) = jforall 1 <i < k.
Therefore, m., mt¢, - - 7o, (j) = j = m(j). If jisin a ¢;, then 7t.,(j) = 7(j) and 7., (j) = j for all m # i
Thus, 7t T, - - T (J) = 71e;(j) = 7(j)- Notice that since ¢; N ¢; = &, we have here Tl Tle; = Tie, Tl for
all 1 < i,j < k and thus all 7, commute. We see that every permutation © # € can be written as a
unique composition of disjoint cycles. The term “disjoint” is related to the fact that the sequences
representing the cycles are disjoint.

§5 Decomposition of a permutation into transpositions Every permutation, which is not the
identity, can be written as a composition of cycles. Every cycle can be written as a composition of
transpositions. Therefore, every permutation, which is not the identity, can be written as a composi-
tion of transpositions. Since € = 77 for every transposition, € can also be written as a composition
of transpositions. Hence, we can say that any permutation can be written as a composition of
transpositions.

There are many ways how to compose a cycle from transpositions and there are many ways how
to write € using transpositions, and therefore the decomposition of a permutation into transpositions
is not unique.

§6 Sign of a permutation We will now introduce another important concept related to permuta-
tions. Sign, sgn(m), of a permutation 7t is defined as

sgn(m) = (—1)N™ (2.29)
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where N(7t) is equal to the number of inversions in 7, i.e. the number of pairs [i, j] such that i, j € [n],
i < jand n(i) > 7(j).

§7 Hierarchy of permutations Consider a partition [1] of [1] into two subsets I, | of [n], i.e.
[n=IuJandIn ] = . Let|l| =kand |]| = m. Thusk + m = n.

Let us next study the set Sy, of all permutations on [n] and its relation to the sets S; of all
permutations of set I and S; of all permutations of set J.

Let us use the following notation 7(I) = {n(i) |i € I} for a permutation 7 and a set of integers I.
We introduce the equivalence relation ~ on Sp,) by © ~ o for 7,0 € S,;) when t(I) = o(I). This
equivalence relation partitions Sj,;j into the set E of (disjoint) equivalence classes.

As designed a permutation 7 € I is a composition of three permutations, = r/(/(n/)), where
n! permutes I, 7/ permutes | and 7!/ maps I onto I;; and ] onto Jj such that for all i,j € I 7/ (i) <
l(j) & i< jandforalli je J 7 (i) < 7 (j).

Let us see that |E| = (}). A member IT of E contains all one-to-one functions from [11] onto [1] that
map I onto a fixed set Iy of size k chosen out of [n]. There are (}) sets Iy of size k. We further claim
that [T1| = k! (n — k)!. An equivalence class IT contains all one-to-one functions that map I onto Iy and
J onto Ji1 = [n]\Ir1. There are k! (n — k)! such functions. Thus, all equivalence classes in E contain the
same number k! (n — k)! of functions and we see that (}) k! (n — k)! = n!, which is the size of S{n)-

exchanges some elements between I and |. Consider that every permutation 7t can be decomposed
into a composition of disjoint cycles

TCU

Nl nl) (2.30)

T = (n{né e né)(nlllng e
for some integers p, g, v = 0 and cycles ch, i=1,...,pthatkeep | fixed, cycles n{ ,i=1,...,qthatkeep
I fixed, and cycles nf] ,1=1,...,r that map at least one element from I to | and at least one element
from | to I.

Now, take a cycle 7!/ which exchanges some elements between I and J. We claim that the number
of exchanges between I and | induced by cycle 7V is always even. Let us write i/ as a sequence of
k transpositions 7t// = Tlivia) Tlinis] * ** Tlir_vi]- Let us start with a singleton set I; = {i}. Then, there are
exactly two transpositions 7[;_1 ;, T[;,i+1] from | to I and back. Now, let there be I; with k exchanges
and add one more element j to I to get I 1. Then, three possibilities may arrise: (1) j—1and j+ 1 are
in I and then two exchanges are removed, (2) exactly one of j — 1, j 4+ 1 is in I; and then on exchage
is added and one removed, i.e. the number of echanges remains the same, (3) noneof j —1, j + 1is
in [ and then two exhanges are added. In all cases, the number of exchanges is changed by an even
number. Since the number of exchanges in I; is even, the number of exchanges in I is even for all
integers k by the principle of mathematical induction [1].

ny(i) = m(i) for all i € I and m7(i) = i fori € | and mj(i) = (i) foralli € [ and 7tj(i) = i fori e I.
Functions 717, m; commute since I and | are disjoint. Clearly, we see that sgn(m) = sgn(m7) sgn(my).

2.2.2 Determinant

Let S, be the set of all permutations on [1] and A be an n x n matrix. Then, determinant |A| of A is
defined by the formula

Al = Z sgn(70) A1 (1) A2 n(2) * * Anr(n) (2.31)

neS,

Notice that for every m € S, and for j € [n] there is exactly one i € [1] such that j = 7t(i). Hence

(L] [2,7@),.... [nnm)]} = {[n(1),1], [77}(2),2],..., [n (1), 1]} (2.32)

and since the multiplication of elements of A is commutative, we get

Al = Z sgn(1) Ar—1(1),1 An-1(2) 2 A1 () (2.33)

neS,
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Next, let 0 € S, then {no|VmeS,} = S, since for every 7 € S, there is © = 101 € S, and
therefore t = o € {no | Vr € S,,}. The other incluson is obvious. An analogical argument shows that
{om|VreS,} =S, too. Thus

2 sgn(ana‘l) Al,anafl(l) A2,ana*1(2) e An,anafl(n) (2~34)
TESy,

= D sgn(0)sgn(m) sgn(o™ ") Agm1 (1) mo-1(1) Ao=1(2)mo-1(2) *** A1 () o1 )
TES,

= Z sgn(70) Ay1(1), 701 (1) Ar1(2)mo—1(2) * " Ao () o1 (n) (2.35)
TEeS,

= Z sgn(7) At (1) A2 n(2) * * * Aur(n) = |Al (2.36)
neS,

Let us next define a submatrix of A and find its determinant. Consider k < n and two one-to-one
monotonic functions p,v: [k] — [n],i < j = p(i) < p(j), v(i) < v(j). We define k x k submatrix A" of
an n x n matrix A by

B = Roya() for i je k] (2.37)
We get the determinant of A" as follows
AP = ) sgn(m APV AP v ) -AZ’;(k) (2.38)
TIESk !
- Z sgn(m w(r(1) Bp@)v(n(2) " Bp(k) v(n (k) (2.39)
neSy

Let us next split the rows of the matrix A into two groups of k and m rows and find the relationship
between |A| and the determinants of certain k x k and m x m submatrices of A. Take 1 < k,m < n such
that k + m = n and define a one-to-one function p: [m] — [k+ 1,n] = {k+1,...,n}, by p(i) = k +i.
Next, let QO < exp [n] be the set of all subsets of [1] of size k. Let w € Q. Then, there is exactly one
one-to-one monotonic function ¢, from [k] onto w since [k] and w are finite sets of integers of the
same size. Let w = [n]\w. Then, there is exactly one one-to-one monotonic function ¢z from [k + 1, 1]
onto w. Let further there be iy € Sy and 7, € S;,. With the notation introduced above, we are getting
a version of the generalized Laplace expansion of the determinant [12,[13]

M= TT  ssnleali) - pa(i) |14 [aooe) (2.40)

weQ \ ie[k],je[k+1,n]

2.3 Vector product

Let us look at an interesting mapping from R® x R? to R3, the vector product in R® [7] (which it also
often called the cross product [5]). Vector product has interesting geometrical properties but we shall
motivate it by its connection to systems of linear equations.

§1 Vector product Assume two hnearly independent coordinate vectors
=[x x X3] andy=[y1 w2 yg] in R®. The following system of linear equations

[’“ 2 xﬂZ:O (2.41)
i Y2 ys

has a one-dimensional subspace V of solutions in R>. The solutions can be written as multiples of
one non-zero vector w0, the basis of V, i.e.

Z=1A@, AeR (2.42)
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Let us see how we can construct @ in a convenient way from vectors ¥, /.
Consider determinants of two matrices constructed from the matrix of the system by adjoining
its first, resp. second, row to the matrix of the system (2.41)

X1 X2 X3 X1 X2 X3
i y2 Y3 || =0 i 2 y3||=0 (2.43)
X1 X2 X3 Vi Y2 Y3
which gives
x1(x2y3 —x3Y2) +x2(x3y1 —x1y3) +x3(x1y2 —x2y1) = O (2.44)
yi(xoys—x3y2) +y2(x3y1 —x1y3) +y3 (x1y2 —x2y1) = 0 (2.45)

and can be rewritten as

X2Y3 —X3lY2
[xl 2 xﬂ —x zs +x3 zl -0 (2.46)
ooy ye X1Y2 —X2 Y1
We see that vector
X2Y3 —X3Y2
W= | —x1y3+x31 (247)
X1Y2 — X2 Y1

solves Equation 2411

Notice that elements of @ are the three two by two minors of the matrix of the system (2.41). The
rank of the matrix is two, which means that at least one of the minors is non-zero, and hence @ is also
non-zero. We see that @ is a basic vector of V. Formula[2.47lis known as the vector product in R® and
@ is also often denoted by ¥ x /.

§2 Vector product under the change of basis Let us next study the behavior of the vector

product under the change of basis in R3. Let us have two bases 8, 8’ in R* and two vectors %, i with

coordinates X5 = [x1 X2 X3]T, s=[n v yg]T and ¥ = [x] X, xé]T, =1y, v, yé]T.

We introduce

L Xo Y3 — X312 } ; xéyé — xéyé
T x g = | —x1ys+ X311 Xpr X Ypr = | —XY3 + x50, (2.48)
X1Y2 — X211 XYy — X3

To find the relationship between ¥ x /s and X3/ x 73/, we will use the following fact. For every three

vectors ¥ = [x1 X2 X3]T,]7= lvi w2 yg]T,Zz [z1 2 23]T in R3 there holds

X2 Y3 — X3 Y2 X1 X2 X3 X7
ZT(J? x i) = [Zl Z2 23] —xiyptxy | =y w2 will=|]|7" (2.49)
X1Y2 —X2 1 Z1 22 Z3 Z"
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We can write

— BN N — [ 2T ST T
L 100 (x> ) i i i
Xgr X Ypr = [010] (Jiﬁ/ X .Zﬁ/) = yﬁ, yﬁ, yﬁ,
[001] (% x ¥pr) 100 1010 001
[ [ %TAT Yy #AT ][] T
= gjﬁTAT gjﬁTAT ygAT
| 100 010 001 |||
rr 2T 2T 2T T
= yﬁ A yﬁ A yﬁ A
| [|[100] AT [010] A°T [001] A°T
[[100] A‘T(i’ﬁ x ;Zﬁ) .
= |[010] A_I(Jiﬁ X zﬁ) AT
| [001]A~ (X < ¥p)
AT
—‘A_T‘ (X/g X y‘g) (250)

§3 Vector product as a linear mapping It is interesting to see that for all ¥, i/ € R there holds

X2 Y3 — X3 Y2 0 —x3 x| |wn
3? X g) = | —X1Y3 + X3 1| = X3 0 —X1 Y2 (251)
X1Y2 — X2 1 —X2  x 0 |y
and thus we can introduce matrix
0 —X3 X2
[JE)]X = X3 0 —X1 (2.52)
—X2 X1 0
and write
Xxy=I[x],¥ (2.53)
Notice also that [?]. = — [¥], and therefore
@xN' =(Fe ' = -7 7 (2.54)

The result of [§2| can also be written in the formalism of this paragraph. We can write for every
X,jeR3

> - - - AiT - - AiT - -
(M%), ATs = (A%p) x (ATp) = ] B X 00 = 7 (5], s (2.55)

AN (2.56)

2.4 Dual space and dual basis

Let us start with a three-dimensional linear space L over scalars S and consider the set L* of all linear
functions f: L — S, i.e. the functions on L for which the following holds true

f@aZ+by) =af(®)+bf(y (2.57)

10
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foralla,be Sand all ¥, i/ € L.
Let us next define the addition +*: L* x L* — L* of linear functions f, ¢ € L* and the multiplication
*: S x L* — L* of a linear function f € L* by a scalar a € S such that

(f+ 9 = f(@)+g (2.58)
@) = af® (2.59)

holds true for all a € S and for all ¥ € L. One can verify that (L*, +*,-*) over (S, +, ) is itself a linear
space [4},[7,16]. It makes therefore a good sense to use arrows above symbols for linear functions, e.g.

f_)instead of f.
The linear space L* is derived from, and naturally connected to, the linear space L and hence
deserves a special name. Linear space L* is called [4] the dual (linear) space to L.

Now, consider a basis f = [51, 52, 53] of L. We will construct a basis * of L*, in a certain natural and
useful way. Let us take three linear functions b;, b;, b; € L* such that

bi(br) =1 5;(5) =0 b}(E3) =0
B(b1) =0 By(b) =1 B(B) = 0 (2.60)
B(6) =0 B(B2) =0 B(Bs) =1

where 0 and 1 are the zero and the unit element of S, respectively. First of all, one has to verify [4] that
such an assignment is possible with linear functions over L. Secondly one can show [4] that functions

5’1*, l;é , I;g are determined by this assignment uniquely on all vectors of L. Finally, one can observe [4]

that the triple * = [I;I, l;;, 5;] forms an (ordered) basis of L. The basis B* is called the dual basis of L*,
i.e. it is the basis of L*, which is related in a special (dual) way to the basis 5 of L.

§1 Evaluating linear functions Consider a vector ¥ € L with coordinates X3 = [x1,x2,x3]" w.rt.
a basis = [51, l;z, 53] and a linear function /i € L* with coordinates i_z),g* = [y, h, h3] " wrt. the dual
basis * = [I;;, 5;, 5;] The value ﬁ(f) € S is obtained from the coordinates X and i_z)ﬁ* as

P_l)(f) = ﬁ(xl 51 + X2 52 + X3 53) (2.61)
= (hl B)I + hz l_;; + h3 l;)g)(aq 51 + X2 I;z + X3 53) (2.62)
= B () x + B (B2) xo + I B (B3) xs

+hy 55(51) x1 + hy gz (52) x2 + hy b; (53) X3 (2.63)
+ha 5 (By) x1 + 3 B3(B2) x2 + s B (B3) x3
b)) Bk Bi(B) ] [
= [l ]| B30 Bi(b) (k) | | %2 (2.64)
| D5(b1) Di(b2) D3(bs) | L3
(1 0 0] [x
= [h1 hz ]’13] 010 X2 (265)
(0 0 1|
X1
= [hi,ha,h3] | x (2.66)
X3
= g% (2.67)

The value of /i € L* on % ¢ L is obtained by multiplying X by the transpose of ﬁlg* from the left.

11
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Notice that the middle matrix on the right in Equation evaluates into the identity. This is the
consequence of using the pair of a basis and its dual basis. The formula2.67|can be generalized to the
situation when bases are not dual by evaluating the middle matrix accordingly. In general

R(E) = Iy [Bi(b)] % (2.68)

where matrix [EZ(E ;)] is constructed from the respective bases 8, f of L and L*.

§2 Changing the basis in a linear space and in its dual Let us now look at what happens with
coordinates of vectors of L* when passing from the dual basis f* to the dual basis f’* induced by
passing from a basis f8 to a basis 8’ in L. Consider vector ¥ € L and a linear function I e L* and their
coordinates X, X3/ and ﬁﬁ*, Eﬁ/* w.r.t. the respective bases. Introduce further matrix A transforming

coordinates of vectors in L as
fﬁ/ = Ay?ﬁ (2.69)

when passing from § to f’.
Basis * is the dual basis to f and basis ’* is the dual basis to g’ and therefore

2T S bxd =T N
hﬁ* Xg = h(xX) = hﬁ,* Y (2.70)
forall ¥ e L and all € L*. Hence o S
hﬁ* fﬁ = hﬁ,* Ay?ﬁ (2.71)
for all ¥ € L and therefore o
hﬁ = hﬁ,* A (2.72)
or equivalently
ige = AT Iige (2.73)
Let us now see what is the meaning of the rows of matrix A. It becomes clear from Equationm that
the columns of matrix AT can be viewed as vectors of coordinates of basic vectors of B’ [b{*, bé*, b! *]

in the basis * = [b;, b;, b*] and therefore

b{g*
vl @74)
bég*
which means that the rows of A are coordinates of the dual basis of the primed dual space in the dual
basis of the non-primed dual space.
Finally notice that we can also write
]/_l)l;/* = AiT}_l)ﬁ* (2.75)

which is formally identical with Equation

§3 When do coordinates transform the same way in a basis and in its dual basis It is natural
to ask when it happens that the coordinates of linear functions in L* w.r.t. the dual basis * transform
the same way as the coordinates of vectors of L w.r.t. the original basis §, i.e.

Ty = A% (2.76)
lige = Al (2.77)

12
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forall¥e Land allh e L*. Considering Equation[2.75] we get

A = AT (2.78)
ATA = I (2.79)

Notice that this is, for instance, satisfied when A is a rotation [5]. In such a case, one often does not
anymore distinguish between vectors of L and L* because they behave the same way and it is hence
possible to represent linear functions from L* by vectors of L.

§4 Coordinates of the basis dual to a general basis We denote the standard basis in R® by
o and its dual (standard) basis in R®" by ¢*. Now, we can further establish another basis y =
[c1 & &]inR®anditsdualbasisy* =[] ¢ ¢3]in R3". We would like to find the coordinates
yi.=1[¢1,. 5. C4.]of vectors of y* w.rt. 0* as a function of coordinates y, = [C1s C2s T30 | Of
vectors of y w.r.t. 0.

Considering Equations and [2.67] we are getting

T lifi=j L
Clo+Cio = { 0ifi # fori,j=1,2,3 (2.80)
which can be rewritten in a matrix form as
100 Ol
01 0= 52*; [C_)la C_)ZG 83(7] = V;*T Vo (2-81)
0 0 1 53*;
and therefore
Vor =Va' (2.82)

§5 Remark on higher dimensions We have introduced the dual space and the dual basis in a
three-dimensional linear space. The definition of the dual space is exactly the same for any linear
space. The definition of the dual basis is the same for all finite-dimensional linear spaces [4]. For any
n-dimensional linear space L and its basis 3, we get the corresponding n-dimensional dual space L*
with the dual basis *.

2.5 Operations with matrices & tensors

Matrices are a powerful tool which can be used in many ways. Here we review a few useful rules for
matrix manipulation. The rules are often studied in multi-linear algebra and tensor calculus. We shall
not review the theory of multi-linear algebra but will look at the rules from a phenomenological point
of view. They are useful identities making an effective manipulation and concise notation possible.

§1 Kronecker product Let Abe ak x [ matrix and Bbe a m x n matrix

air a2 - a1
a1 a4z -+ a4y
a=| 7 7 . T |erR®™ and BeR™™" (2.83)
S R (|
then km x [n matrix
a11B apB -+ ayB
a1B apB -+ ayB
C=A®B= . . ) ) (2.84)
ap1 B apB .- ayB
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is the matrix of the Kronecker product of matrices A, B (in this order).
Notice that this product is associative, i.e. (A®Q B) ® C = A® (B® C), but it is not commutative, i.e.
A®B # B® A in general. There holds a useful identity (A®B)" = AT® BT,

§2 Matrix vectorization Let A be an m x n matrix

a1 a4 A1n
a1 dp - d2pn

A = . . . . e R™*" (2.85)
Anl Am2 - Amn

We define operator v(.): R"*" — R™" which reshapes an m x n matrix A into a m#n x 1 matrix (i.e.

into a vector) by stacking columns of A one above another

oy ]
az1

Am1
a2

o(a) = afz _ (2.86)

Am2
A1n
an

amn

Let us study the relationship between v(A) and v(AT). We see that vector v(A") contains permuted
elements of v(A) and therefore we can construct permutation matrices [5] T,.x, and T« such that

o(AT) = Tuxnv(A)
v(A) = Tuxmo(AT)
We see that there holds
Toxm Tmxn0(A) = Tuxm (&) = 0v(A) (2.87)
for every m x n matrix A. Hence
Tuxm =T, L (2.88)

Consider a permutation T. It has exactly one unit element in each row and in each column.
Consider the i-th row with 1 in the j-th column. This row sends the j-th element of an input vector
to the i-th element of the output vector. The i-the column of the transpose of T has 1 in the j-th row.
It is the only non-zero element in that row and therefore the j-th row of T sends the i-th element
of an input vector to the j-th element of the output vector. We see that T is the inverse of T, i.e.
permutation matrices are orthogonal. We see that

T =T hsn (2.89)
and hence conclude
Toxm = T (2.90)

We also write v(A) = T o(AT).

mxn
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§3 From matrix equations to linear systems Kronecker product of matrices and matrix vector-
ization can be used to manipulate matrix equations in order to get systems of linear equations in the
standard matrix form Ax = b. Consider, for instance, matrix equation

AXB=C (2.91)
with matrices A € R"*% X e RF*! B e R™*", C € R™*", It can be verified by direct computation that
v(AXB) = (B'® A)v(X) (2.92)

This is useful when matrices A, B and C are known and we use Equation to compute X. Notice
that matrix Equation2.91]is actually equivalent to m n scalar linear equations in kI unknown elements
of X. Therefore, we should be able to write it in the standard form, e.g., as

Mou(X) = v(C) (2.93)
with some M € R(""* () We can use Equation2.92]to get M = B ® A which yields the linear system

v(AXB) = 9(Q) (2.94)
B'® A)v(X) = v(C) (2.95)

for unknown v(X), which is in the standard form.
Let us next consider two variations of Equation[2.91] First consider matrix equation

AXB =X (2.96)
Here unknowns X appear on both sides but we are still getting a linear system of the form
B'"®A-I)v(X)=0 (2.97)

where I is the (mn) x (kI) identity matrix.
Next, we add yet another constraints: X" =X, i.e. matrix X is symmetric, to get

AXB=X and X' =X (2.98)
which can be rewritten in the vectorized form as
B'®@A-T)v(X)=0 and (Tuxy—I)v(X)=0 (2.99)
and combined it into a single linear system

|: men_I

R ECEL (2100
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3 Affine space

Let us study the affine space, an important structure underlying geometry and its algebraic represen-
tation. The affine space is closely connected to the linear space. The connection is so intimate that the
two spaces are sometimes not even distinguished. Consider, for instance, function f: R — R with
non-zero 4,b € R

flx)=ax+b (3.1)

It is often called “linear” but it is not a linear function [6} 7, 5] since for every a € R there holds
flax) =aax+b#aax+b)=af(x) (3.2)

In fact, f is an affine function, which becomes a linear function only for b = 0.

In geometry, we need to be very precise and we have to clearly distinguish affine from linear. Let us
therefore first review the very basics of linear spaces, and in particular their relationship to geometry,
and then move to the notion of affine spaces.

3.1 Vectors

Let us start with geometric vectors and study the rules of their manipulation.

Figure 3.1(a) shows the space of points P, which we live in and intuitively understand. We know
what is an oriented line segment, which we also call a marked ruler (or just a ruler). A marked ruler
is oriented from its origin towards its end, which is actually a mark (represented by an arrow in
Figure[3.1[b)) on a thought infinite ruler, Figure B.I(b). We assume that we are able to align the ruler
with any pair of points x, y, so that the ruler begins in x and a mark is made at the point y. We also
know how to align a marked ruler with any pair of distinct points u, v such that the ruler begins in u
and aligns with the line connecting u and v in the direction towards point v. The mark on so aligned
ruler determines another point, call it z, which is collinear with points u, v. We know how to translate,
Figure[3.1lc), a ruler in this space.

To define geometric vectors, we need to first define geometric scalars.

(a) (b) (c)

Figure 3.1: (a) The space around us consists of points. Rulers (marked oriented line segments) can be
aligned (b) and translated (c) and thus used to transfer, but not measure, distances.
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N —— a ———
) a 11— -1 Fa!
[ —— ——— b 13 —la T4
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a+b
a 1
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b L — T 2 e "
3 i [ T T T T T
a+b ab
(a) (b)

Figure 3.2: Scalars are represented by oriented rulers. They can be added (a) and multiplied (b) purely
geometrically by translating and aligning rulers. Notice that we need to single out a unit
scalar “1” to perform geometric multiplication.

3.1.1 Geometric scalars

Geometric scalars S are horizontal oriented rulers. The ruler, which has its origin identical with its
end is called 0. Geometric scalars are equipped with two geometric operations, addition a + b and
multiplication a b, defined for every two elements a,b € S.

Figure B.2(a) shows addition a + b. We translate ruler b to align origin of b with the end of a and
obtain ruler a + b.

Figure 3.2(b) shows multiplication ab. To perform multiplication, we choose a unit ruler “1” and
construct its additive inverse —1 using 1 + (—1) = 0. This introduces orientation to scalars. Scalars
aiming to the same side as 1 are positive and scalars aiming to the same side as —1 are negative. Scalar
0 is neither positive, nor negative. Next we define multiplication by —1 such that —1a = —a,i.e. -1
times a equals the additive inverse of a. Finally, we define multiplication of non-negative (i.e. positive
and zero) rulers 4, b as follows. We align a with 1 such that origins of 1 and a coincide and such that
the rulers contain an acute non-zero angle. We align b with 1 and construct ruler ab by a translation,
e.g. as shown in Figure b.

All constructions used were purely geometrical and were performed with real rulers. We can
verify that so defined addition and multiplication of geometric scalars satisfy all rules of addition
and multiplication of real numbers. Geometric scalars form a field [11,[14] w.r.t. toa + band ab.

3.1.2 Geometric vectors

Ordered pairs of points, such as (x, y) in Figure[3.3(a), are called geometric vectors and denoted as x7,
i.e. Xy = (x,y). Symbol X7 is often replaced by a simpler one, e.g. by @. The set of all geometric vectors
is denoted by A.

3.1.3 Bound vectors

Let us now choose one point 0 and consider all pairs (o, x), where x can be any point, Figure [3.3(a).
We obtain a subset A, of A, which we call geometric vectors bound to o, or just bound vectors when it
is clear to which point they are bound. We will write X = (0, x). Figure B.3(f) shows another bound
vector ij. The pair (0,0) is special. It will be called the zero bound vector and denoted by 0. We will
introduce two operations @, © with bound vectors.

!Notice that a b is well defined since it is the same for all non-zero angles contained by a and 1.
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Figure 3.3: Bound vectors are (ordered) pairs of points (0,x), i.e. arrows ¥ = (0,x). Addition of the
bound vectors X, i is realized by parallel transport (using a ruler). We see that the result
is the same whether we add X' to i/ or i/ to X. Addition is commutative.

First we define addition of bound vectors @®: A, x A, — A,. Let us add vector ¥ to i/ as shown on
Figure B.3(b). We take a ruler and align it with X, Figure 3.3(c). Then we translate the ruler to align
its begin with point y, Figure 3.3(d). The end of the ruler determines point z. We define a new
bound vector, which we denote ¥ @ 7, as the pair (o,z), Figure B.3(e). Figures B.3(f-j) demonstrate
that addition gives the same result when we exchange (commute) vectors ¥and ¥, i.e. Y@ = J D X.
We notice that for every point x, there is exactly one point x” such that (o,x) ® (0,x") = (0,0), i.e.
@ = 0. Bound vector ¥ is the inverse to ¥ and is denoted as —%. Bound vectors are invertible w.r.t.
operation @®. Finally, we see that (0,x) @ (0,0) = (0,x), i.e. ¥ ® 0 = % Vector 0 is the identity element
of the operation @. Clearly, operation @ behaves exactly as addition of scalars — it is a commutative
group [11,[14].

Secondly, we define the multiplication of a bound vector by a geometric scalar ©: S x A, — Ao, where S
are geometric scalars and A, are bound vectors. Operation © is a mapping which takes a geometric
scalar (a ruler) and a bound vector and delivers another bound vector.

Figure B.4lshows that to multiply a bound vector ¥ = (o, x) by a geometric scalar a, we consider the
ruler b whose origin can be aligned with 0 and end with x. We multiply scalars 2 and b to obtain scalar

Y
Figure 3.4: Multiplication of the bound vector ¥ by a geometric scalar a is realized by aligning rulers
to vectors and multiplication of geometric scalars.
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Figure 3.5: Coordinates are the unique scalars that combine independent basic vectors by, by into ©.

aband align a b with ¥ such that the origin of a b coincides with 0 and a b extends along the line passing
through X. We obtain end point y of so placed a b and construct the resulting vector j = a® ¥ = (0, y).

We notice that addition @ and multiplication ® of horizontal bound vectors coincides exactly with
the addition and multiplication of scalars.

3.2 Linear space

We can verify that for every two geometric scalars a,b € S and every three bound vectors X, i/, Z € A,
with their respective operations, there holds the following eight rules

(e = Foyoz (3.3)
¥oy = jorx (3.4)
o0 = % (3.5)
to-% = 0 (3.6)
108 = « (3.7)

@b)oX = a® OO (3.8)

10 X0y = @)@y (3.9)

(@+b)OX = @ON)® (O (3.10)

These rules are known as axioms of a linear space [6}7,'4]. Bound vectors are one particular model of
the linear space. There are many other very useful models, e.g. n-tuples of real or rational numbers for
any natural 7, polynomials, series of real numbers and real functions. We will give some particularly
simple examples useful in geometry later.

The next concept we will introduce are coordinates of bound vectors. To illustrate this concept, we

will work in a plane. Figure [3.5 shows two non-collinear bound vectors b1, by, which we call busis,
and another bound vector ¥. We see that there is only one way how to choose scalars x; and x, such

that vectors x; ® 51 and ¥, © by add to 7, i.e.
—x O ®x0Ob (3.11)

Scalars x1, x; are coordinates of X in (ordered) basis [51, 52].

3.3 Free vectors

We can choose any point from A to construct bound vectors and all such choices will lead to the same
manipulation of bound vector and to the same axioms of a linear space. Figure B.6lshows two such
choices for points 0 and o’
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Figure 3.6: Two sets of bound vectors A, and A,. Coordinates of ¥ w.r.t. [51, 52] are equal to coordinates
of ¥ w.r.t. [I;{, ZZ]

We take bound vectors 51 = (0,b1), l_;z = (0,bp), ¥ = (0,x) at 0 and construct bound vectors
5{ = (0, b’l), l;)é = (0, 1)), ¥ = (0/,x') at o’ by translating x to ¥/, by to b’1 and b, to U, by the same
translation. Coordinates of ¥ w.r.t. [51, l;z] are equal to coordinates of ¥’ w.r.t. [l;{, I;é] This interesting
property allows us to construct another model of a linear space, which plays an important role in
geometry.

Let us now consider the set of all geometric vectors A. Figure B.7(a) shows an example of a few
points and a few geometric vectors. Let us partition [1] the set A of geometric vectors into disjoint
subsets A,y such that we choose one bound vector (o, x) and put to A, ) all geometric vectors that
can be obtained by a translation of (o, x). Figure B.Z(b) shows two such partitions A, ), A(,y). It is
clear that A, x) " Aoy = & for x # x" and that every geometric vector is in some (and in exactly one)
subset A )-

Two geometric vectors (0, x) and (o', x’) form two subsets A(, y), A(y /) which are equal if and only
if (o/,x’) is related by a translation to (o, x).

“To be related by a translation” is an equivalence relation [1]. All geometric vectors in A, are
equivalent to (o, x).

There are as many sets in the partition as there are bound vectors at a point. We can define the
partition by geometric vectors bound to any point o because if we choose another point o/, then for
every point x, there is exactly one point x” such that (o, x) can be translated to (o, x’).

We denote the set of subsets A, ) by V. Let us see that we can equip set V with a meaningful
addition H: V x V — V and multiplication []: S x V' — V by geometric scalars S such that it will
become a model of the linear space. Elements of V will be called free vectors.

A We define the sum of X = Ay and g’ = Apy), L& Z= 9? yis ’ihe set A(ox)@ (o,y)- Multiplication of
X = A(yx) by geometrical scalar a is defined analogically, i.e. 4 [[] X equals the set A, (, ). We see that

- N

N - ™
e " ™

(a) (b)

N

Figure 3.7: The set A of all geometric vectors (a) can be partitioned into subsets which are called free
vectors. Two free vectors A, vy and A, ), i.e. subsets of A, are shown in (b).
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Figure 3.8: Free vector A, ) is added to free vector A, ) by translating (o, x) to (g,x') and (p, y) to
(9,y'), adding bound vectors (g,z) = (q,x') ® (q,y) and setting A(, vy HA () = A(yz)

the result of [ and [] does not depend on the choice of 0. We have constructed the linear space V' of
free vectors.

§1 Why so many vectors? In the literature, e.g. in [4} 5, 8], linear spaces are often treated purely
axiomatically and their geometrical models based on geometrical scalars and vectors are not studied
in detail. This is a good approach for a pure mathematician but in engineering we use the geometrical
model to study the space we live in. In particular, we wish to appreciate that good understanding of
the geometry of the space around us calls for using bound as well as free vectors.

3.4 Affine space

We saw that bound vectors and free vectors were (models of) a linear space. On the other hand, we
see that the set of geometric vectors A is not (a model of) a linear space because we do not know how
to meaningfully add (by translation) geometric vectors which are not bound to the same point. The
set of geometric vectors is an affine space.

The affine space connects points, geometric scalars, bound geometric vectors and free vectors in a
natural way:.

Two points x and y, in this order, give one geometric vector (x,y), which determines exactly one
free vector 7 = A(y,). We define function ¢: A — V, which assigns to two points x,y € P their
corresponding free vector ¢(x,y) = A ).

U

=

S

Figure 3.9: Free vectors i/, 7 and @ defined by three points x, y and z satisfy triangle identity [ = @.
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Pl y) ————— il = A

xY)

Figure 3.10: Affine space (P, L, ¢), its geometric vectors (x,y) € A = P x P and free vector space L and
the canonical assignment of pairs of points (x, y) to the free vector A, ;). Operations @,
[, combining vectors with vectors, and #, combining points with vectors, are illustrated.

Consider a point a € P and a free vector ¥ € V. There is exactly one geometric vector (4, x), with a
at the first position, in the free vector ¥. Therefore, point a and free vector ¥ uniquely define point x.
We define function #: P x V — P, which takes a point and a free vector and delivers another point.
We write a4 = x and require ¥ = ¢(a, x).

Consider three points x, y,z € P, Figure We can produce three free vectors il = ¢(x,y) = Alxy)/
T=@y,z) = Az, @ = @(x,2z) = A(yz). Let us investigate the sum i H 7. Chose the representatives
of the free vectors, such that they are all bound to x, i.e. bound vectors (x,y) € Ay, (x,t) € Awz)
and (x,z) € A(y,). Notice that we could choose the pairs of original points to represent the first and
the third free vector but we had to introduce a new pair of points, (x,t), to represent the second free
vector. Clearly, there holds (x, y) @ (x,t) = (x,z). We now see, Figure[3.9] that (y, z) is related to (x, t)
by a translation and therefore

TET = Ay BAgy,e) = Awy) BAxyH = Awyewy) = Ay = (3.12)

Figure shows the operations explained above in Figure[3.9but realized using the vectors bound
to another point o.

The above rules are known as axioms of affine space and can be used to define even more general
affine spaces.

§1 Remark on notation We were carefully distinguishing operations (+, ) over scalars, (®,®)
over bound vectors, (|, []) over free vectors, and function # combining points and free vectors. This
is very correct but rarely used. Often, only the symbols introduced for geometric scalars are used for
all operations, i.e.

+ = +/ @/ / # (3.13)
, O, (3.14)

§2 Affine space Triple (P,L,¢) with a set of points P, linear space (L,H,[-]) (over some field of
scalars) and a function ¢: P x P — L, is an affine space when

Al @(x,z) = @(x,y) Be(y, z) for every three points x,y,z € P

A2 for every o € P, the function ¢,: P — L, defined by ¢,(x) = ¢(o,x) for all x € P is a bijection [1].
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Figure 3.11: Point x is represented in two affine coordinate systems.

Axiom Al calls for an assignment of pairs of point to vectors. Axiom A2 then makes this assignmet
such that it is one-to-one when the first argument of ¢ is fixed.

We can define another function #: P x L — P, defined by 04% = ¢, ! (¥), which means ¢(0, 04%) = ¥
for all ¥ € L. This function combines points and vectors in a way that is very similar to addition and
hence is sometimes denoted by + instead of more correct 4.

In our geometrical model of A discussed above, function ¢ assigned to a pair of points x, y their
corresponding free vector A(x,y)- Function #, on the other hand, takes a point x and a free vector ¢
and gives another points y such that the bound vector (x, y) is a representative of 7, i.e. Ay, = .

3.5 Coordinate system in affine space

We see that function ¢ assigns the same vector from L to many different pairs of points from P. To
represent uniquely points by vectors, we select a point o, called the origin of affine coordinate system
and represent point x € P by its position vector X = ¢(0,x). In our geometric model of A discussed
above, we thus represent point x by bound vector (o, x) or by point 0 and free vector A, ).

To be able to compute with points, we now pass to the representation of points in A by coordinate

vectors. We choose a basis f = (51, b, .. .)in L. That allows us to represent point x € P by a coordinate

vector
X1

fﬁ = | *2 |, such that X = X1 51 + X2 52 + - (3.15)

The pair (0, B), where 0 € P and  is a basis of L is called an affine coordinate system (often shortly called
just coordinate system) of affine space (P, L, ¢).

Let us now study what happens when we choose another point o’ and another basis g/ = (l;{, I;é, .
to represent x € P by coordinate vectors, Figure Point x is represented twice: by coordinate
vector ¥ = ¢(0,X)g = A(yx)p and by coordinate vector X}, = (0',X)g' = A(y -

To get the relationship between the coordinate vectors J?ﬁ and x7,, we employ the triangle equality

p(0,x) = ¢@(0,0)Hep(0,x) (3.16)
¥ = omx (3.17)

which we can write in basis f as (notice that we replace [ by + to emphasize that we are adding
coordinate vectors)

B o= T+ (3.18)
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Figure 3.12: Affine space (P, V, ) of solutions to a linear system is the set of vectors representing
points on line p. In coordinate system (0, i7), vector X has coordinate 1. The subspace V of
solutions to the associated homogeneous system is the associated linear space. Function
(¢ assigns to two points 0, ¥ the vector il = §f — ¥.

and use the matrix A transforming coordinates of vectors from basis p’ to  to get the desired relation-
ship

% = A%

L+ 0 (3.19)

]

Columns of A correspond to coordinate vectors b b, ... When presented with a situation in a

187 V27
real affine space, we can measure those coordinates by a ruler on a particular representation of L by

geometrical vectors bound to, e.g., point o.

3.6 An example of affine space

Let us now present an important example of affine space.

3.6.1 Affine space of solutions of a system of linear equations

When looking at the following system of linear equations in IR?

HEEE 620

we immediately see that there is an infinite number of solutions. They can be written as

5 2 1
x—[0]+’c{_1], TelR (3.21)
or as a sum of a particular solution [2,0]" and the set of solutions 7 = 7 [—1,1]" of the accompanied

homogeneous system
1 1], |0
BN 622)

Figure shows that the affine space (P, V, @) of solutions to the linear system (3.20) is the set of
vectors representing points on line p. The subspace V of solutions to the accompanied homogeneous
system (3:22) is the linear space associated to A by function ¢, which assigns to two points X,/ € A
the vector il = i/ — £ V. If we choose ¢ = [2,0]T as the origin in A and vector b = (6, %) = Z— 0'as
the basis of V, vector ¥ has coordinate 1.
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We see that, in this example, points of A are actually vectors of R?, which are the solution to
the system (3.20). The vectors of V are the vectors of R?, which are solutions to the associated
homogeneous linear system (3.22).

25



4 Motion

Let us introduce a mathematical model of rigid motion in three-dimensional Euclidean space. The
important property of rigid motion is that it only relocates objects without changing their shape.
Distances between points on rigidly moving objects remain unchanged. For brevity, we will use
“motion” for “rigid motion”.

4.1 Change of position vector coordinates induced by motion

Figure 4.1: Representation of motion. (a) Alias representation: Point X is represented in two coordi-
nate systems. (b) Alibi representation: Point X move tohetjer with the coordinate system
into point Y.

§1 Alias representation of motion]]. Figure 4.1(a) illustrates a model of motion using coordinate
systems, points and their position vectors. A coordinate system (O, ) with origin O and basis B is
attached to a moving rigid body. As the body moves to a new position, a new coordinate system
(O, B’) is constructed. Assume a point X in a general position w.r.t. the body, which is represented in
the coordinate system (O, B) by its position vector ¥. The same point X is represented in the coordinate
system (O’, ) by its position vector X’. The motion induces a mapping fl;, — Xg. Such a mapping
also determines the motion itself and provides its convenient mathematical model.

Let us derive the formula for the mapping 3?[’3/ — Xg between the coordinates ¥}, of vector X and

coordinates X of vector ¥. Consider the following equations:

¥ = ¥+0 (4.1)
% o= T+ (42)
> AW I =/

Xg = [blﬁ bzﬁ bgﬁ] Xg, + 0 4.3)
X o= Rf[;/ + 0y (4.4)

IThe terms alias and alibi were introduced in the classical monograph [14].
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(a) (b)

Figure 4.2: Rotation in two-dimensional space.

Vector ¥ is the sum of vectors ¥’ and 0", Equation .1l We can express all vectors in (the same) basis g,

Equation4.2l To pass to the basis B’ we introduce matrix R = [b{ﬁ béﬁ béﬁ ], which transforms the

- -

coordinates of vectors from B’ to , Equation4.4l Columns of matrix R are coordinates b/ 5 béﬁ, béﬁ of

> o o
basic vectors b{, bé, bé of basis ' in basis f.

§2 Alibi representation of motion. An alternative model of motion can be developed from the
relationship between the points X and Y and their position vectors in Figure 4.1(b). The point Y is
obtained by moving point X altogether with the moving object. It means that the coordinates ﬁé, of

the position vector §’ of Y in the coordinate system (O, ') equal the coordinates X of the position
vector X of X in the coordinate system (O, ), i.e.

Yor = %

Jor =0 = %

-1(z =/ oz

R (y[;—oﬁ) = X
Jp = Riz+dy (4.5)

Equation .5l describes how is the point X moved to point Y w.r.t. the coordinate system (O, ).

4.2 Rotation matrix

Motion that leaves at least one point fixed is called rotation. Choosing such a fixed point as the origin

leads to O = O’ and hence to & = 0. The motion is then fully described by matrix R, which is called
rotation matrix.

§1 Two-dimensional rotation. To understand the matrix R, we shall start with an experiment in
two-dimensional plane. Imagine a right-angled triangle ruler as shown in Figure B.2(a) with arms
of equal length and let us define a coordinate system as in the figure. Next, rotate the triangle ruler
around its tip, i.e. around the origin O of the coordinate system. We know, and we can verify it
by direct physical measurement, that, thanks to the symmetry of the situation, the parallelograms

through the tips of E){ and Eﬁ and along by and b, will be rotated by 90 degrees. We see that

b{ = a1 51 + dn 52 (46)
bé = —dy 51 + a1 B)z 4.7)
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Figure 4.3: A three-dimensional coordinate system.

for some real numbers a17 and a31. By comparing it with Equation4.3] we conclude that

R — {an —ﬂzl] (4.8)

az1 a11

We immediately see that

_ 2 2
RTR — a;y 4 | |4 —ax | _ |4y tay ) 0 ) |- 10 (4.9)
—dp1 ai1 | | 421 a 0 aj, +ax 01

since (a3, + a3, ) is the squared length of the basic vector of by, which is one. We derived an interesting
result

R! = R' (4.10)
R = R°T (4.11)

Next important observation is that for coordinates J?ﬁ and x7,,, related by a rotation, there holds true

(x’)2 + (]/)2 = J?é—l—)?é, = (Rﬁ?ﬁ)—r R)?ﬁ = 2?;— (RTR) J?[g = J?;—J?ﬁ = x2 + yZ (412)
Now, if the basis  was constructed as in Figure 4.2} in which case it is called an orthonormal basis,
then the parallelogram used to measure coordinates x, y of ¥is a rectangle, and hence x? + ? is the
squared length of ¥ by the Pythagoras theorem. If B’ is related by rotation ro f, then also (x') + (/)?
is the squared length of X, again thanks to the Pythagoras theorem.

We see that i’;i}; is the squared length of ¥ when f is orthonormal and that this length is preserved

by computing it in the same way from the new coordinates of ¥ in the new coordinate system after
motion. The change of coordinates induced by motion is modeled by rotation matrix R, which has
the desired property R'R = I when the bases f, 8’ are both orthonormal.

§2 Three-dimensional rotation. Let us now consider three dimensions. It would be possible to
generalize Figurel4.2|to three dimensions, construct orthonormal bases, and use rectangular parallel-
ograms to establish the relationship between elements of R in three dimensions. However, the figure
and the derivations would become much more complicated.

We shall follow a more intuitive path instead. Consider that we have found that with two-
dimensional orthonormal bases, the lengths of vectors could be computed by the Pythagoras theorem
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since the parallelograms determining the coordinates were rectangular. To achieve this in three
dimensions, we need (and can!) use bases consisting of three orthogonal vectors. Then, again, the
parallelograms will be rectangular and hence the Pythagoras theorem for three dimensions can be
used analogically as in two dimensions, Figure 4.3

Considering orthonormal bases B, B/, we require the following to hold true for all vectors ¥ with

-

=[xy Z]Tandf/ =[x ¥ z’]T

5
2+ )P+ () = Pyt + 2P
B, = X
(R%) RE = 3
T (RR) T = X
YCxXp = XX (4.13)

Equation must hold true for all vectors ¥ and hence also for special vectors such as those with

coordinates
1 0 0 1 1 0

of,{1],l0],[1],]0],]1 (4.14)
ol |o| |1]| |o]| |1] |1

Let us see what that implies, e.g., for the first vector

1

[1 0 0]c|o| =1 (4.15)
0
o o= 1 (4.16)

Taking the second and the third vector leads similarly to cx» = c33 = 1. Now, let’s try the fourth vector

1
[1 1 0]c|1]| = 2 (4.17)
0
l+cp+cc+1 = 2 (4.18)
cp+cy = 0 (4.19)

Again, taking the fifth and the sixth vector leads to c13 + ¢31 = c23 4+ c32 = 0. This brings us to the
following form of C

1 ¢ c13
Cc = —C12 1 3 (4.20)
—c;3 —c3 1

Moreover, we see that C is symmetric since
"= R'R) =R'R=C (4.21)

which leads to —c1p = ¢12, —¢13 = ¢13 and —c3 = 23, 1.€. c12 = 13 = 23 = 0 and allows us to conclude
that
R'IR=C=1 (4.22)

Interestingly, not all matrices R satisfying Equation4.22lrepresent motions in three-dimensional space.
Consider, e.g., matrix
10 0
s=101 0 (4.23)
0 0 —1
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Matrix S does not correspond to any rotation of the space since it keeps the plane xy fixed and reflects
all other points w.r.t. this xy plane. We see that some matrices satisfying Equation are rotations
but there are also some such matrices that are not rotations. Can we somehow distinguish them?

Notice that |S| = —1 while |I| = 1. It might be therefore interesting to study the determinant of C
in general. Consider that

1=1=[®R'R)| = [R[ IRl = |R|[R| = (IR])® (4.24)

which gives that |R| = +1. We see that the sign of the determinant splits all matrices satisfying
Equation4.22]into two groups — rotations, which have a positive determinant, and reflections, which
have a negative determinant. The product of any two rotations will again be a rotation, the product
of a rotation and a reflection will be a reflection and the product of two reflections will be a rotation.

To summarize, rotation in three-dimensional space is represented by a 3 x 3 matrix RwithR'R = I
and |R| = 1. The set of all such matrices, and at the same time also the corresponding rotations,
will be called SO(3), for special orthonormal three-dimensional group. Two-dimensional rotations will be
analogically denoted as SO(2).

4.3 Coordinate vectors

We see that the matrix R induced by motion has the property that coordinates and the basic vectors
are transformed in the same way. This is particularly useful observation when f is formed by the
standard basis, i.e.

17 [o] [o
p=11(0].[1].|0 (4.25)
of [o] |1

For a rotation matrix R, Equation 2.15]becomes

>, - - > - - -
by by otz r | | D r1 b+ r2by + 113 bs
>, - - - - -
bz = R|by|= |11 "2 t3 by | = | ro1b1 +rnby +1r3b3 (4.26)
= - -> - - >
b; bs 31 732 733 ] | bs r31byr + 13 by + 13303
and hence
1] 0 0 11
>, - - -
bl = rmbi+rpby+rsby=r1 |0 +rp|1|+7r3]0]| =|r2 (4.27)
0 | 0 1 r13

and similarly for E; and Eé We conclude that

11 r21 131
rn rp | =RT (4.28)
13 123 733

—
X
o

S
[
Il
<

—
N

This also corresponds to solving for R in Equation2.13|with A = R
1 00

010| = [*{ b bg]R (4.29)
00 1
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5 Image coordinate system

Digital image Im is a matrix of pixels. We assume that Im is obtained by measuring intensity of light
by sensors (pixels) arranged in a grid, Figure 5.1

We will work with images in two ways. First, we will work with intensity values, which are stored
in the memory as a three-dimensional array of bytes indexed by the row index i, the column index
j, and the color index k, FigureBla). Color index attains three values 1,2, 3, with 1 corresponding to
red, 2 corresponding to green and 3 corresponding to blue colors.

In Matlab, image Im is accessed using the row index i, the column index j and the color index k
as >>Im(i, j, k). The most top left pixel has row as well as column index equal to 1. The red channel
of the pixel with row index 2 and column index 3 is accessed as >>Im(2,3,1).

§1 Image coordinate system For geometrical computation, we introduce an image coordinate sys-
tem as in Figure B(b). The origin of the image coordinate system is chosen to assign coordinates 1, 1
to the center of the most top left pixel. Horizontal axis by goes from left to right. The vertical axis
b goes from top down. The pixel that is accessed as >>Im(i, j,k) is in the image coordinate system
represented by the vector i/ = [j,1]". A digital image with H rows and W columns will be in indexed
inMatlabas>>Im(1:H,1:W,1:3) and >>size(Im) will return [H W 3]. The center of the most bottom
right pixel will have coordinates [W, H]" in the image coordinate system.

The image coordinate system coincides with the Matlab coordinate system image, i.e. commands

>> axis image
>> plot(j,i,’.b’)

plot a blue dot on the pixel accessed as >>Im(i,j,:);
The image coordinate system is non-standard in two dimensions since itis a left-handed system. The
reason for such a unnatural choice is that this system will be next augmented into a three-dimensional

right-handed coordinate system in such a way that the b3 vector will be pointing towards the scene.

Figure 5.1: Image is digitized by a rectangular array of pixels
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(a) Image Imis a matrix of pixels. InMatlab, it
is accessed using the row index i, the column
index j and color index k as >>Im(i, j,k).
The most top left pixel has row as well as
column index equal to 1. The red channel of
the pixel with row index 2 and column index
3 is accessed as >>Im(2,3,1).

(b) The image coordinate system is defined

with horizontal axis 51 and vertical axis 52.
The origin of the coordinate system is chosen
to assign coordinates 1,1 to the most top left
pixel. Notice that pixel, which is accessed
as >>Im(2,3,1), is represented in the image
coordinate system by the vector # = [3,2] .

Figure 5.2: Image coordinate system.
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6 Perspective camera

Modern photographic camera, Figure [6.1] is an interesting and advanced device. We shall abstract
from all physical and technical details of image formation and will concentrate solely on its geometry.
From the point of view of geometry, a perspective camera projects point X from space into an image
point x by intersecting the line connecting X with the projection center (red) and a planar image plane

(green), Figure [6.1(b).

6.1 Perspective camera model

Let us now develop a mathematical model of the perspective camera. The model will allow us to
project space point X into image point x and to find the ray p in space along the which point X has
been projected.

§1 Camera coordinate system Figurel6.2lshows the geometry of the perspective camera. Point X
is projected along ray p from three-dimensional space to point x into two-dimensional image. Point
x is obtained as the intersection of ray p with planar image plane . Ray p is constructed by joining
point X with the projection center C. The plane through the projection center C, which is parallel to the
image plane is called the principal plane.

The image plane is equipped with an image coordinate system (§1)), (0, a), where o is the origin
and a = [1;1,52] is the basis of the image coordinate system. Notice that the basis a is shown as
non-orthogonal. We want to develop a general camera model, which will be applicable even in the
situation when image coordinate system is not rectangular. Point x is represented by vector i/ in (o, )

T=ub +vby  ie iy = {Z] 6.1)

Three-dimensional space is equipped with a world coordinate system (O, 0), where O is the origin
and 6 = [dq, dé, dg] is a three-dimensional orthonormal basis. Point X is represented by vector X in
(O, 6). The camera projection center is represented by vector Cin (0,9).

Let us next define the camera coordinate system. The system will be derived from the image coordinate
system to make the construction of coordinates of the direction vector ¥ of p extremely simple.

Camera coordinate system (C, §) has the origin in the projection center C and its basis f = [51, 52, 133]
is constructed by re-using the two basis vectors of @ and adding the third basic vector b3, which
corresponds to vector Co. We see that vectors in p form a basis when point C is not in 7, which is
satisfied for every meaningful perspective camera. Notice also that the camera coordinate system is
three-dimensional.

Image points o0 and x are in plane 7, which is in three-dimensional space, and therefore we can
consider them as points of that space too. Point x is in (C, ) represented by vector X, which is the
direction vector of the projection ray p along which point X has been projected into x. We see that

vectors i, X, bz form a triangle such that

X = 1/7+l_7)3 (6-2)

= MB)1+UZ_7)2+153
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(@) (b)

Figure 6.1: Perspective camera (a) is geometrically a point (red) and an image plane (green) (b).

and therefore

u -
v SR S _ Ug
Xp = x[bl,bz,bs] = zlJ = [ 1 ] . (6.4)

Notice that basis g has been constructed in a very special way to facilitate construction of X3. We can
use u, v directly since f re-uses vectors of a and the third coordinate is always 1 by the construction

of bs. Although we do not know exact position of C w.r.t. the image plane, we know that it is not in
the plane © and hence a meaningful camera coordinate system constructed this way exists.

Notice next that the camera coordinate system is right-handed. This is because when looking at a
scene from a point C through the image plane, the image is constructed by intersecting image rays
with the image plane, which is in front and hence the vector b3 points towards the scene. We see that
vectors of § form a right-handed system.

Let us mention that we have used deeper properties of linear and affine spaces. In particular, we

were making use of the concept of free vector in the following way. We look at vectors by, by and it
as on a free vectors. Therefore, coordinates of the representative of i beginning in o with respect
to representatives of 51, 52 beginning in o equal the coordinates of the representative of i beginning
in C with respect to representatives of by, by beginning in C. Hence u, v reappear as the first two
coordinates of . .

For usual consumer cameras, vector b3 is often much longer than vectors 51,52 and often not
orthogonal to them. Therefore, basis § is in general neither orthonormal nor orthogonal! This has
severe consequences since we can’t measure angles and distances in the space using 3, unless we find
out what are the lengths of its vectors and what are the angles between them.

§2 Perspective projection Point X has been projected along p into x. Since ¥ is a direction vector
of p, point X can be represented in (C, ) by
nx (6.5)

for some real non-negativ 1. The value of n corresponds to the scaled depth of X, i.e. the distance

of X from the plane passing through C and generated by by, by in units equal to the distance of C
from n. Value 7 is not known since it “has been lost” in the process of projectior@ but will serve us

'Here we choose ¥ such that 7 is non-negative. Considering negative 1, as in [15], may be necessary if it is not clear how
has the image coordinate systems been defined or how has ¥ been chosen. For instance, if X has been chosen to point
along ray p away from X, 7 would have to be negative.

21t can be recovered when a point X is observed by two cameras with different projection centers.
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Figure 6.2: Coordinate systems of perspective camera.
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to parametrize the projection ray in order to get coordinates of all possible points in space that could
project into x.

Let us now relate the coordinates iZ,, which are measured in the image, to the coordinates )25, which
> 2 N
are measured in the world coordinate system. First consider vectors X, C and x. They are coplanar

and we see that there holds
nt = X-C (6.6)
To pass to coordinates, we will use the camera coordinate system, in which we can write
n% = X;—Cs (6.7)
0 [”1“} - X, -G 6.8)
Next we shall pass to the coordinates w.r.t. basis 6 on the right hand side of Equation[6.8by introducing
a matrix A, which transforms coordinates of a general vector ]7 from basis 6 to basis f3, i.e.

g)ﬁ = Ag)(j (6.9)

We know from linear algebra (§ 3) that such a matrix exists. We write

1 7121&* R )
a|%| = af1-¢] [%} (6.10)
n 1“71“ = B [%’] (6.11)
n% = B [%5] (6.12)
with 3 x 4 image projection matrix
B = [A \—A@] 6.13)

§3 Projection equation Equation [6.1T] describes the relationship between measurement if, in the

image and measurement X5 in space. It says that X is projected into i, since there exists 1 such that
Equation[6.11]holds. Notice that 7 multiple of the vector on the left of Equation is obtained by a

linear mapping represented by matrix B from vector X5 on the right.
When computing i, from X5, we actually eliminate 1 using the last row of the (matricidal) equa-

tion (6.11)

p, X
L | psX
Uy = - (6.14)
p, X
p, X
where we introduced rows of p1, p2, p3 of P and a 4 x 1 vector X as follows
T
p -
B = p]T and X= [Xé] (6.15)
T 1
b3

Notice that the projection equation is not linear. It is a rational function of the first order polynomials
in elements of X.
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§4 Projection ray Having an image point iZ,, we can construct its projection ray p in space. The
ray consists of all points Y that can project to ify. In (C, B), the ray is emanating from the origin C. We
parametrize it by real 1 and express it in (O, 0) by vector Xs

> U R
Yﬁ = 1 [ 1&] =X
)_()5 = T]A_lfﬁ + 65 (6.16)

Notice that X; (6.16) can also be obtained for a given 1) by solving the system of linear equations (6.12)
for }_()5.

6.2 Computing image projection matrix from images of six points

Let us now consider the task of finding the B from measurements. We shall consider the situation
when we can measure points in space as well as their projection in the image. Consider a pair of such

measurements [x,,z]" < [u,v]". There holds

|

for some real A, 3 x 4 matrix Q and 4 x 1 coordinate vector X. Notice that we introduced new symbols
A and Q to emphasize that they are determined by Equation[6.17]up to a non-zero scale

iSRS

X
]Q Z — QX (6.17)
1

Q=¢&n (6.18)

We will see that this will have further consequences.
Introduce symbols for rows of Q

-
o
Q= [qzr ] (6.19)
93
and rewrite the above matrix equation as
Au = q/X (6.20)
Av = q,X (6.21)
A= X (6.22)

Eliminate A from the first two equations using the third one

(3X)u = q/X (6.23)
v = qlX (6.24)

move all to the left hand side and reshape it using x'y = y " x

X' —wx")as = 0 (6.25)
X'ay— (0X")az = 0 (6.26)

Introduce vector of parameters (which are elements of Q)

a=[a o o] (6.27)
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and express the above two equations in matrix form

x y z 1 0 0 —ux —uy -—-uz -—u
0000 z

1 —-ovx —-vy —-vz -—v a =0
M qg =0 (6.28)
Every correspondence [x,v,z]T > [u,v]" brings two rows into the matrix M (6.28). We need
therefore at least 6 correspondences in general position to obtain 11 linearly independent rows in
Equation to obtain a one-dimensional space of solutions.
If Qis a solution to Equation[6.28] then 7 Q s also a solution and both determine the same projection
for any positive 7 since

(TQ) X =7(QX) = T (AXp) = (TA) xg (6.29)

Assuming B = 7Q leads to A = 17/7. We see that we can’t recover B; but only its non-zero multiple.
Therefore, when solving Equation[6.28] we are looking for one-dimensional subspace of 3 x 4 matrices
of rank 3. Such a subspace determines one projection. Also note that the zero matrix does not represent
any interesting projection.

Notice that when considering more correspondences, M becomes

[ X1 Y1 1 1 0 0 0 0 —uixy —uyp —u1z1 —Uq |
X2 Y2 22 1 0 0 0 0 —UpXp —UplYr —UZp —Up
Ma= 0 0 0 0 X1 Y1 1 1 —01X1 —01y1 —01Z21 —Oq 1= 0 (630)
0 0 0 0 X2 Y2 2 1 —U2Xp —0O2Y2 —U2Zp —0U2

Matrix M can be more concisely rewritten as

-yT o7 T -
Xl 0 —M1X1

X, 00 —upX]

®T xT 0 xir (631)

0" X; —uX)

with 87 = [0,0,0,0].

§1 A more general procedure for computingQ We shall next develop and alternative formulation
for finding matrix Q. Let us come back to Equation

Al = QX (6.32)

Above, we have eliminated A assuming i3 = 1. Let us now present an alternative procedure for
eliminating A, which works for any non-zero # = [u,v, w]", i.e. even when w = 0. The trick is to
realize that

0=1ux (Ail) =u x QX =[], QX (6.33)

This gives three equations for each if <> X correspondence. However, only two of them are linearly
independet since [if],, has rank two. Now, we are in the position to employ Equation 2.95, which
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gives
[d].Qx = © (6.34)
x'Q" [, = of (6.35)
ox'Q [@]]) = v(e") (6.36)
([@,®x")v@") = o0 (6.37)
0 —w v
w 0 —ul|®Xx" |v@Q") = ve) (6.38)

—v u 0

of —wx' ox'

wX' 0" —ux" [ o@Q") = o(0") (6.39)
—oX' ux’ 0

For more correspondences numbered by i, we then get

[ ®T —wn X;r (%1} XI ]
o' —wWy X;— o X;
w1 XI ®T —Uu1 XI
wX) 0T —wX] [v@") = 0 (6.40)
—01 XI u Xir ®T
—0U2 XzT Us XZT o'

which if, for w = 1, is equivalent to Equation[6.30l Notice that v(Q") = q from Equation 6.30)

39



7 Camera calibration

Let us now look at a useful interpretation of image projection matrix in space and image equipped
with a cartesian coordinate systems.

7.1 Camera pose

The projection formula reveals that the perspective projection depends on matrix A and vector

Cs. The vector Cs represents the position of the camera projection center w.r.t. the world coordinate
system. Columns of matrix A are coordinates of the basic vectors of 0 in the basis f8

A= |4y, b, b, (7.1)

To recover the orientation of the camera, we will introduce the focal length f as the distance of the
camera projection center C from its projection plane 7 (in the world units) and replace the product
f A by the product of two 3 x 3 matrices K and R

fA=KR (7.2)

We will see that this seemingly artificial construction is indeed justified.
Rotation matrix R determines the orientation of the camera in space and altogether with Cs defines
the camera pose. The camera calibration matrix K does not change when moving its camera in the space.
To obtain K and R, we define, Figure the camera cartesian coordinate system (C,y) with center
(again) in the camera projection center C and with basis y = [c}, ¢2, ¢3] such that

& = knb
¢y = kipby + kb (7.3)
& = kizby +kosby + 1b3

Parameters k;; are determined to make the basis y orthogonal. Notice that vector ¢3 is orthogonal to
7t since it is orthogonal to ¢}, ¢, which span 7, by construction. Also notice that y is (in general) not
an orthonormal basis since the length of its vectors equals the distance of C from 7, i.e. the focal length
f in the world units.

Equations[7.3| define matrix K as

R ki ki kis
K = [Cl,g C2g C35] = 0 ky ko (7.4)
0 0 1
By this construction, we have
)?ﬁ = A¥s =K _3, (7.5)
o 1_,
X, = = —ZRX; (7.6)

The world cartesian coordinate system has basic vectors of unit length. The camera cartesian coordi-
nate system (C, y) has basic vectors of length equal to f. Therefore,

r!/f
[d* & di ]le: r] /f 7.7)
1, 42, 4z, f 2 )
r)/f
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Figure 7.1: Camera internal parameters are related to the geometry of basis f.

for some 3 x 3 orthonormal matrix R with rows r', rzT, r; .

Consider that

T
1

a=|dy, dy dy|=x|d, & & |- %KR (7.8)

We can view the matrices %R and K as coordinate transformation matrices, which transform a

general vector i from the coordinates w.r.t. 6 to y and then to , i.e.
Jp =Ky, = KRV (7.9)
The basis y is orthogonal and all basic vectors have the same length, which is equal to f. It follows

from the orthogonality of the basis y that ¢, - ¢} = f%, ¢ -G = 0 and ¢» - ¢ = f? and hence using
Equation[Z.3leads, for a positive f, to

kulba —f = 0
I3, koo (51 . 52) +kpf? = 0 (7.10)
k1 K, |02 = (G, + K3 /2 = 0

Let us solve Equations for ki1, k12 and kpp. The first equation in (Z.10) provides k1. Substituting
the square of f from the first equation into the second one and dividing it by k3, gives the second
equation of (Z11)), which allows to compute ki» from ky,. To get kpz, we construct the third equation
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of (ZI1) as follows. We express ki1 from the first equation of (Z.10) and k;, from the second equation

of (ZI1) and substitute them into the third equation of (Z10), which we then multiply by |[b||*/f2.
Altogether, we get

kulbr — f = 0
ko [B1)2 + ka2 (by - b2) = O (7.11)
KB, (b1 [B2]* — (51 - 52)%) = f2 B> = 0
Looking at the third equation of we see that

25 2 2
kéz = - —)f H 1” - - =5 - f - - (712)
|b1]2[b2]|? — (b1 - b2)>  [[b2]*> — [[b2]|> cos? £ (b1, b2)

and since y was constructed to make ky, positive, we obtain

f

ka> S = (7.13)
|b2| sin £ (b1, b2)
The second equation of (Z.10) now gives
by - b ba| cos £ (b1, b
Ky — _k22b19 by _ ke |2 cos - (b1, b2) (7.14)
612 |1
£(b1,b
_ _fooszlbyby) (7.15)
b1 | sin Z (b1, b2)
Finally k11 follows from (7.11
N (7.16)

[b1]

Considering Figure[Zland Equation[7.3] we see that the coordinates of the vector i, corresponding
to the principal point, which is the perpendicular projection of C onto 7, are in §

k

I/_l) _ k13 . > k13

0p = [ 23 [, 1€ Uoa = | o (7.17)
0 23

The horizontal pixel size corresponds to HElH Quantity ki1 can thus be understood as f ex-
pressed in the horizontal image units. The angle between the image axes by, by is obtained from
ki2/k11 = — cotan Z(by, 52) The ratio of the lengths of the image axes is determined by HI;ZH / Hgl | =

A k11 (k%l + k%z)/kZZ.
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Let us now return to Equation and substitute there the above results to arrive at the final
projection equation

Ny = 3;{5%} (7.18)

1 _ﬁla_ = A(X—Cy) (7.19)
fn _ﬁ“_ = faX—Cy) (7.20)
|| = kvt -Gy 721)
c_?J — KR(X; - C;) (7.22)
C _2%_ — KR [I]——C%] {5?} (7.23)

We have introduced a new parameter C = f 1, which is the depth of X in the world units. We conclude
that

P5=[J1(KR\—J%KRC5] (7.24)
Notice that the last row a3T of A provides f since
31 1 ki1 ki ki3 I‘{ 1 k11r1T + klzrzT + k13r;
A= a2r = j—( 0 kyn ks I‘2r = ? kzzr;— + ](23]:'3r (7.25)
a, 0 0 1 r, r,

and hence |a] | = % Therefore [B(3,1:3)| = %

Equation[7.23lis very important in many practical situations when we do not have access to physical
dimensions of the camera but only to images. Then, it is possible to recover matrix KR [I | — 65]
but not image projection matrix B;. This is so important the we introduce the camera projection matrix

P=[kR| KRG, | (7.26)
which is related to the image projection matrix as
P=fH (7.27)

In this text, it would be more consistent to associate subscript v with the camera projection matrix but
we will not do that since we want to use the nomenclature of [15] here whenever possible.
Let us write K explicitly,

f_ _feosZ(biby)
[bi] b1 sin £(B1,b2)
K=o 4 (7.28)
b2 sin £ (by,b2)
0 1

T . >
where ilp, = [19 vy . We see that we can neither recover f nor |b; | from P.
Let us introduce image calibration matrix

Ky = —K (7.29)
to have

Py = [KyR| ~ KsRC, | (7.30)
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Writing image calibration matrix Kg explicitly,

1 cosé(gl,gz) g
o1 Bl lsins(Gub) S 731
T Bolsin st T '
0 7
shows that it is possible to recover both
- 1 1
|b1]l = ——and f = =— (7.32)
11 Kg33

from image calibration matrix.

There is an important difference between Kz and K regarding the representation of internal camera
calibration information. Image calibration matrix Kg, and also image projection matrix Pg, captures
all calibration information about a perspective image whereas camera calibration matrix K, and also
camera projection matrix P, captures only the calibration information that can be recovered by auto-
calibration from images as we will see later. When the focal length is known in world units or when
pixel sizes are known in world units, it is more appropriate to use image calibration Kg, or image
projection matrix Pg, to represent full internal calibration information.

§1 Coordinate systems generated by applying KR to i/ and Rk ! to yg Wehave seen that the
decomposition of A to K and R introduced the camera cartesian coordinate system (C, y), Figure[Z.2(b)

. 1.
Yy = ?Rya (7.33)
Vs = Ky, (7.34)

There are three more coordinate systems to consider when looking at how matrices R, K, and their
inverses R™!, K1, apply to vectors 5 and /g, Figure 7.2

Let us first consider coordinates of a vector i/ w.r.t. basis 6 and apply successively Rand K. Coordinate
vector Rijs can be interpreted as coordinates of i/ w.rt. a new basis € = [&],,¢3], Figure [Z.2(c).
Applying further K to 7. gives the coordinate vector K i/, which can be interpreted as j w.r.t. yet
another new basis v = [i1y, it #13]. We get from v to B by using }7 I

Ve = R (7.35)
y_)v = Kg)e (736)
> 1 >

vg = ZIww (7.37)

f

We have introduced two new coordinate systems (C,v), v = [ii1, 72, i3] and (C,€), € = [€1, €3, €3].
Next we consider coordinates of a vector i w.r.t. basis f and apply successively K~! and R™L.
Coordinate vector K~! ij; gives 1/,. Coordinate vector R™! i/}, can be interpreted as coordinates of i/

w.r.t. a new basis k = [El, l?z, Eg], Figure[Z2(d). To get from ¥ to Js we need to employ fI

7, = K1y (7.38)
7« = R, (7.39)
s = fIij (7.40)

We have thus introduced a new coordinate system (O, k), k = [l?l, I?z, 123]

Figure[/.3]summarizes the relationship between coordinates of a vector and between bases associ-
ated with a perspective camera.

We can now see why we have chosen to denote the image projection matrix as P; and the camera
projection matrix as P. The image projection matrix provides the ray direction vector X in basis 8
while the camera projection matrix provides the ray direction vector ¥ in basis v.
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ds
d 9 d
> dl
O dy
dy
by
by
R +
b
A 3
Tt
C by
VG
(a),B = [bl/bZI b3]/ 0= [dl/d2/d3]: ]7ﬁ = A]?(‘) (b) V = [5)1/5)2/83]: _))/ = %Rg)b

Figure 7.2: Coordinate systems generated by applying %R, K,R, R land K.
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Figure 7.3: Relationships between (a) coordinates in different bases. e.g. 75 = Kij, and (b) bases
themselves, e.g. f =y K1, associated with a perspective camera.

§2 Recovering camera pose from its projection matrix Letusnextconsider that we have already
computed the camera projection matrix

Q=&P =EKR[I| — Cs] (7.41)
consisting of a 3 x 3 matrix Mand 3 x 1 vector m
= [M|m] (7.42)

To recover camera pose from Q, we need to get Cs from mand to decompose Q into the product of K in
the form of (Z4) and R such that R'R = I and |R| = 1. Consider M in the form

g
M = m2r (7.43)

m
Next we notice that the last row of KR has unit norm since it is equal to the last row of rotation
R. Therefore, we need to divide M by the norm of its last row to get a matrix decomposable into
the product of KR. Moreover, it follows from the construction of § that k;1 > 0 and k» > 0. Thus,
determinant KR| = [K| [R| = ki1 ko > 0. Therefore, we also need to multiply M by the sign of its
determinant to get a matrix decomposable into KR.

. . T ki ki k T
sign |M| _ sign |M ’ Elr _ (1)1 k;z k;i ilf (7.44)
Hm?)H Hm?)H mzr 0 0 1 rZF

3 3
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which provides the following set of equations
sz m3
[ms]|?
T
1
a2
T
m, mp
2 2 2
o~ Rt (7.47)
-
1
a2

m R4+ 112 7.4
o2 = Ky Tk K3 (7.49)

= kpryr3+ksrirs =kx (7.45)

m, ms3

= ki3 (7.46)

m, mp

= kinko + kizkos (7.48)

m

from which ki1, k12, k13, k22, k23 can be easily computed considering that the most of consumer digital
cameras have k11 > 0, koo > 0, k13 > 0, kog > 0.
Having k;; computed, we recover R from M as

B _,sign M|

R
s

(7.50)

Camera projection center can be computed in two ways. Either we get
Cs=—Mm (7.51)

or we obtain it by finding a basis c of the one-dimensional right null space of matrix Q, i.e. solving

Qc=0 (7.52)
and then computing
G| 1
= — 7.
[ 1 ] C4c (7.53)

where ¢4 is the fourth coordinate of vector c.

7.2 Camera calibration and angle between projection rays

We have introduced matrices P, R and K, and vector Cs which determine the projection from space
to images. However, since K is introduced with Kzz = 1, the triplet (K, R, 65) does not contain
all information about the camera, which can be obtained by direct measurement of its physical
components in a world coordinate system equipped with a known world unit length 1yy. The missing
element is the scale of P, which is equivalent to knowing the value of the focal length or the size of
pixels, i.e. f, Hl;1\| or HZ;ZH, in 1y.

Knowing K and f allows to recover Hl71 | from Equations[7.3]as ngl | = f/ki1. Knowing K and HEﬂ\,
on the other hand, gives f = \]51 | k1.

Therefore, full calibration of the camera is encoded in matrix B, Equation or, e.g., in one of the
following tuples: (g, R, Cs), (&, R, Cs, f), (&, R, Cs, |B1]) or (K, R, Cs, b2])-

We defined the camera calibration matrix K with K33 = 1 because we often do not have access to the
world unit when working with images without knowing anything about the camera which was used
to make them. Moreover, a number of important tasks can be done without knowing the world unit.
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Figure 7.4: A calibrated camera pose can be computed from projections of three known points.

§1 Angle between projection rays Consider two image points if1, and if,. The direction vectors
of the rays are in g given by

R i S i,

X1‘3 = [ ia:| ’ xZﬁ = |: ia] (754)

To obtain the angle between the direction vectors by evaluating the scalar product of the vectors, we
need to pass to an orthogonal basis. The “closest” orthogonal basis is y. Hence

—

5T 2 T v—Tr—132
lexz;/ xlﬁK K X2p

cos Z(X1,%) =

2 > = > - (755)
[y %2y ][R g [K™ g

Notice that we could use the orthogonal basis y to measure angles instead of, e.g., the closest
orthonormal basis € since the unknown scale factor f cancels in the following formula

>T > ST =2
oo 3?]—63?26 B (f xly)(fxzy) B xlyxz)/
Cos (X, ) = 55— = —5—5— = 55 (7.56)
IFrell%2e|  1f Faelllf X2 %0y (]2 |

We conclude that we do not need to know f to measure angles between projection rays.

7.3 Calibrated camera pose computation

We have seen how to find (uncalibrated) perspective camera pose from projections of known six
points. In fact, we have recovered the calibration of the camera. Next we shall show that when the
calibration is known, we are able to find the pose of the camera from projections of three points. This
is a very classical problem which has been known since [16].

Figure(/.4lshows a camera with center C, which projects three points X;, X, and X3, represented by

vectors Xys, Xo5 and Xas in (0,0), into image points represented by ¥, ¥2g and X3s.
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§1 Classical formulation of the calibrated camera pose computation We introduce distances
between pairs of points as

dip = |Xos — Xsll,  doz = ||Kas — Xosll, a1 = || X1 — Xas| (7.57)

Since we see three different points, we know that all distances are positive.
Points Xj, X, and X3 are in (C, y) represented by vectors

JE)1')/ K_lfiﬁ
T]i = = T]l -1 - 7
IE K1

i=1,23 (7.58)

with n); representing the distance from C to X;. Distances 7; are positive since otherwise we could not
see the points.

§2 Computing distances to the camera center Calibrated perspective camera measures angles

between projection rays

T k= Tr—12.

B Xig K™ K™ xjp
[R=1 g | [K X

-

cij = cos Z(X;, X))

i=1,2,3j=(i—1mod3+1 (7.59)

Hence we have all quantities 1;, cos Z(xj, 3?]-) and d;;, which we need to construct a set of equations
using the rule of cosines dl.zj =17+ n}z. —21inj cos £(X;, X)), i.e.

&, = ni+m—2mmen (7.60)
Ay = MmN -2mmen (7.61)
A = n3+n—2mmen (7.62)

with ¢;; = cos £ (¥, ¥}).

We have three quadratic equations in three variables. We shall solve this system by manipulating
the three equations to generate one equation in one variable, solving it and then substituting back to
get the remaining two variables.

§3 A classical solution Let us first get two equations in two variables. Let us generate new
equations by multiplying the left hand side of (Z.60) and (Z.62) by the right hand side of (Z.6I) and
right hand side of (Z.60) and (7.62) by the left hand side of (Z.61)

A, (G +m—2mmnacn) = dy (Nf + 13 — 2m M2 012) (7.63)
d3, (5 + 15 —2mnacs) = dos (5 + 15 — 2311 031) (7.64)

We could have made three different choices which equation to use twice but since all d;; # 0, and
hence all sides of the equations are nonzero, all the choices are equally valid.

We have now two equations with three variables but since the equations are homogeneous, we
will be able to reduce the number of variables to two by dividing equations by (e.g.) 1]% (which is
non-zero) to get

diy (M + i = 2mamacas) = dgs (141, — 2N cn) (7.65)
dyy (M + i — 2mamacas) = dys (14155 —2macal) (7.66)
with 1 = 2 and n;3 = 2. Notice that we have a simpler situation than before with only two

i m
quadratic equations in two variables. Let us proceed further towards one equation in one variable.
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We rearrange the terms to get a polynomials in 713 on the left and the rest on the right

d7, 07, + (—2d7, M2 c23) M3
(43 — d33) M5 + (235 31 — 245 o cos) s = day — d3y 1,

to get two quadratic equations

in 113 with

m =
pr =
=
my =
p2 =
2 =

mq T]%3 +pins = M
MM +pats = 2
d,

—2d3, 112 €23

d%s, (1+ ’7%2 —2Mpc12) — d%z’ﬁz

2 2
d31 - d23
2 d§3 c31 — 2 d%l M2 C23

2 )
dyy — d3; M,

d%s (1+ 77%2 — 2z c12) — d%z’?%z

(7.67)

(7.68)

(7.69)
(7.70)
(7.71)
(7.72)
(7.73)
(7.74)

We have “hidden” the variable 11, in the new coefficients. We can now look upon Equations as

on a linear system

o -1
my p2 M13 q2

The matrix of the system (Z.75) either is or is not singular.

§4 Case A If it is not singular, we can solve the system by Cramer’s rule [6,7, 5]

2
3

m3

giving

My (mip2 —map1) = qip2—q2pr
ma(mipy —map1) = miqa—moqq

2 2] - [
my p2 q2

B
ny p2

- |
B mp (2

(7.75)

(7.76)

(7.77)

(7.78)
(7.79)

Eliminating 113 (by squaring the second equation, multiplying the first one by mj p, — my p1, which is
non-zero, and comparing the left hand sides) yields

(m1 p2 — mapr) (q1p2 — G2 p1) = (my g2 — ma 1)

Substituting Formulas [7.69H7.74into Equation yields

0 = auﬁz+a31ﬁ’2+a21ﬁ2+u1mz+ao
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with coefficients

ay = —dyy —dy,dyy —dyydyy — 245, dyy 3, + 245, d5) + 27, d5, (7.82)
+4df, 65y dy i)

a5 = Adj,dyy e300 —4d, dSsc10 — 4d3, s dSy ca1 + 4dyy crndyy (7.83)
+4d5, c1p — 4d3, dys c31d5, ca3 — 843, ¢35 dyy d3, 12 — 845, ci d,
+4d3, dyy c1p dy,

ay = 8dychyd +4dyydy) — 2dyydyy + 24y, dyy — Ady, dyy 63, (7.84)

—4d3, 2, —4di, 5y dyy — 245, + 842, co3dS, 31 cao
AT, Gy dyydy) — Adyy cly dyy + 4dy, d5y ) + 8, dyy e 3 coscia

am = Adycindy +4d5,dS, o0 +4ddy c1n — 447, ez dSy o (7.85)
—8d7, dy c3 cro — 4dT, dys c31 3 023 — 4, dyycrad,y
+4d1, dy, c31 003 — 8dS; c12d5,

ay = 2dyydy) +2di, dyy ) — dyydy — diy dyy + 4d, d3y 5 (7.86)
—dyy — 2d3, d3,

We will use eigenvalue computation to find a numerical solution to Equation Construct the
following companion matrix

i (7.87)

oo r o
o~ oo
_ o oo
\
|2

and observe that
I-C| = nh+=2n + =+ —nn+— 7.88
| M2 ’ M2 s T2 s M2 s M2 Y (7.88)

Therefore, a numerical approximation of 11, can be obtained by computing, e.g., >>eig(C) in Matlab.
Complex solutions are artifacts of the method and should not be further considered. For every real
solution, we can then substitute back to Equation[7.79/to obtain the corresponding

miy 2 —madq

= 1= e 7.89
M3 P ——— (7.89)

d%z (‘7@3 - d%l ’?%2) + (d%3 - d%l) (0@3 (1+ 77%2 —2n12012) — d%z ’ﬁz)
2d7, (5, c31 — d5, co3 2) + 2 (d3, — d3,) d3, co3 N2

To get 11, 2 and 13, we consider Equation[7.60, which can be rearranged as

iy = (1+ 13, — 2maci) (7.90)
and hence yields positive
m = A2 (7.91)
\/1 + 7]%2 — 21712C12
M2 = Mmin2 (7.92)
i = Mmmns3 (7.93)
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§5 Case B Letusnow look at what happens when the matrix of the system (7.75) is singular. Then,
after substituting my, my, p; and p> from Equations[7.69 we have

mypy —mep;r = 0 (7.94)
261 d23 (1712 C23 — C31) =0 (795)
N2C23 = €31 (7.96)

We used the fact that neither d1» # 0 nor dpz # 0.

§6 Case B1 When cp; # 0, then we get

M2 = o (7.97)
€23
Substituting it to Equations[7.65|we get
€31 \o C31 o €312 C31

d; 2= = dy {1+ (=)-2—= 7.98
12 <( 23) + 175 — xs M3 023) 2 ( + (C23) = c12> (7.98)
diy (3 + Gy — 2031 33m3) = dys (35 + G5 — 2631 c3.012) (7.99)

and after some more manipulation obtain a quadratic equation
(dﬁ C23) ’713 (—2 d%z c§3 €31) M3 + d%z C31 — d§3 €3 — d%ea ¢ +2 d23 cr2¢3¢31 =0 (7.100)

in n13. We get 1, n2 and 13 from Equations [7.91] [7.92]

§7 Case B2 When cp3 = 0, then it follows from Equation that c3; = 0 as well. Returning back
to equations provides

d%z (’7%2 + ’7%3) = d§3 (1+ Tﬁz —2mac12) (7.101)
5y (i +115) = dys (1+ i) (7.102)

Expressing 113 from Equation [7.102] gives
(d3 — d3)) i3 = d3 111, — d3g (7.103)

§8 Case B2.1 When d2 # dgl, then we can write

2 d21 My — d%3

M= "% 75 (7.104)
s — dy
to substitute it into Equation [Z.101]
d2 72, —d>
3112 — “23
d%Z <n%2 + 2 _ 32 ) = d%s (1 + 7]%2 - 27712 C12) (7.105)
23~ Y31
which we further manipulate to get a quadratic equation in 11
(dly — d3s + d3;) iy + 2010 (dyy — d3)) o + 3y —dfy —dy3 = 0 (7.106)

We get 171, 12 and 73 from Equations 792
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§9 Case B2.2 Finally, when d3, = d3, then we get from Equation 7103

31/
M2 = 1 (7107)
and from Equation [7.107]
dZ
My = =(Q2-2cp) -1 (7.108)
di,
and hence the positive
A2
ms = f (2-2cp)—1 (7.109)
12

We get 11, 172 and 13 from Equations [7.92]

§10 Selecting solutions The above process of 1; computation often delivers several solutions. Itis
important to notice that some of them may not satisfy the original Equations For instance,
we always obtain solutions for the case A as well as for some of the cases B but only one of the cases
is actually valid. Hence, we need to select only the solutions that satisfy Equations and are
meaningful, i.e. are real and positive.

§11 A modern (more elegant) solution The classical solution is perfectly valid but it was quite
tedious to derive it. Let us now present another, somewhat more elegant, solution, which exploits
some of more recent results of algebraic geometry [2,[17].

Let us consider Equations [7.62]and proceed to Equations but, this time, using
all three pairs to get three equations in 112, 1713

fi = diy (i —2ma2macas) —dy (1403, — 2maci2) =0 (7.110)
fo = a3 (my+ s —2m2mscas) —dyy (14135 —2mzcan) =0 (7.111)
fo = di (14073 —2macar) —d3; (1+ 13, —2m2c12) =0 (7.112)

It is known [2}[17] that solutions to a set of k algebraic equations
filx1,...,x,) =0, i=1...,k (7.113)

in n variables, which have a fininte number of solutions, can always be obtained by deriving a
polynomial g(x,) = 0 in the last variable by the following procedure. If the system, does not have
any solution, the procedure will generate polynomial g, = 1, i.e. a non-zero constant, leading to the
contradiction 1 = 0.

The procedure is as follows. First generate new equations by multiplying all f; by all possible
monomials up to degree m

X1y, X, X0, X1 X0, e, Xy X0, X0 X0, e, X (7.114)
to get equations
f1 = O,...,fn = O, X1f1 = 0,...,xnfn = 0, x%fl = O, X1X2f1 = 0,...,3(,‘21 n = 0 (7115)

The degree m needs to be chosen such that the next step yields the desired result. It is always possible
to choose such m but it may sometimes be found only by using more and more monomials until the
Gaussian elimination of the matrix of coefficients, which combine monomials, does not produce a
row corresponding to an equation in x, only. Let us demonstrate this process by solving our problem.
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We use the following four monomials of maximal degree two

M2, M3, M2 M3, 17%2 (7.116)

Notice that we did not include the second degree monomial rﬁ3 since it turns out that equations
generated by that monomial are not necessary. We obtain 15 = 3 + 4 x 3 equations

i -

3 -
M2T53
f 3
¥ M3
3 2 42
e fi UEVRIEE!
M2 f2 771321712
M2 f3 313
M3 fi 2 77;3
msfo |[=m M2 | —Mm=0 (7.117)
M3 f3 M3 M2
13
mams fi 24
M2 s f2 2
711227713 f3 Z&Z
T]&z f 1 12
17%2 f2 Wiz
Mo f 3 - N
with
[ 0 0 0 0 m 0 0 —my 0 0 0 My mg  —my
0 0 0 0 ms 0 0 oy —myg 0 0 —ms 0 my
g 8 8 0 77746 8 0 8 myq 8 0 m3 —myp mg
m —m m. m —m:
0 0 0 m; 0 0 m: —myg 0 0 7mg 8 m; 0
g 0 g —my g 8 0 myq 0 8 ms 7771% mg g
m — m m, —m:
M= 0 m; 0 m; —myg 0 7m§ 0 mi 0 0 0 0 0 (7,118)
0 —m 0 0 myq 0 mg3 —myp meg 0 0 0 0 0
my 0 —my 0 0 my mg —my 0 0 0 0 0 0
ms 0 mgy —myg 0 —m3 0 my 0 0 0 0 0 0
—nmy 0 0 myq 0 m3 —myp 3 0 0 0 0 0 0
0 0 my 0 0 —my 0 0 0 my mg —ny 0 0
0 0 ms 0 0 m —m 0 0 —m;3 0 m 0 0
| 0 0 —m 0 0 g mi(l] 0 0 m; —myp mz 0 0|
and 2 2 2 2 2
miq dEZ my = d%z — d%S my = 2d 5 C23 miypo = 24d 3 C31
my = d23 ms = d23 — dgl mg = 2d23 C12 my = 2[51%2 C31 (7119)
2 2 2
Mz = d31 Mg = d31 —di, Mg = 2d31 €23 My = 25131 c12

Matrix M contains coefficients and vector m contains the monomials.

Notice in Equation that the last five monomials contain only on 71,. We have deliberately
ordered monomials to achieve this. Next, we do Gaussian elimination (with pivoting) of matrix M
and get a new matrix M.

One can verify that that the 10th row of M’ has the first nine elements equal to zero. Therefore

Mg, m =0 (7.120)

is a polynomial only in 715. In fact, it is exactly a non-zero multiple of polynomials obtained in cases
A, B1, B2.1 and B2.2 above.

Discussion of the cases happens in the Gaussian elimination with pivoting, which avoids dividing
by elements close to zero. The resulting polynomial may be of degree four (case A) but will have
lower degrees in other cases.

§12 Computing camera orientation and camera center Having quantities 11, 12, 173, we shall
-
compute camera projection center Cs and camera rotation R from Equation [7.24l
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The three points X, X, and X3 are represented in the world coordinate system (O, 8) by vectors
)_()15, Xps5 and X35. With known 11, 172, 113, we can represent them also in the camera (orthonormal)
coordinate system (C, €) by vectors

— > 3?,-6 f‘fly 'fi)/ .
Ve = e —m—te _p I T o3 (7.121)
A T N T T I TE A
Coordinate vectors )2,5 are related to coordinate vectors ﬁe as follows
Yie = R(Xi5—Cs) (7.122)
Yo = R(Xp5—GCy) (7.123)
Yse = R(Xz—Cs) (7.124)

There are three vector equations in IR?, which is nine scalar equations, and 12 unknowns in R and Cs.
Additional seven equations are provided by the fact that R is an orthonormal matrix, i.e. R'R = I and
R| = 1.

To compute R, we shall next eliminate Cs from Equations [Z122H7 124

Yoe — Yie = R(Xps — Xi) (7.125)
Yae — Yie = R(X35— Xis) (7.126)

and use the property (Equation[2.50/in Section[2.3)

-7

XexYe= ﬁ(ié x Ys) = R(Xs x Ys) (7.127)

of the vector product of any two vectors X, Y in R? and an orthonormal matrix R to write

(Vae = Yie) x (Vae = Y1) = (R(Kas = Ka5)) x (R(Xap — Xo)) (7.128)

R ((Xza — X15) x (X35 — Xlé)) (7.129)

which provides a triplet of independent vectors expressed in the two bases

Zoe = Yoe = Yie, Zas = Xos — X1 (7.130)
Zse = Yze — Y1e, Zzs = X35 — X1 (7.131)
Zie = Zoe x Z3e, Z1s5 = Zas % Z3s (7.132)

Rotation R can then be recovered from

[Zle Zoe Zse] = [Zlé Zos 235] (7.133)
as :
R= [Zle Zoe Zse] [215 Zos 235] (7.134)
With known R we get Cs as
Cs=Xs—R Yo i=123 (7.135)
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8 Homography

We shall next investigate the relationship between projections of 3D points by two perspective cameras
into two images. In general, the projections depend on the shape of the scene and camera poses
and this relationship may be very difficult to describe. However, there are several very important
situations when the relationship can be given in a form of a special image transform, the homography.

Let us first consider the situation when two (different) cameras share a common projection center.
That means, the cameras may have different coordinate systems, different orientations but must have
the same projection center. This situation often arises when photographing with a camera rotating
around its projection center, e.g., when taking images for constructing a panorama capturing wide
view angle. We shall see that the corresponding projections will be related by a homography.

Next, we shall look at a different situation when the cameras are unconstrained, i.e. they can be
anywhere in the space and with completely different poses and coordinate systems, but 3D points
are forced to lie in a single plane not containing the camera centers. This situation arises, e.g., when
photographing a flat screen, a poster or a facade from different viewpoints. Again, the corresponding
projections of the points in the plane (but not the projections of the points out of the plane) will be
related by a homography.

8.1 Homography between images with the same center

Let us consider two perspective cameras with identical projection centers C = C’, which project
point X from space to their respective image planes © and 7/, Figure We introduce image
coordinate systems (o0, ) with a = [51,52] in 7 and (0, &) with o/ = [5{,5&] in 7’ and use them to
construct the corresponding camera coordinate systems (C, ) with g = [15)1,52, by = Co] and (C, B)
with g/ = [b!,B5, B, = Co'].

Point X is projected to image points along the projection rays, which are intersected with 77 and 7t’.
The projection of X in 7 is represented by vector i, = [u,v]". The projection of X in 7’ is represented
by vector i/, = [u/,v']".

Vectors ¥ and X’ are two direction vectors of the same ray and hence are linearly dependent. Since
they are both non-zero for X # C, their linear dependence is equivalent with

JAeR: A = % (8.1)

To arrive at the relationship between the available coordinates of vectors X and ¥, we shall now
pass from vectors to their coordinates. There holds

AXY = % (82)
AT, = (8.3)
AT, = HI (8.4)
true for some 3 x 3 real matrix H with rank H = 3, which transforms coordinates of a vector from basis
B to basis f'.
Considering the choices of camera coordinate systems, we see that
AT, = HI (8.5)
u’ u
Ald | = H|v (8.6)
1 1
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P

=y

Figure 8.2: All 3D points are in a single plane. Coordinates in the plane and in the image are related
by a homography.

We have obtained an interesting relationship. The above equations tell us that the image projections
are related by a transformation, which depends only on image projections, and to find it, we do not
need to know actual positions of points X in space. This is the consequence of having C = C'.
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§1 Relating homography matrix to camera projection matrix Matrix H is related to camera
projection matrices. Consider two camera projections given by Equation

N . )_()5 . _)‘ }Z)(S . - B -
A L SR L e 7)
12 / X)é N o D/ }_()5 —_¥R (¥ _C
¥, = P [J[KR\—KRCO] 2 =KR (X -Gy (8.8)
for all X5 € R3, which gives
(R = X5-G (8.9)
¢ R’TK/‘%E;/ = X;—Cs (8.10)
and therefore
C R’TK’_lfé, = (RTKR (8.11)
/
%fﬁ/ = KRR'K'% (8.12)
for all corresponding pairs of vectors g, flg,. Let us now compare Equation with Equation 8.5
i.e. with
/\J?é, — Hj (8.13)
We see that /
H=KRR'K! when A= % (8.14)

8.2 Homography between two images of a plane

8.2.1 One image of a plane

Let study the relationship between the coordinates of 3D points X, which all lie in a plane o, and their
projections into an image, Figure Coordinates of points X are measured in a coordinate system

(O,06) with 6 = [dq, d_;, d?,] Vectors dq, d_; span plane ¢ and therefore

. x
Xs = y (815)
0
for some real x, y.
The points X are projected by a perspective camera with projection matrix P into image coordinates

iy = [u,0]", wrt. an image coordinate system (o, a) with a = [51,52]. The corresponding camera
coordinate system is (C, f) with g = (51, l;z, 15)3)

To find the relationship between the coordinates of Xs and il,, we project points X by P into
projections X as

u % y X
Clo|=Cx =P [15]=[p1 D2 D3 D4] g =[p1 p2 pa| |y | =Hi (8.16)
1 1
1

where p1, P2, P3, p4 are the columns of P.
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Figure 8.3: All 3D points are in a single plane. Two images of the points are related by a homography.

Notice that 3 x 1 matrix i/ = [x,1,1]" represents point X in the coordinate system (C, 7) with the
basis T = (dy,dp,ds), where the d; = CO is the vector assigned to the pair of points (C, O). If point C
is not in o, then vectors d1, d>, d4 are independent and hence form a basis. Therefore, matrix

H=[p1 p2 P4 (8.17)

represents a change of coordinates and has rank 3.

When we think about pair (C, o) as about a camera that shares its projection center with camera
(C, ) and imagine that points X are all (accidentally) in the projection plane o, we see that we have
recovered the relationship between cameras sharing their projection center.

8.2.2 Two images of a plane

We shall now consider the situation when all points in the scene are in a single plane. Then, as we
shall see, the projections of the 3D points, which are in the plane, are again related by a homography
even when the camera centers are located at different points in the space.

Let us consider a plane 0 and two perspective cameras with (in general different) projection centers
C and C’, which do not lie in ¢ and the corresponding projection matrices P and P’/

P = [p1 p2 p3 Du (8.18)
P' = [p{ p P; pf (8.19)

where p; € R3 and pl.’ €eR3,i=1,...,4 stand for the columns of P, P’.
We establish coordinate systems (O, 0), (C,B), (C’, ') in the standard way, see Figure 8.3]to get

X

Xs= |y (8.20)
0
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for some real x, .
Point X € o is projected to the cameras as

X o
- X
N X 7
(% = P {15}=[p1 P2 D3 D4 g =[p1 P2 pPa]|Yy| =G
1 |1
- -
> Xs i
A R R A A E A e d
1
1

for some C, ' € R\{0} and two new coordinate systems (C, t) with 7 = (d_;, d;, d_;), where the dz - CO
and (C',7') with v’ = (dl,dz,d ), where the d’ co.

We see that there are two dlfferent Vectors,  and i, which appear on the right hand side of the
equations in different bases, i.e. as i/; and ¥/,

Cxg = Gy (8.21)
xy = Gy (8.22)
with G = [py, p2, p4] and G’ = [p], pz, p4]
Coordinate systems (C, ) and (C’, 7') are so special that
e =1, (8.23)
for all points in 0. Consider that
= — - - — - *
Yo = (X+CO)T=X~[+d4T= (;,dé,i)+d4(dq,zﬁ?z,d1) = ;1'/ (8.24)
X
g A2 oo 7 _
Yoo = X+COp =Xor+dy, =Xz 2 nt d4(§,§,2) - % (8.25)
and therefore, when C ¢ 0 and C’ ¢ ¢, we get
(X, =G 60K (8.26)
which we can write as
A%}, = H (8.27)

for A = f and H = G'G!. Clearly, H € R3*3, rankH = 3.
We could also interpret this situation such that two images of a plane are related by the homography,
which is a combination of the homographies relating the plane to its two images.

8.2.3 Cameras with the same center

In the derivation of Equation 8.27], we have never asked for centers C, C’ be different. Indeed,
Equation is perfetly valid even when C = C’. At the same time, however, there also holds
Equation[8.14 true, and thus we have

H = GGt (8.28)
— [0/ 2, p)][p1r P2 Pl (8.29)
H = KRRk (8.30)
— [p! 0, ©i][e1 P2 B3] (8.31)
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Let us see now purely algebraic argument why the above holds true. Since the cameras have the
o 2 T .
same projection center Cs = [Cl C2 C3] , We can write

ps = —KRCs; and p, = _K'R'Cs (8.32)
and hence
H = GGt (8.33)
— [p! b, p)][o1 P2 pa] (8.34)
2 2 17 Tt
= K’R’[i j —Cé] [i j —Cé] R'K™ (8.35)
= K'RR'K™! (8.36)

withi=[1 0 O]T andj =[0 1 OJT. We see that there always holds

[0/ v, p,][pr P2 pa] ' =[p] P, Pi|[m1 P2 P3| (8.37)
1 2 4 1 2 3

true for two cameras with the same projection center irrespective of where actually the points in space
are since we would get the same images for points obtained by intersecting the rays with the plane
z = 0 in the coordinate system (O, 6).

8.3 Spherical image

Consider a camera rotating around a center C and collecting n images all around such that every ray
from C is captured in some image. We can choose one camera, e.g. the first one, and relate all other
cameras to it as

/\iﬁ?ﬁ] = Hifﬁjl i=1,...,n (838)
Since all vectors ¥ were captured, there inevitably will appear a vector with coordinates

X
2= |y (8.39)
0

Such vector does not represent any point in the affine image plane m; of the first camera because it
does not have the third coordinate equal to one. To be able to represent rays in all directions, we
have to introduce spherical image, which is the set of all unit vectors in R3 (also called omnidirectional
image). We sometimes use only a subset of the sphere, typically a cylinder, to capture panoramic image.
In such a case, we can remap pixels onto such cylinder and then unwarp the cylinder into a plane.
Notice however, that in such a representation, straight lines in space do not project to straight lines
in images.

All equations we have developed so far work with minor modifications also for vectors with last
zero coordinate. We will come back to it later when studying projective plane which is somewhere
between the affine image plane and full spherical image.

8.4 Homography — summary

Let us summarize the findings related to homography to see where it appears.
Let us encounter one of the following situations

1. Two images with one projection center Let [1,v] " and [/, ¢] T be coordinates of the projections
of 3D points into two images by two perspective cameras with identical projection centers;
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2. Image of a plane. Let [1,0]" be coordinates of 3D points all in one plane o, w.r.t. a oordinate
systeminoand [1/,v'] " coordinates of their projections by a perspective cameras with projection
center not in the plane o;

3. Two images of a plane Let [1,v]" and [1/,7']" be coordinates of the projections of 3D points all
in one plane o, into two images by two perspective cameras with projection centers not in o;

then there holds
u’ u
JHe R¥3, rankH = 3, so that V [i,v]" & [, v']" IAeR: A | ¢ | =H | v (8.40)
w’ w

true where w = w’ = 1 for perspective images and may be general for spherical images.

In all three cases, coordinates of points are related by a homography. We have used linear algebra to
derive the relationship between the coordinates of image points in the above form. The homography
can be also represented in a different way.

To see that, we shall eliminate A as follows

Ll/ u hu ]’l12 h13 u
Al = H|o|=|h1 h»pn hxy Y (841)
1 1 h31 hz  hsz 1
M = hipu+hipv+ hiz (8.42)
AV = h21 U+hpov+ h23 (843)
Al = h31 U+ h3p v+ h33 (844)

]’le u+ I’llz 0+ h13
o 8.45
" h31u+h320+h33 ( )

h21 U+ hpo+ h23
o 8.46
v h31u+h320+h33 ( )

We see that mapping & obtained as

hll M+h12 U+h13

u — u | haruthznvthss
[U/} _h<[v]> | it othy (8.47)

h31 u+hsp v+hss

is a mapping from a subset of R? to IR? but it is not linear! It contains fractions of affine functions.
Although we can understand the homography as a linear mapping in certain sense, it is not a linear
mapping in the standard sense.
Matrix H represents a linear mapping from IR? to R®. However, we are not interested in the indi-
vidual vectors in IR but in complete one-dimensional subspaces, which correspond to the direction
vectors representing projection rays.

Notice that A can accommodate for any change of the length of [u v 1 ]T (except for making it
zero) since it can be split into &, &' and used as

u u
gld = HE | (8.48)
1 1
x = Hx (8.49)
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We can now think about x and x” as about one-dimensional subspaces of R® generated by ¥ and ¥".
The “equation’
x' =Hx (8.50)

then actually means
¥ e x and 3x’ € x" such that ¥’ = HX (8.51)

Thus the homography can be seen as a mapping between one-dimensional subspaces of R®. While
R3 itself is a linear space, the set of its one-dimensional subspaces, in the way we use them, is not a
linear space and therefore the homography is not a linear mapping although it is represented by a
matrix H, which is used to multiply vectors.

It is also important to notice the true relationship between homographies and 3 x 3 real matrices.
Any 3 x 3 real matrix of rank 3 represents a homography but many different matrices represent the
same homography. Let’s see why.

Let us consider H € R3*3 and G € IR3*3 such that £H = G for some & # 0. We can write

g7 = HX (8.52)
£8® = EHR (8.53)
8% - 67 (8.54)
V¥ = 6% (8.55)

We see that H and G represent the same homography. Indeed, two matrices related by a non-zero
multiple represent the same homography. Hence, it suggests itself to associate homographies with
one-dimensional subspaces of 3 x 3 matrices.

8.5 Computing homography from image matches

Let us turn to the computational aspect of the homography relationship between images. Our goal is
to find the homography mapping from a few pairs of corresponding image points. We shall see that
this problem leads to solving a system of linear equations.

8.5.1 Basic procedure for computing general H

Our goal is to find matrix H in Equation without assuming any knowledge about cameras. Let
us introduce symbols for rows of homography H

b
H= h2T and for the vector x= | v (8.56)
T 1
hy
and rewrite the above matrix Equation [8.40as
A = hlx (8.57)
AY = hyx (8.58)
A = hix (8.59)
Eliminate A from the first two equations using the third one
(hyx)u’ = h/x (8.60)
(hjx)v' = hyx (8.61)

(8.62)

“__r

!Monograph [15] very often uses exactly in this sense of equality of one-dimensional subspaces.
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move all to the left hand side and reshape it using x'y = y ' x

x'hy —(Wx")hy = 0 (8.63)
x'hy—(0x")h3 = 0 (8.64)
(8.65)
Introduce notation -
h=[h/ h] hj] (8.66)
and express the above two equations in a matrix form
uv 1000 —vu —uv —u
{O 00 uov 1 —du —vo —v’}hzo (867)
Every correspondence [u,v]" & [u/,v']T brings two rows to a matrix
uv 1000 —vu —vv —u
000 wuov1 —du —vv 0|y = ¢ (8.68)
M h = 0 (8.69)

If £G = H, £ # 0 then both G, H represent the same homography. We are therefore looking for one-
dimensional subspaces of 3 x 3 matrices of rank 3. Each such subspace determines one homography.
Also note that the zero matrix, 8, does not represent an interesting mapping.

We need therefore at least 4 correspondences in a general position to obtain rank 8 matrix M. By
a general position we mean that the matrix ¥ must have rank 8 to provide a single one-dimensional
subspace of its solutions. This happens when no 3 out of the 4 points are on the same line.

Notice that M can be written in the form

(g o1 1 0 0 0 —wjuy —uwjor —uf
/ / /
u vp 1.0 0 0 —wyup —u,vp —u,
M= : 8.70
0 0 0 uy nm 1 —v’1u1 —0’101 —v’l (8.70)
/ / /
0 0 0 u v 1 —Uyly —U,U2 —T,
with indices naming different points, which can be rewritten more concisely as
o | T T
X, 0 u; X,
T T r T
x, 0 —Uy X,
M= | g7 o7 oyt (8.71)
0 x —ux
T T r T
0 x, -u,x,

with 07 = [0,0,0].
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8.5.2 Advanced procedure for computing a general H

Let us next give a more general procedure for computing H, which will be analogical to the general
procedure for computing Q in[§1]
We start from Equation [8.40]
Ax' =Hx (8.72)

with x = [u,0,w]" and x’ = [u/,v’,w']" and follow the derivation in§ T]to get

Ax' = Hx (8.73)
[x'],Hx = 0 (8.74)
xH [x], = 0 (8.75)
o(xTHT [x']]) = o(0") (8.76)
([x].®x")oH") = oeh) (8.77)
0 —w’ v’
w’ 0 —u' |®x' |oH") = vO") (8.78)
—0' u’ 0
0 —w'x' v'x"
w'x" 0" —u'x" | vH") = o6 (8.79)
—o'x " u'x’ o'
For more correspondences numbered by i, we then get
[ 0T —wix]  ovx| ]
of —wyx, Ux,
T T T
w{x1 0 fu{xl
wix, 0" —ujx) |oH') = 0 (8.80)
—v{xlT u{xlT o'
—Uész uész o'

which is, for w = 1, equivalent to Equation[6.30} Notice that v(H') = h from Equation [8.69]

8.6 Advanced Homography Situations

8.6.1 Homographies conjugated to a rotations

Let us consider the situation when K = K’ since then

H=KRR'K! (8.81)
which implies that H is similar [5] to a rotation, i.e.

K 'HK = R'RT (8.82)

and hence has one eigenvalue equal to one, the other two eigenvalues are complex conjugate with
modulae [3] equal to one.
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Let us study homographies H conjugated to rotations S = R'R as in Equation We shall first
check that such homographies are characterized by the following condition

eig(H) = (1,x + iy, x — iy) for some real x, y such that x* + 1> = 1 (8.83)

Eigenvalues of a rotation S can be written as (1, x + iy, x — i y) for some real x, y such that X%+ y2 =1.
Consider
H—AI| =K H-AI|l K| =|K'HK-K'AIK| =[S~ AT (8.84)

an therefore eigenvalues of H are equal to eigenvalues of S.
Next, assume that eigenvalues of H are equal to eigenvalues of a rotation S. Then we can write

SU=UA and HV=VA (8.85)

for a matrix A with the eignvalues on the diagonal and matrices U, resp. V, of eigenvectors of S, resp.
H. Now, if y # 0, the eigenvalues are pairwise distinct. Then it is possible [4, 5] to construct matrices
U, V, from the respective eigenvectors of unit length such that they are regular, and we can write

A= A (8.86)
viHV = Ulsu (8.87)
uvlHvu! = s (8.88)
Q'k'HKQ = S (8.89)
K'HK = QsQ! (8.90)

We introduced an upper triangular matrix K and a rotation Q such that VU~! = KQ, which is always
possible by the Gramm-Schmid orthogonalization process [5]. Matrix Q SQ~! is a rotation and thus H
is similar to a rotation by an upper triangular matrix.

If y = 0 then the eigenvalues are either (1,1,1) or (1, —1, —1). In the former case, S = I and hence
K HK =1 implies H = I, and hence H is a rotation. In the latter case, S is a rotation by 180° and H is
thus similar to a rotation.

Let us now characterize the homographies conjugated to a rotation algebraicly. The characteristic
polynomial of H is as follows

p(A) = AI-H=A-1)A—-x—yi)(A—x+yi) (8.91)
= B -QRx+DA2+2x+1)A-1 (8.92)
= A% —traceHA? + (Hjp +Hpp + Hzz) A — H]| (8.93)

since x* + y* = 1. Symbols H;; denote minors after removing row i and column j. We are thus getting
two algebraic constraints on H

traceH = Hy; + Hy + Hzz and |H‘ =1 (8.94)

which are polynomials of degree two and three in elements of H, respectively, which is a representative
of the homography. Clearly, any-nonzero multiple of H satisfying Equation [8.94] also represents the
same homography and therefore rank three matrices constrained by the first equation in Equation[8.94]
are permissible representatives of homographies between images obtained by a rotating camera with
constant internal calibration.

Finally, when K = K’ = I, then H = S, i.e. a rotation, is a representative of such homography and
hence all non-zero multiples of rotations are permissible representatives of homographies between
images obtained by a rotating calibrated camera.
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8.6.2 Structure of homographies induced by a plane in the scene
8.6.3 General perspective cameras

Let us look at Equation [8.26/in more detail. We can write

/
%fé, — G6 % =[p p, pl] [P P> pa] ' (8.95)
‘10 J[ftro 17
= A |01 =Cj||0 1 -C5|a'% (8.96)
[0 0 00
(10 ¥ [1 0 —x]"
= A |01 =y |01 —y|A'% (8.97)
|0 0 —Z 0 0 —z

We have introduced new symbols to represent vectors

-

Co=[x v z]' and Cl=[x ¢ 2]’

(8.98)

and have written the homography as a product of four matrices. Let us next compute the product of
the two middle matrices

C 1 0 (¥—x)/z
=%, = A0 1 (Y—y)/z|a'% (8.99)
00 7 /z

We see that the middle matrix on the right looks almost as the identity plus something. Let’s express
it in that way

% 10 (¥ —x)/z
ng, = A |01 ' —y)/z | A% (8.100)

We can now further rearrange expressions as follows

C (X' —x)/z
=X, = A (I+[(y’y)/z] [0 0 1])A1fﬁ (8.101)
Cp /
(z' —z)/z
1
= A’ C'-C 0 01 -1z 8.102
¢ (2@ o 1l)as .10
S 1
= AA 1 (Cy-C! 00 1]at)% 8.103
i (-G  0 0 i) .10

We denoted the third coordinate of 65 by 65 (3).

Vector %(3) [0 0 1] A~! has a geometrical interpretation. Consider the equation of plane ¢ in
o

coordinate system (O, 0)

[0 0 1 0] [}ﬂ =0 (8.104)

where [001]" is the normal vector of plane ¢ containing point X5 written w.r.t. (0,0),1i.e. ffST =[001],
where § is the dual basis to basis 6, Chapter
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Next, consider the camera coordinate system (C, ) with 17[; =A ()?5 - (is). We see that

[0 0 1 0] [A_Wf*éb] -0 (8.105)
[[0 0 1]a"! @(3)][?] - 0 (8.106)

provides the unit normal 77 of plane o in the dual basis f3 to basis

i =[0 0 1] a7 (8.107)

We have obtained the following formula for the homography between points g, fé, in the two
images, which is generated by the plane o

Cy
¥

= AAa 1+ (E =Cp L)z (8.108)
’ Cs(3) * ’

where fz’g is the normal vector of ¢ in j3, 65(3) is the distance of ¢ from the camera center C, and (,
' are the distances of points from the respective principal planes in multiples of the respective focal
lengths.

8.6.3.1 One internally calibrated camera

We will now consider Equation for the situation when the first camera is internally calibrated,
ie.
P1=[I| —Cé] and P, =[A'|a'] = [A’y —A’C(’S] (8.109)

Then, bases 1 and 6 become identical and Equation[8.108| can be written as

Lo it g g/
T/D?é, =A" | I+(C{—Cs) 7 X5 = | A" — 7@ Y= |A"— 77—{]‘5— %s (8.110)

where f}g/ are the coordinates of the vector from C to C’ in 8’. Notice that we have used the fact that 6

is the standard basis and therefore 7i5 transforms by the same matrix as X5 when changing a basis. To
stress that, we use 7is instead of #i5. Symbol d stands for the (non-zero) distance of the plane ¢ from
the center of the first camera, and a non-zero v/ = {’/C.

8.6.3.2 Two internally calibrated cameras

Let us next have a look at the situation when K = K’ = I. Matrices A, A’ become rotations, which we
stress by writing

Pr=[r| ~RG,| and P =|r'| RG] (8.111)
with orthonormal matrices R, R’. Equation [8.108 now becomes
- - 1 £ /
) -1 S>T | = -1 VST | 2
T’x)’/, =R'R <I+( »—Cy) 25 n7>xy = (R'R +7n->xy (8.112)

A question arises here. Does every rank three real 3 x 3 matrix represent a homography between two
calibrated images induced by a plane in the scene? We see from the following that the answer is yes.
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Let us consider a real 3 x 3 marix H and its SVD decomposition [5] p. 411]

H=U b v (8.113)
Cc

Now, if |[H| > 0, then we may ask fora > b > ¢ > 0 and [U| = |[V| = 1. Otherwise, we replace c by —c to
havea > b > 0 > cand |U] = |V| = 1. Next, when any two of a,b, c are equal, e.g. a = b, then we can
write the decomposition as follows

a b
H =10 b vi=vu b v’ (8.114)
| c c
1 0
= U|b 1 + 0 |[0 0 1]|vT (8.115)
1 c—b
0
= buvi+u| 0 |[[0 O 1]v' (8.116)
c—b

Hence, we need to consider only the situation when 4, b, ¢ are pairwise distinct. We can write

H = bUSV' +Uuv' VI =bR+tn'
[ ac+h? 0 Vb2—c? /a2 —p?
b (a+c) o b (a+c)
S = 0 1 0
\/ﬁ\/ﬁ 0 ac+b?
B b(a+c) b(a+c)
[ /22
a+c
u = 0
_Jr_z
L a+c

Vo= [V or o Vi@

Notice that b is non-zero since it must be greater than c else we would have b = ¢, which we excluded.
Moreover, a 4+ ¢ > 0 since they are either both positive or |a| > |c| and a is positive. Hence all the
formulas above are meaningful. It is easy to verify that S'S = I and |S| = 1 and thereforeR = USV'
is a rotation.

Consider a rank three real 3 x 3 matrix H. We see that it must be possible to write a non-zero
multiple of H as S + 7 ﬁ; for some rotation S and vectors 7, € R? and unit 7i; € R3. Hence, the
following equations

=
S
{

<£H—z7),/ﬁ;>T (su-d. ) =1, |(su-d, ) =1, ~1 (8.117)

have to be satisfied for some real & and some vectors 7, € R® and unit i; € R®. This is a set
of eight algebraic equations in seven variables. Clearly, the constraint ﬁ; it; = 1 can be replaced

by [0 0 1]#; = —1 to enforce that the plane normal faces the first camera. To get polynomial
equations, we multiply the left equation by ¢? = 1/£2 and the middle equation in Equation B.I17by
Y3 =1/ to get

.
- T T 2
(H—uyrﬁ)-,) (H—ﬁy/ﬁ7>=l/)I,

(B il)| = v [0 0 1] = -1 (8.118)
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with if,y = 7). Interestingly, this system had 12 solutions in general. Even more interestingly,
there are only four real solutions but with only two oposite values for 1. Taking into account that
point scales C, ' have to be positive, we get only two solutions with only one positive ¢ and two
corresponding solutions. Hence, the relative orientation of two calibrated cameras can be in a generic
situation obtained from four coplanar points up to two solutions.

2The following Maple [I8] run demonstrates the structure of solutions to the system of equa-
tions 8118l

Linear algebra shortcuts
>with(ListTools) :with(LinearAlgebra) :with(Groebner):
>E:=LinearAlgebra[IdentityMatrix](3):
>det:=LinearAlgebra[Determinant]:
>trn:=LinearAlgebra[Transpose]:
>M2L:=proc(M) convert(convert(M,Vector),list); end proc:
>X_:=proc(u) <<0|-u[3]|u[2]>,<u[3]]|0]|-ul[l]>,<-ul[2]|u[1l]]|0>> end proc:
>c2R:=c->simplify ((E-X_(c)) .MatrixInverse(E+X_(c))):
All solutions to a triangular Groebner Basis
>TriangularGBSolve:=proc(Eq, So)
local s, so, Si;
if nops(Eq)>0 then
Si:=[1;
if nops(So)=0 then
Si:=[solve([Eq[1]1D)];
else
for so in So do
s:=[solve(subs(so, [Eq[1]]))];
Si:=[op(Si),op(map(f->f union so,s))];
end do;
end if;
TriangularGBSolve(Eq[2..],Si);
else
So;
end if
end proc:

Simulate a calibrated homography
>R0:=c2R(RandomVector(3,generator=-10..10)):
>t®:=RandomVector(3,generator=-10..10):
>n®:=<-1,-2,-2>/3:

>s0:=3:
>HO:=s0* (RO+t0.trn(n0d));
_2 430 419
S R
o % % %
i —am ta

Formulas for H and R

>n:=<nl,n2,n3>:

>ti=<tl,t2,t3>:

>R:=HO-t.trn(n):

>H:=R+t.trn(n):

Equations

>eq:=convert (convert (expand ([op (M2L(trn(R) .R-s?*E)) ,det (R)-s®,n3+1]),set),list);

eq := [n3+1,3151/314(50/31) %1 xn1+n12%t12+ (600/31) s nl#t2+n12 %22 — (168/31) s nl+t3+n1% 3% —s%,9407 /31 —
(60/31)#t1xn2+n22x+12 + (1078/31) #1212 +n2% %122+ (28/31) xn2 3+ n2% 32 —s?,10811/31— (258 /31) 113 +n3*x
12+ (1120/31) %13 %2 +n3% %122 — (140/31) # 3% n3 +n3% 3% —s2, 5154 /31 4 (25/31) xt1 xn2 — (30/31)  t1 1l +nl n2
12+ (300/31) #n2 2+ (539/31) s nl#t2+n2snl 122 — (84/31) +n2 13+ (14/31) xnl+t3+n2xnl*t3?,5505/31 + (25/31) *
t1#n3—(129/31) xt1xnl +nl%n3%+12+(300/31) #1312+ (560/31) xnl#t2+n3xnl %122 — (84/31) #t3xn3— (70/31) xnlx
t3+n3xn1%t3%,9830/31—(30/31)#t1%n3 — (129/31) # 1+ n2 +n2xn3 1%+ (539/31) xn3% 12+ (560/31) xn2 # 2 + n2xn3=
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8.7 Advanced Homography Computations

Let us now look at some situations when cameras have constant internal calibration or are fully
calibrated.

8.7.1 Computing homography induced by rotating a calibrated camera

This is a simple situation. Let us construct a rotation matrix representing a homography from one
and half matching image points. Consider two distinct image points x, y in the first image that are
mapped on points x’, y’ in the second image as [ x'/||x’|| y'/||y’l|] =R [%/||x|| y/||ly||] by arotation
R. We can decompose R into a composition of two simple rotations R = Ry Ry such that

00 0 0
[x'/IIx']] y'/Iy'II[]=R |0 & |, [0 &|=Rre[x/llxl| y/llyll] (8.119)
1y’ 1y

with &, ¢ such that &2 + ¢? = &%y 1/)’2 = 1. Write

Ry =[rn ri 1"13]T and Rp=[ry 1 3] (8.120)

122+ (14/31) #3%1n3 — (70/31) % n2 3+ n2xn3xt32, — (725/31) %3 n3+ (840/31) 1 xn2 + (126/31) s nl 2+ (1470/31) =
#1351 — (1701/31) 11 5 £3 + (406/31) % n2 % £2 + (1700/31) 5 n2 3 — (70/31) % n3 % £2 — (1596/31) 1 % n3 + 7014/31 — 5%

The number of solutions

>G:=Groebner[Basis] (eq,plex(op([tl,t2,t3,nl1,n2,n3,s]))):
>Id:=PolynomialIdeals[PolynomialIdeal] ([op(G)]):

>print("Hilbert dimension =",Polynomialldeals[HilbertDimension] (Id));

>print ("The number of solutions =",Polynomialldeals[NumberOfSolutions] (Id));
"Hilbert dimension =", 0

”"The number of solutions =", 12

Solve it

>S:=TriangularGBSolve(G,[]):

and substite the solutions to get s, R, n, t and select the real solutions only
>sRnt:=map (f->evalf(subs(f,[s,R/s,n,t/s])),S):
>select(f->foldl(‘and‘,true,op(MTM[isreal] " (£))),sRnt);

[—0.610 —0.220 0761 [ —0545] [ —0.626

+30 | —0152 —0910 —0.385 —0.867 5.640
i | 0778 —0350 0522 | | —1.000| | -0230 | |
I [ 0602 —0344 07201 [—05001 [ —0.667 1

+30 | —0559 —0.462 —0.688 ~1.000 5.330
i | 0570 —0817 0860 | | —1.000 | | —0.667 | |
[ 0737 0421 —0529] [-0545] [ 08587 ]

~30 | —0517 —0.153 —0.842 —0.867 —6.860
i | 0435 0894 0105 | | -1.000 | | 0858
I 0636 0411 —0654 [-0500] [ 07347 ]

30 | —0765 —0.809 —0.583 ~1.000 —6.600
i | —0.768 0421 —0483 | | —1.000| | 0270 | |
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to see that
rip = sy (/][] < y/[lylD/I&/1x]] < y/lyIDI] (8.121)
ri = (%/|[x[] x r11)/[[(%/]|x]| x r11)]] (8.122)
ri3 = I XTI (8.123)
rar = s (x'/|[X'[| <y /|ly DN/ <yl DI (8.124)
r = (x'/[[x'|| x T2)/[[(x"/[|%"[| x £21)]] (8.125)
I3 = TIp] XTI (8.126)

where the signs s1, s, € {+1, —1} are chosen to make, e.g., £ > 0, &’ > 0. Notice that this procedure sets
R even when vectors [ x/||x|| y/||y||] can’t be exactly transformed to vectors [x'/|[x|| y'/||y’||] by
a rotation, which is often the case when they are estimated form noisy measurements. Nevertheless,
if the error affecting the vectors is small, R so obtained is still close to the true rotation between the
cameras.

8.7.2 Computing homography for rotating a camera with constant internal calibration

Consider a pointx = [x y 1 ]T in the first image that is mapped on a point x’ = [x' vy 1 ]T in
the second image by A x’ = K~!RK x with rotation R and a camera calibration matrix K.
We have seen, Equation [8.94] that the following two equations have to be satisfied

0 = traceH — (Hy; + Hx + H3z)
= hi1 + hy + h3z — hiy hoy — hi1 hag + hip hot + hiz 3y — hoo haz + hoz hap
1 - H (8.127)

= h11 hp haz — hi1 hoz hzp — hip hp1 has + hio hoz hay + hiz hot hzp — hiz oo 3y

with h;;, i, j = 1,2, 3 denoting the elements of H. It is easy to check in the Maple [18] computer algebra
systerrﬁ that the Hilbert dimension [2] of the system is equal to seven. Therefore, we will
need seven independent linear equations to reduce the Hilbert dimension to zero and thus obtain a
finite number of solutions [2]. We see that we can use four points to add eight independent linear
equations and so obtain a single solution. However, if point measurements in images were affected by

3 Maple [18] script analyzing the computation of a homography induced by a rotating camera with constant in-
ternal parameters. We note that some of the functions used here have been defined in previous Maple exam-
ples.

Setup the equations
>H:=<<h11|h12[h13>,<h21|h22|h23>,<h31|h32[h33>>:
>Heq:=[det(H)-1,simplify(det(H-E), [det(H)=1])1;
>HilbertDimension(Heq) ;

7

Simulate projections
>K:=<<10[1]5>,<0]12]6>,<0|0|1>>:

>R1:=c2R(<1,2,3>): R2:=c2R(<3,4,5>): t:=<<2,1,3>>:
>P1:=K.<R1|-R1.t>: P2:=K.<R2|-R2.t>:
>X:=<<01]1]0>,<0|0]1]1>,<0|0]|0]|0>,<1|1]1]1>>:
>x1:=a2h(h2a(P1.X)):

>x2:=a2hh2a(P2.X)):
>H®:=P2[..,[1,2,4]].inv(P1[..,[1,2,4]1]):

Check eigenvalues of HO

e:=Eigenvalues(HO),abs” (trn(e));

1
77 _ 36 ;
Z—=271,/1 1 1
[;_hgl} [
8 T 8
Add two independent linear equations per a corresponding pair of image points
eq:=[op(Heq), op(Flatten(map(i->M2L((X-(x2[..,i]).H.x1[..,i])[1..2]),[1,2,3,41)))]1;
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measurement noise, using all eight equations would almost surely produce an inconsistent system.
Therefore, it make sense to use only seven linear equations, which give six solutions and produce six
homographies conjugated to a rotation for any four (or more precisely, 3 + 1) points in two images.
If the error in the measurement is small, one of the so obtained H is close to the actual homography
between the images.

[ Pt + hoo + hsg — hiy By — Iy bz + hip oy 4 Bz gt — oo higg + hpz higp
hi1 hop hsg — hit o hgp — hip ot bz + hip hoz hay + hug oy hap — iz hpp hgy — 1

2 54252 74 182484 2466
—% hy + hsy — 5 hy + hzo — hos + 53 hss

565 565
2 24068 74 80956 1094
+Ehn — S ha + T — 522 hay + s — 335 has

—Zhy + B8 hyy — 18hyy + 2 hgy — hys + 1B hyg

= By 8B 181, — 288 + s — 161
2y + B2 hyy — By + ZE gy — hys + L hys
+25—3h11 - %h?ﬂ + 1%hlz— %hsz + hiz — %%3
—% hay + 13%28 hs — % by + 16217263556 hsy — hays + 2% hss
L +% hi — %hm + %hlz - 42%26 hay 4 3 — 6%}133 i
Solve it

>Basis(eq,plex(op(indets(H))));
[3825 hyy — 3319, 450 hyy — 43,3825 hy3 — 7337, 85 hyy + 36, 5 hyy — 4, 85 a3 — 522, 3825 hy + 38,450 hzp + 11,3825 hz3 — 4376

We are getting one solution but we have used eight linear equations although seven linear
equations should be sufficient to get a finite number of solutions. Let us use seven linear
equations only.

>Basis(eq[1l..nops(eq)-1],plex(op(indets(H)))):

We see that we are getting a degree six polynomial in /i3

>B[1];

1384905521719726207524518830400390625 th + 4889332606744002799184541025140000000 hgs —
3004780464450070944458597429463562500 13, - 62963310535984882573971620665889376000 13, —
1098716737305688573847805032564563200 /13, + 231760248490986847248483050694397009920 /155 -

176966810281848547933751731455841501184

and six solutions for H
>S:=TriangularGBSolve(B,[]):

>dg:=Digits: eDigits:=10:

>Sr:=convert (map(s->evalf(subs(s,H)),S),rational);

>Digits:=dg:
r 3319 43 7337 27989 11116 46056 _ 51941 174177 213038
3825 50 3825 113075 68877 11543 3866 144175 5423
_36 4/5 2 _ 53317 29162 62207 _ 40431 36210 710577
85 85 |’ 33688 29109 6739 |’ 1690 11627 12973
_ 38 11 4376 _ 4819 _ 3479 9932 _ 57914 6959 43100
L~ 3825 50 3825 93927 158824 7517 70849 87760 19401
ro40441  _ 20953 _ 69409 91103 _ 63957 ; 19612 | 16799 ; 137213 | 23642 ;
1236 8193 809 21006~ 17956 29061 ' 28267 6863 1355
132430  _ 26276 _ 1327299 178138 _ 43433 ; 114375 , 27263 ; 78611 135829 ;
2457 4897 11857 [/ | 16263 4596 43187 T 11331 2342 4558
72875 _ 5270 _ 94659 15541 _ 5675 ; 363 4388 ; 24050 | 122693 ;
L 39356 22337 37021 42367 ~ 17974 533530 462787 8569 46803
[0 | 63957 ; 19612 _ 16799 ; 137213 _ 23642 ;
21006 ' 17956 29061 — 28267 6863 1355
178138 | 43433 ; 114375 _ 27263 ; _ 78611 _ 135829 ;
16263 4596 43187 ~ 11331 2342 4558
15541 | 5675 ; 3263 | 4388 ; 24250 122693 ;
L 42367 T 17974 533530 ' 462787 8569 46803

Notice that the first solution is equal to the simulated homography, while the other solutions
(shown only up to 10 digits precision to avoid too long expressions) are ‘‘artifacts’’ of the
formulation.
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8.7.3 Computing homography induced by a plane observed by a calibrated camera

Let us first consider a point x = [x y l]T in the first image that is mapped on a point x’ =

[¥ v 1] " in the second image by A x’ = (R+un') x with rotation R, unit real vector n and a vector
u

Paragraph [8.6.3.2 shows how to decompose a homoghraphy, represented by H, between two cal-
ibrated images induced by a plane in the scene into R, t_;,/ /65 and 7iy. Let us now show how to
compute parameters of H directly from image data. We will parameterize rotations using the Cayley
parameterization [19]

G-+l 2 (c1c2+c3) 2 (c1c3—¢2)
Atd+ci+1 c%;—c%;—c%;—l Atd+d+1
2(cicp—c3)  —Cte—c3+l 2 (c2 c3+¢1)
R(c1,00,C2) = 8.128
(cLexe) = | Zma ] Brdeda 2+drde (8.128)
2 (c1c3+c2) 2 (c2c3—c1) —-g+G+1
A+d+3+1 A+a+i+l A4d+d+1

for c1,c,c3 € R, which excludes rotations by 180°, since two perspective cameras can’t look the
opposite directions when seeing a non-degenerate piece of a plane in space. Similarly, we will
assume that i7y3 = 1 since the first (as well as the second) camera has to look at the plane. We are free
to orient the plane normal towards the first camera to remove unnecessary ambiguity and to reduce
the number of solutions to one half.

When the data is exact, we see that we are getting 11 solutions in general, out of which three are
realf]. The ideal generated by the equations from four co-planar points is radical but it is not prime [2]].

“Maple [18] script analyzing the computation of a homography between two calibrated images induced by a plane in a
scene observed by the cameras. We note that some of the functions used here have been defined in previous Maple
examples.

Constraints on a homography induced by a plane between calibrated images
>n:=<nl,n2,n3>:
>ti=<tl,t2,t3>:
>R:=c2R(<cl,c2,c3>):
>H:=R+t.trn(n);
12—c22—c32 41 +t1nl 2 clc2+c3 +H1n2 2 clc3—c2 +t1n3

12422 +c3% +1 cl§+c2§+u3§+l 12422 +3% +1
. clc2—c3 I el e c2c3+-cl
H: 2 T T 2nl s T 2n2 2 —01§+CZ§+53§+1 + t2n3
clc34c2 —c2c3+4-cl 1742 —c37—1
2 Tt T t3nl 2 Trriaa T t3n2 i T t3n3

Simulate projections
>R1:=c2R(<1,2,3>): (Cl:=<<2,1,3>>: Pl:=<R1|-R1.Cl>:
>R2:=c2R(<3,4,5>): (C2:=<<2,3,1>>: P2:=<R2|-R2.C2>:
>HO:=P2[..,[1,2,4]].inv(P1[..,[1,2,4]1]);
>X:=<<0]10]10|0>,<0(0|10|10>,<0[0[0]0 >,<1]1|1]1>>:
>x1:=a2hh2a(P1.X)):
>x2:=a2h(h2a(P2.X)):
Setup equations
>eq:=[n3+1,op(numer (normal (Flatten(
map (i->M2L((X_(x2[..,i]).H.x1[..,i])[1..21),[1,2,3,4])
NN
Solve them
>B:=Basis(eq,plex(cl,c2,c3,nl,n2,n3,tl1,t2,t3)):
and analyze the ideal
>Bi:=PolynomialIdeals[PolynomialIdeal] ([op(B)]):
print("Hilbert dimension =",PolynomialIldeals[HilbertDimension] (Bi));
print ("The number of solutions =",Polynomialldeals[NumberOfSolutions](Bi));
print("Is radical =",PolynomialIdeals[IsRadical](Bi));
print("Is prime =",PolynomialIldeals[IsPrime](Bi));
print("Is primary =",PolynomialIdeals[IsPrimary](Bi));
print("Is maximal =",PolynomialIdeals[IsMaximal](Bi));
"Hilbert dimension =", 0
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We see that the corresponding variety is a union of three irreducible variaties, each consisting of a
single real point, and a component consisting of eight non-real points.

When the data are affected by measurement noise, however, the same formulation produces 12
solutions, out of which, now, four are real. The ideal generated by corrupted measurements is now
prime, primary and maximal [2].

We also see that for small noise, one of the four solutions is reasonably close to the true simulated
solution.

”The number of solutions =", 11
"Is radical =", true
"Is prime =", false
"Is primary =", false
”Is maximal =", false
We see that the ideal can be obtained as an intersection of four prime ideals
>Bd:=PolynomialIdeals[PrimeDecomposition] (Bi):
BB:=map(i->Basis(i,plex(cl,c2,c3,nl,n2,n3,tl,t2,t3)),[Bd]):
map (b->[HilbertDimension(b),
PolynomialIdeals[NumberOfSolutions] (PolynomialIdeals[PolynomialIdeal](b))],
BB);
([0, 11, [0, 11, [0, 1], [0, 8]]
which consists of single and eight points, respectively. There are 11 solutions for t3
>PolyVarMonomials([B[1]],plex(op(indets(B[1]))));
[t311, 310,439,138, 437,136, ¢35, 34, 33,132, 13, 1]
Let us get solutions to all variables
>S:=TriangularGBSolve(B,[]): mnops(S);

11
We see that we are also getting 11 solutions. Let’s select the real ones and substitute back to
H, R, n, t

>sH:=map (f->evalf([subs(f,H),subs(f,R),subs(f,n),subs(f,t)]),S):
>sH:=select (£->MTM[isreal] (£[1]),sH): nops(sH);
3

to see that we are left with only three solutions. Let’s compare it to the simulation.

>[HO,RO,-n®/nO[3],-t0*nO[3]];
r [ 247 104 4 ro 145 0 28 7 r

- r8 7

2
255 255 17 153 153 153 5 153
M om Y D T B ! 1
765 765 153 765 765 153 5 51
G R 1 2
L L 765 765 153 L 765 765 153 L m L 153 4
>convert(sH,rational);
Cr o271k a4 f M 4 87 [ _27 [_8 77
255 25 17 1 153 153 5 153
Wm oW Y BB W & 1
765 7t 15! 7t 7t 15! 5 51
B R B ® B B ] s
L L 76 765 153 L 765 765 153 _ L 153 1
Fr_2 s i Py s T s 20 7
2! 2! 17 4! 71 1 2! 1
Mmoo Y B GRS B B
71 7t 1 4! 7t 1 25 51
R B 1w 1 A E
L L 765 765 153 9 153 153 153
CF 47 i 4 200 3068 _ 16 "2 -
255 255 17 3825 3825 153 25 153
3 13 2 _s6 a3 32 » s
765 765 153 765 765 153 25 153
R T s 17 1 s
L L 765 765 153 3825 3825 153 51

We see that the first solution equals the sumulation. Let’s next add noise of about 0.1% of the
measurement range.
>x1:=x1+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0|0|0]|0>>:
>x2:=x2+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0|0|0]|0>>:
>eq:=[n3+1,op(numer (normal (Flatten(map(i->M2L((X_(x2[..,i]) .H.x1[..,i]D[1..21),[1,2,3,41)))))1:
and analyze the ideal
>B:=Basis(eq,plex(cl,c2,c3,nl,n2,n3,tl,t2,t3)):
Bi:=PolynomialIdeals[PolynomialIdeal] ([op(B)]):
print("Hilbert dimension =",PolynomialIdeals[HilbertDimension](Bi));
print("The number of solutions =",PolynomialIldeals[NumberOfSolutions](Bi));
print("Is radical =",PolynomialIdeals[IsRadical](Bi));
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8.8 Constraint on two homographies induced by two planes

Let us now consider the situation when there are two planes 01 and o7 in the scene, Figure[8.4l Then,
the planes induce two homographies H;, H, between the two images. We can write, Equation [8.108]

- - 1
! 2! 1 a—1 / ST - N
TiX;, = A'A (I+(C - GCp) = nl-)xﬁzHlxﬁ
f Cs,(3)
- - 1
2! 1 a—1 / ST - N
Ty Xg = A'A (I + (C — C‘g) > 1’l2—) xXg = Hp Xg (8.129)
f C52(3) P

which means that thare are matrices Hy, H such that for every point fﬁ in image one and the corre-
sponding point X}, in image two there are real 7/, 7, such that Equaitons 8129 hold true.

print("Is prime =",PolynomialIldeals[IsPrime](Bi));
print("Is primary =",PolynomialIdeals[IsPrimary](Bi));
print("Is maximal =",PolynomialIdeals[IsMaximal](Bi));
”Hilbert dimension =", 0
”"The number of solutions =", 12
”Is radical =", true
"Is prime =", true
"Is primary =", true
”Is maximal =", true
We see that the ideal is prime and consists of a single component of 12 points
>Bd:=PolynomialIdeals[PrimeDecomposition] (Bi):
BB:=map(i->Basis(i,plex(cl,c2,c3,nl,n2,n3,tl,t2,t3)),[Bd]):
map (b->[HilbertDimension(b),
PolynomialIdeals[NumberOfSolutions] (PolynomialIdeals[PolynomialIdeal](b))],
BB);
([0, 12]]

There are 12 solutions for t3

>PolyVarMonomials([B[1]],plex(op(indets(B[1]))));

[t312,£311, 310, +37, ¢35, 437, ¢3%, 3%, 34, ¢33, 132,13, 1]

>S:=TriangularGBSolve(B,[]): nops(S); map(f->simplify(eval(B,£)),S);

12

out of which four are real

>sH:=map (f->evalf([subs(f,H),subs(f,R),subs(f,n),subs(£f,t)]),S):

>sH:=select (f->MTM[isreal] (£[1]),sH): nops(sH);

4

Let’s compare them to the simulation.

>[evalf[3] (HO),evalf[3](RO),evalf[3](-n0/n®[3]),evalf[3]1(-t0*nO[3]1)]; ~
0.969 0.408 0.235 0.948 0.261 0.183 —0.400 —0.052

—0.413 0.148 —-0.013 —0.303 0916 0.261 —2.800 0.274

| | —0.042 0.099 1.090 —0.099 —-0.303 0.948 —1.000 —0.144 | |

>_malp(f—>print(evalf[3] (£)),sH): .
—0.969 —-0410 -—-0.237 —0.833  0.543 0.105 —0.398 0.342
0.413 —-0.147 0.014 0.543 0.767 0.342 —2.790 0.328
| | 0.042 —-0.099 —1.090 0.105 0.342 —0.934 —1.000 0.158 |
[ —0.969 —0.410 —0.237 —0.820 —-0.563 —0.104 —1.120 0.133
0.413 —-0.147 0.014 —0.358 0.646 —0.674 1.150 —0.688
| | 0.042 —-0.099 —1.090 0.446 —0.516 —0.731 —1.000 0.361
[ 0969 0.410 0.237 0.948 0.261 0.183 —0.398 —0.053
—0413 0.147 -0.014 —0.303 0916 0.262 —2.790 0.276
| —0.042  0.099 1.090 —0.099 —0.304 0.948 —1.000 —0.145
[ 0969 0410 0.237 0.568 0.803 —0.105 —-1.120 —0.341
—0413 0.147 -0.014 —0.780 0.525 —0.342 1.150 —0.328
| | —0.042  0.099 1.090 —0.219 —-0.282 0.934 —1.000 —0.158

We see that the third solution corresponds to the simulation.
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Figure 8.4: There are two planes in the scene 01 and 0, inducing two homographies H;, H, between
the two images.

We are interested in finding the constraints on arbitrary representatives of the two homographies,
i.e. matrices G; = A1H; and G = AxH, for some real Ay, 2. We see that there follows from Equa-
tions that

- = 1 -
MG = A'A! <I+(C’— 5) S ﬁT-)zA(I+tﬁ77T)

1
Cs, 3) ' P
- - 1 -
MG = A'ATT <I +(Cy—Cp) 5 ﬁ}) = A(I+157)) (8.130)
Co(3) 7 f
and thus A
1 _ 712 2 2T \—1 2 T
G2 G = /\—1 (I + tﬁ UZE) (I + tﬁ vlﬁ_) (8131)
which can be rewritten using
- -1 t_)ﬁ 27;5
(1 +4 z?zTB) —1-—1 (8.132)
1+ Uzﬁ-tﬁ
* T _ ST
(0,5 — Uyp)
% Gle =1 — (8.133)
2 1+ UZBtlg

Now, we see that for 73 # ¥,3 there is a two-dimensional space of eigenvectors @g of G, 16, since for
- - > \NT.2 .
every non-zero wg such that (0,3 — U,3) ' wp = 0 are getting

(0T — 37
A - B — -
el = [ 1- —2—2 ) iy = iy (8.134)
Ay 2 1+ 3)fg
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We also see that {;3 is an eigenvector.
Vectors ii’ﬁ represent projections of the points on the intersection line / of planes o1, 0 into the first
image. Line [ is in both planes and therefore maps identically by H; and Hj.
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9 Projective plane

9.1 Motivation — perspective projection in affine space

§1 Geometric model of perspective projection in affine space The perspective projection of a
point X by a camera with projection center C can be obtained geometrically in 3D affine space by
taking all lines passing through the points C and X and finding the intersections with the (affine)
image plane 7.

Three different situations may arise, Figure

1. If X = C, then there is an infinite number of lines passing through C = X, which intersect 7 in
all its points, and therefore the projection of X contains the whole plane .

2. If point Y # C lies in the plane ¢, which is parallel to 7 and passing through C, then the line
passing trough C and Y (which there is exactly one) does not intersect the projection plane 7, and
therefore, the projection of X is empty.

3. If X does not lie in the plane o, then there is exactly one line passing through points C and X
and this line intersects the projection plane 7 in exactly one point x. Hence the projection of X
contains exactly one point x.

Let us compare this affine geometrical model of the perspective projection with the algebraic model
of the perspective projection, which we have developed before.

§2 Algebraic model of perspective projection in affine space The projection X3 of Xs by a
perspective camera with image projection matrix

b= [a] —aG,] ©.1)
is
nig = [Ay —A@] [}ﬂ (9.2)

for some 1 € R.
We shall analyze the three situations, which arise with the geometrical model of affine projection.

1. If X = C, then

qfﬁz[A| —A@][Cﬂ =0 93)

i.e. we obtain the zero vector. What does it say about x? Clearly, X3 can be completely arbitrary
(even the zero vector) when we set 7 = 0. Alternatively, we can choose 1 # 0 and thus enforce

Xp = 0. Both choices are possible. We shall use the latter one since we will see that it better fits
the other cases. We will use X3 = 0 to (somewhat strangely) represent all non-zero vectors in
R3.

2. If point Y # C lies in the plane o, then

-

nfﬁZ[A| _Aéé] {ﬁb] =A(?5—65) (9.4)
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/OX

Figure 9.1: Geometric model of perspective projection in affine space. Point C has infinite (i.e. not
unique) projection, point X has exactly one projection x. Point Y has no projection.

which, taking into account rank A = 3, implies
nA_lJ?ﬁ = ?5 — 6(5 (9.5)
Matrix A~! transforms fﬁ into X5 and therefore its columns
Al = [515 bs 535] (9.6)
are the basic vectors of the camera coordinate system in the world basis 6. Hence
n [515 bys 535] Xp = Ys — Cs 9.7)

- -
which means that vector Y5 — Cs can be written as a linear combination of the camera coordinate
system basic vectors

7‘[}9515+1’[q525+1]7’535=?5—65 (9.8)

with p,gq,7 € R. Now, since Y lies in a plane parallel to 7, vector 175 — 65 can be written as a
linear combination of the first two basic vectors of the camera coordinate system, and therefore
r=20,i.e.

. p
Xp=149 (99)
0

We also see that 17 # 0 since otherwise we would get the zero vector on the left but that would
correspond to Y = C, which we have excluded.

3. If X does not lie in the plane o, then the coefficient r € R in the linear combination

T]A_1 )E)ﬁ = )—()5 — 65 (9.10)
np515+17q525+1”[7’535 = }_()5—65 (9.11)
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Table 9.1: Comparison of the geometrical and algebraic projection models in affine space.

Point position Projection
Geometrical model in aff. space | Algebraic model in aff. space
-
Xd¢o one point of 7 n#0,x=|v],(xs+#0)
1
"
C#Xeo no point n#0,x=|v|,x#0
0
X=C all points of 7 n#0,%p -0
is non-zero. In that case we can write
P L
nla| = AXs—G) (9.12)
r 4
P
r - -
(nr) 71 = A (X5 —Cs) (9.13)
1 I
u | -
T]/ % = A(Xs—Cp) (9.14)
1

As in the case two, n # 0 since otherwise we would get the zero vector on the left and that
would correspond to X = C, which we have excluded.

The comparison of the two models of perspective projection, Table 9.1 shows that
1. We can always assume 71 # 0.

2. The “projection” of C is represented by the zero vector while the projections of all other points
are represented by non-zero vectors.

3. The algebraic projection model can represent projections of all points in the affine space.

4. The geometrical projection model is less capable than the algebraic projection model since it
can’t model the projection of points in ¢ different from C.

The previous analysis clearly shows that the affine geometrical model of the perspective projection is
somewhat deficient. It can’t model projections of some points in the space. This deficiency leads to
inventing a generalized model of the geometry around us in order to model the perspective projection
completely by intersections of geometrical entities. This generalization of the affine space is called
the projective space.

Let us look at the most important projective space, which is the projective plane. We shall first
develop a concrete projective plane by improving the affine plane exactly as much as necessary to
achieve what we want, i.e. to be able to distinguish projections of all points in the space. In fact, this
will be extremely easy since we have already done all the work, and we only need to “upgrade” the
notion of point, line, intersection and join (i.e. making the line from two distinct points). Later, we
shall observe that such an “upgrade” will also lead to an interesting simplification and generalization
of the principles of geometry.
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A3 A3 A3 A3
A2 A2 A? / P A?
@ (b) (c) (d) (e

Figure 9.2: (a) Two dimensional affine plane A? can be (b) embedded in the three dimensional affine
space A°. There is a point O € A3, O ¢ A2. (c) For each point X in A2, there is exactly one
line through X and O in A°. (d) There is exactly one pencil of lines through O, which do
not correspond to any point in A2, in A°. (e) Each line in the pencil corresponds to a set
of parallel lines with the same direction in A%

9.2 Real projective plane

9.2.1 Geometrical model of the real projective plane

A real affine plane A can be imagined as a subset of a real affine space A°, Figure 0.2l There is a
point O in A3, which is not in A2. For each point X in A?, there is exactly one line in A°, which passes
through X and O. Now, there is a set of lines in A%, which pass through O but do not pass through
any point of A2. This is the set of lines parallel to A? that pass through O. These lines fill the plane
of A3, which is parallel to A? and which contains the point O.

The set of all lines in A°> passing through O will be called the real projective plane and denoted as
IP2. The lines of A° passing through O will be called the points of the real projective plane

The lines in A° passing through O, which intersect A2, are in one-to-one correspondence with
points in the affine plane A? and hence will be called the affine points of the projective plan«g of the
projective plane. The set of lines in A° passing through O, which do not intersect A2, are the
“additional” points of the projective plane and will be called the ideal points of the projective planeﬁ@

To each ideal point P (i.e. a line [ of A° through O parallel to A?), there corresponds exactly one
set of parallel lines in A? which are parallel to ! in A3. Different sets of parallel lines in A? are
distinguished by their direction. In this sense, ideal points correspond to directions in A* and can
also be understood as points where parallel lines of A? intersect. Notice that the parallel lines of A2
do not intersect in A2, because P is not in A?, but they intersect in the real projective plane obtained
as the extension of A2

9.2.2 Algebraic model of the real projective plane

We shall now move from the geometrical model in A° to an algebraic model in IR* which allows us
to do computations.

'The previous definition can be given without referring to any affine plane. We can take a point O in A° and the set of
all lines in A® passing through O and call it a projective plane. In the above example, however, we have obtained the
projective plane as an extension of a given affine plane A. In such a case, we can distinguish two sets of points — affine
points and ideal points — in the projective plane.

2Vlastni body in Czech. Finite points in [15].

$Nevlastni body in Czech. Points at infinity in [T5].

“Notice that words “point” and “line” actually need to be accompanied by adjectives for the above to make sense beacause
lines of A°® become points of A2, Also notice that this division of the points of the projective plane makes sense only
when we start with a given affine plane or when we start with a projective plane and select one plane of lines in A° as
the set of ideal points.
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A A

et

Figure 9.3: Algebraic model of the real projective plane.

Let us choose a coordinate system (O, 51, 52, 53) in A° with the origin in O, with basic vectors 51, 52
from the coordinate system (o, by, l;z) in A2 and with by = ¢(0,0), Figure

Lines in A°, which pass through O, correspond to one-dimensional subspaces of R? and therefore,
in R3, points of the real projective plane will be represented by one-dimensional subspaces.

The real projective plane is the set of all one-dimensional subspaces of R>.

The affine plane is a subset of the set of all one-dimensional subspaces of IR?, which we obtain after
removing all one-dimensional subspaces that lie in a two-dimensional subspace of R®.

There are (infinitely) many possible choices of sets of one-dimensional subspaces which can model
the affine plane within the real projective plane. The choice of a particular subset, which will model
a concretel affine plane, can be realized by a choice of a basis in R3.

Let us select a basis = (51, 52, 53) of R3. Then, all the one-dimensional subspaces generated by
vectors
X
=1yl xyeR (9.15)
1

will represent affine points, point X in Figure and all the one-dimensional subspaces generated
by vectors

x

y x,yeR, x#0ory #0 (9.16)
0

-

*p

will represent the ideal points, e.g. point Y in Figure[9.4]

Itis clear that the affine points are in one-to-one correspondence with all points in a two-dimensional
affine space (plane) and the ideal points are exactly what we need to add to the affine points to get all
one-dimensional subspaces of IR>.

9.2.3 Lines of the real projective plane

Let us look at lines now. Lines, e.g. | in Figure 0.5 in the affine plane contain points represented
by one-dimensional subspaces generated, e.g., by X and y. This set of one-dimensional subspaces of
points on  fills almost a complete two-dimensional subspace of R? with the exception of one one-
dimensional subspace, generated by Z, which represents an ideal point. After adding the subspace
generated by Z to the set of all one-dimensional subspaces representing points on /, we completely fill
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Figure 9.4: Points of the real projective plane are represented by one-dimensional subspaces of R®.
One selected two-dimensional affine subspace determines the ideal points.

ﬂZ
ﬂ3

Figure 9.5: Lines of the real projective plane correspond to two-dimensional subspaces of R® but can
be also represented by one-dimensional subspaces of R®.

a two-dimensional subspace of IR?, which hence corresponds to the projective completion of the affine
line I, which we will further call line, too.

Hence, in the real projective plane, lines correspond to two-dimensional subspaces of R>.

We would like to do calculations with lines as we do calculations with points. Let us develop a
convenient representation of lines now. A straightforward way how to represent a two-dimensional
subspace in IR? is to select a basis (i.e. two linearly independent vectors) of the subspace, e.g. ¥ and
for the line I. There are many ways how to choose a basis and therefore the representation is far from
unique. Moreover, having two bases, it is not apparent whether they represent the same subspace.

For instance, two pairs of linearly independent vectors (¥3, i/1) and (¥, i/2) represent the same line
if and only if they generate the same two-dimensional subspace. To verify that, we, for instance, may
check whether

rank [9?1/3 ]715 J?Zﬁ ]?2‘3] =2 (917)

where we write all the four vectors ¥y, i1, X2, > w.r.t. a basis 8 of R>.

Yet, there is another quite convenient way how to represent a two dimensional subspace in R®.
Since 3 = 2 + 1, we can find for each two-dimensional subspace, specified by a basis (¥, ), exactly
one one-dimensional subspace of the three-dimensional dual linear space. Call the basis of this new
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A3 A2

Figure 9.6: The ideal line is the set of all projective points (i.e. all lines of A® through C, which have
no intersection with A2. Itis a plane 0. There is exactly one, which is perpendicular to
sigma, which is generated by vector /.

one-dimensional subspace f Then there holds

I [T G5] =0 (9.18)
where f is the dual basis to . Therefore, we can represent lines in the real projective plane by
one-dimensional subspaces in this way:.

We have developed an interesting representation of points and lines where both points and lines
are represented by one-dimensional subspaces of R®. Points are represented by one-dimensional
subspaces of V = IR?, which is connected by ¢ to the three-dimensional space A° of the geometrical
model of the real projective plane. The lines are represented by one-dimensional subspaces of the
space V, which is the space dual to V. Using the basis 8 in V, which is dual to basis  in V, the

coordinates 17; as well as coordinates of f’ﬁ become vectors in IR? which satisfy Equation[0.18

The line of A° generated by I'in Figure is shown as perpendiculaxﬁ to the plane generated
by ¥, j. Indeed, in the geometrical model of the real projective plane, we can use the notion of
perpendicularity to uniquely construct the (perpendicular) line to the plane corresponding to / in A>.

9.2.4 Ideal line

The set of all one-dimensional subspaces of R?, which do not correspond to points in the affine plane,
i.e. the set of all ideal points, forms itself a two-dimensional subspace of IR® an hence a line in the
projective plane, which is not in the affine plane. It is the ideal lindd of the projective plane associated
with the selected affine plane in that projective plane. It is represented by vector I in Figure

For each affine plane, there is exactly one ideal line (a two-dimensional subspace of R?). Conversely,
by selecting one line in a projective plane (i.e. one two-dimensional subspace of IR®) the associated
affine plane is determined as the set of all points (one-dimensional subspaces of IR*) which are not
contained in the selected ideal line (two-dimensional subspace).

In A, line and plane are perpendicular when they contain the right angle. The right angle is one quarter of a circle.
®Nevlastni pfimka in Czech, line at infinity in [15].
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9.2.5 Homogeneous coordinates

Once a coordinate system is fixed in an affine plane, every point of the affine plane has unique
coordinates, which are the coordinates of its vector in the basis of the coordinate system.

A point in a real projective plane is represented by a one-dimensional subspace of R®. One-
dimensional subspaces are represented by their bases consisting of a single non-zero vector. There
are infinitely many bases representing the same one-dimensional subspace. Two basic vectors of the
same one-dimensional subspace are related by a non-zero multiple.

Hence, when talking about coordinates of a point in the projective space, we actually talk about
coordinates of a particular basic vector of the one-dimensional subspace that represents the point.

For instance, vectors

1 2
O and | O (9.19)
1 2

are basic vectors of the same one-dimensional subspace since they are related by a non-zero multiple.
These are two different “coordinates” of the same point in the real projective plane.

Hence, the “coordinates” of a point in the real projective plane are not unique. This is so radically
departing from the fundamental property of coordinates, their uniqueness, that it deserves a new
name. To distinguish the coordinates of a point in the affine plane, which are unique, from the
“coordinates” of a point in the projective plane, which are not unique, we shall introduce new name
homogeneous coordinates.

Homogeneous coordinates of a point in the real projective plane are the coordinates of a basic vector of
the one-dimensional subspace, which represents the point.

Homogeneous coordinates of a line in the real projective plane are the coordinates of a basic vector of
the one-dimensional subspace, which represents the line.

A point in an affine plane can be represented by affine as well as by homogeneous coordinates. Let
us see the relationship between the two.

Let us have a point X in a two-dimensional real affine plane, which is represented by coordinates

X
H 020

By extending the real affine plane to the real projective plane with the ideal line identified with the
two-dimensional subspace z = 0, we can represent point X by a one-dimensional subspace of R®
generated by its basic vector

x

y (9.21)

1

Thus, X has affine coordinates | x y]T and homogeneous coordinates [u v w]T, where u = Ax,
v=Ay,andw = A1forsomeAeR, A +#0.
Ideal points do not have affine coordinates. Their homogeneous coordinates are
[x v 0] (9.22)

where x, y € R and either x # 0 or y # 0.
The zero vector 0 is not a basis of any one-dimensional space and thus represents neither a point
nor a line.

9.2.6 Incidence of points and lines

We say that a point x is incident with line / if and only if it can generate the line with another point y,
Figure In the representation of subspaces of R3, it means that

L

T

B xXg = 0 (9.23)

~—~

86



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

ﬂZ

ﬂ?’

Figure 9.7: A point x is incident with a line / if and only if it can generate the line with another point
y. Lines in A° representing the point and the line are perpendicular to each other.

This means that the one-dimensional subspace of IR representing the line is orthogonal to the one-
dimensional subspace of R?® representing the point w.r.t. the standard (Euclidean) scalar product.
In the geometrical model of the real projective plane it means that the line of A° representing x is
perpendicular to line of A°> representing .

Let us write explicitly the coordinates of the bases generating the one-dimensional subspaces as

X 5 a
Xp=|y| lg=1|"b
y4 C

then we get
ax+by+cz=0

and for affine points represented with z = 1 this formula reduces to
ax+by+c=0

which is the familiar equation of a line in the two dimensional real affine plane.

9.2.7 Join of points

Every two distinct points x and y in the real projective plane are incident with exactly one line /. The
join of two distinct points is the unique line passing through them.

In the real projective plane, two distinct points are represented by two different one-dimensional
subspaces with bases ¥ and 7.

The homogeneous coordinates of this line, i.e. the coordinates of the basic vectors of the one-
dimensional subspace representing the line, can be obtained by solving the following system of

5
homogeneous equations for coordinates of the vector !

3

T

5 = 0 (9.24)

~
=i

1

T

B

~

7 = 0 (9.25)

w.r.t.  and § in IR>. The set of solutions forms the one-dimensional subspace that represents the line

l.
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ﬂZ

ﬂ?’

Figure 9.8: The join of two distinct points is the unique line passing through them.

Figure 9.9: The meet of two distinct lines is the unique point incident with them.

We have seen in Section[2.3 that vector l; can be conveniently constructed by the vector product as

Notice, that in the real projective plane as well as in the real affine plane, there is exactly one line incident with
two distinct points.

9.2.8 Meet of lines

Every two distinct lines k and ! in a projective plane are incident exactly to one point x. The meet of
two distinct lines is the unique point incident with them.

In the real projective plane, two distinct lines are represented by two different one-dimensional
subspaces with bases Kand I,

The homogeneous coordinates of this point, i.e. the coordinates of the vectors in the one-dimensional
subspace representing the point, can be obtained by solving the following system of homogeneous
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equations for coordinates of the vector ¥ w.r.t. f in IR3

T

I:Xﬁzo
0

L

T

A

~

The set of solutions forms the one-dimensional subspace that represents point x. To get one basic
vector in the subspace, we may again employ the vector product in R® and compute

Notice, that in the real projective plane there is exactly one point incident to two distinct lines.
This is not true in an affine plane because there are (parallel) lines that have no point in common!

9.3 Line coordinates under homography

Let us now investigate the behavior of homogeneous coordinates of lines in projective plane mapped
by a homography.
Let us have two points represented by vectors ¥, i/g. We now map the points, represented by
2/

vectors 3?5, g’ﬁ, by a homography, represented by matrix H, to points represented by vectors Xgis g’[’),/
such that there are A1, A, e R, A1A; # 0

My, = HY (9.27)
AWy = Hijp (9.28)

Homogeneous coordinates ﬁﬁ- of the line passing through points represented by xg, ﬁg and homo-
geneous coordinates p ﬁ,/ of the line passing through points represented by x7,, jé, are obtained by

solving the linear systems

ST > -1 T 5
pg Xp=0 and pé, Xy =0 (9.29)
Py Us =0 Py Ty =0 (9:30)

for a non-trivial solutions. Writing down the incidence of points and lines, we get

ST —1 27 ST —1 27
/\1pBH xﬁ,—O = PBH xﬁ,—O
)\QﬁgH* Jp =0 = ﬁﬁT H ! g =0
We see that j7 E’, and H™ "5 are solutions of the same set of homogeneous equations. When %3, 7 are
independent, then there is A € R such that

Apy = H™ ' (9.31)
since the solution space is one-dimensional. Equation gives the relationship between homoge-
neous coordinates of a line and its image under homography H.

9.3.1 Join under homography

Let us go one step further and establish formulas connecting line coordinates constructed by vector
products. Construct joins as
‘g = fﬁ X g)ﬁ and ﬁé, = J?‘[;, X g}g, (932)

89



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

and use Equation2.50/to get

- - H_T - -

Xgr X Ygr = |H_T| (xﬁ X yﬁ) (9.33)
M) % (Madh) = @ x iy (9.34)
1/ 2Yp HT| B = Yp )

>/ -/ H_T - -
xﬁ, X y,Bl = m (.X'ﬁ X yﬂ) (935)
/ HiT
py, = ———— 73 9.36
T 050

9.3.2 Meet under homography

Let us next look at the meet. Let point ¥ be the meet of lines 'and § with line cordinates i, g3, which
are related by a homography H to line coordinates ﬁf, and ¢, 5,’ by

Mpg = H 'pg (9.37)
Mgy, = H g (9.38)
for some non-zero A1, A». Construct meets as
Xp = ﬁﬁ X q_}; and J?é, = ﬁﬁ’, X [Té, (9.39)
and, similarly as above, use Equation 250/ to get
g-T)-T
b= AR TR A ©40)

9.3.3 Meet of join under homography

We can put the above together to get meet of join under homography. We consider two pairs of
points represented by their homogeneous coordinates g, ijg, and Zg, @s and the corresponding pairs

of points with their homogeneous coordinates x7,, ﬁé/, and z;,, @/, related by homography H as

ﬁ/
My, =HXg, A2ify =Hys, AsZy =HZg, Mgy =H (9.41)
Let us now consider point

62/ = (-’fé/ X g)lg/) X (Zé/ X u_))//) (942)
H'™ 'L 943
B </\1 Az |H_T|<xﬁ - ﬁ)> g </\3)\4 |H_T|(Zﬁ g w,;)) O4)

HE
= m X‘B X yﬁ) X (Zﬁ X Z{)ﬁ) (94:4)

HEH

= 9.45
M Az AsAg P 645

9.3.4 Note on homographies that are rotations

First notice that homogeneous coordinats of points and lines constructed as combinations of joins
and meets indeed behave under a homography as homogeneous coordinates constructed from affine
coordinates of points.

Secondly, when the homography is a rotation and homogeneous coordinates are unit vecors, all
A’s become equal to one, the determinant of H is one and H T = H. Therefore, all homogeneous
coordinates in the previous formulas become related just by H.
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K X

Figure 9.10: Vanishing point v is the point towards projections x an y tend as X and Y move away
from 7 but which they never reach.

9.4 Vanishing points

When modeling perspective projection in the affine space with affine projection planes, we meet
somewhat unpleasant situations. For instance, imagine a projection of two parallel lines K, L, which
are in a plane 7 in the space into the projection plane 7 through the center C, Figure

The lines K, L project to image lines k, . As we go with two points X, Y along the lines k, [ away
from the projection plane, their images x, y get closer and closer to the point v in the image but they
do not reach point v. We shall call this point of convergence of lines K, L the vanishing poinlﬂ.

9.5 Vanishing line and horizon

If we take all sets of parallel lines in 7, each set with a different direction, then all the points of
convergence in the image will fill a complete line /.

The line h is called the vanishing line or the horizor when 7 is the ground plane.

Now, imagine that we project all points from 7 to 7 using the affine geometrical projection model.
Then, no point from 7 will project to h. Similarly, when projecting in the opposite direction, i.e. 7 to
7, line h has no image, i.e. it does not project anywhere to 7.

When using the affine geometrical projection model with the real projective plane to model the
perspective projection (which is equivalent to the algebraic model in IR?), all points of the projective
plane 7 (obtained as the projective completion of the affine plane 7) will have exactly one image in
the projective plane 7 (obtained as the projective completion of the affine plane 1) and vice versa.
This total symmetry is useful and beautiful.

7Ubéznik in Czech.
8Horizont in Czech
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Figure 9.11: Vanishing line (horizon) / is the line of vanishing points.
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10 Projective space

10.1 Motivation — the union of ideal points of all affine planes

Figure [10.1[a) shows a perspective image of three sets of parallel lines generated by sides of a cube
in the three-dimensional real affine space. The images of the three sets of parallel lines converge to
vanishing points Vi, V; and V3. The cube has six faces. Each face generates two pairs of parallel lines
and hence two vanishing points. Each face generates an affine plane which can be extended into a
projective plane by adding the line of ideal points of that plane. The projection of the three ideal lines
are vanishing lines l1 = V1 v Vp, b3 = V3 v V3 and I3; = V3 v Vj. Imagine now all possible affine
planes of the three-dimensional affine space and their corresponding ideal points. Let us take the
union V of the sets of ideal points of all such planes. There is exactly one ideal point for every set of
parallel lines in V, i.e. there is a one-to-one correspondence between elements of V' (ideal points) and
directions in the three-dimensional affine space. Notice also that every plane 7 generates one ideal
line I, of its ideal points and that all other planes parallel with 7 generate the same I, Figure

It suggests itself to extend the three-dimensional affine space by adding the set V' to it, analogically
to how we have extended the affine plane. In this new space, all parallel lines will intersect. We will
call this space the three-dimensional real projective space and denote it IP>. Let us develop an algebraic
model of P3. Tt is practical to require this model to encompass the model of the real projective plane.
The real projective plane is modeled algebraically by subspaces of IR>. Let us observe that subspaces
of R* will be a convenient algebraic model of IP°.

We start with the three-dimensional real affine space A% and fix a coordinate system (O, ) with

0= (d_;, d_;, d_;) An affine plane 7 is a set of points of A3 represented in (O, 0) by the set of vectors
= {[x,y,z]T lax+by+cz+d=0,a,bcdeR, a?+ b+ 0} (10.1)

We see that the point of 7t represented by vector [x,,z] " can also be represented by one-dimensional

subspace {A[x,1,2,1]T| A € R} of R* and hence 7t can be seen as the set

n={{Alxyz 1]T| AeR}|[a,b,cd][xy,z, 1]T =0,a,bcdeR, a*>+1*+%# 0} (10.2)

of one-dimensional subspaces of R*.

Notice that we did not require A # 0 in the above definition. This is because we establish the
correspondence between a vector |x, y, z| and the corresponding complete one-dimensional subspace
{Axy,z, 1]7,A € R} of R* and since every linear space contains zero vector, we admit zero A.

Every [x,y,z]" € R® represents in (O, §) a point of A® and hence the subset

A3 = {A x Y,z 1]T| AeR}|x,y,ze R} (10.3)

of one-dimensional subspaces of R* represents A3.
We observe that we have not used all one-dimensional subspaces of IR* to represent A3. The subset

T = {{A[%, 1,20 |AeR} |x,y,ze R, ¥* + y* + 2> # 0} (10.4)

of one-dimensional subspaces of R? is in one-to-one correspondence with all non-zero vectors of R3,
i.e. in one-to-one correspondence with the set of directions in A3. This is the set of ideal points which
we add to A3 to get the three-dimensional real projective space

PP = {{A[x,y,zw] |AeR}|x,y,z,weR, x> + y* + 22 + w* # 0} (10.5)

which is the set of all one-dimensional subspaces of R*. Notice that P? = A% U 7.
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Figure 10.1: (a) A perspective image of a cube generates three vanishing points Vi, V, and V3 and
hence also three vanishing lines I15, I3 and I3;. (b) Every plane adds one line of ideal points
to the three-dimensional affine space. Every ideal point corresponds to one direction, i.e.
to a set of parallel lines. Each ideal line corresponds to a set of parallel planes.

§1 Points Every non-zero vector of R* generates a one-dimensional subspace and thus represents
a point of IP. The zero vector [0,0,0,0] " does not represent any point.

§2 Planes Affine planes 7,3, Equation[I0.2] are in one-to-one correspondence to the subset
nas = {{A[a,b,c,d]"|A e R} |a,b,c,d € R, a* + b* + c* # 0} (10.6)

of the set of one-dimensional subspaces of R*. There is only one one-dimensional subspace of R?,
{110,0,0,1]T| A € R} missing in 7t 55. It is exactly the one-dimensional subspace corresponding to the
set 714, of ideal points of P°

T = {{A[x,y,z,w] [AeR} |x,y,z,we R, x> + y* + 22 # 0, [0,0,0,1] [x,y,z,w] " = 0} (10.7)

We can take another view upon planes and observe that affine planes are in one-to-one correspondence
with the three-dimensional subspaces of R*. The set 7o, also corresponds to a three-dimensional
subspace of R*. Hence 7., can be considered another plane, the ideal plane of IP3.

The set of planes of P> can be hence represented by the set of one-dimensional subspaces of R*

nps = {{A[a,b,c,d]"|A e R} |a,b,c,d € R, a* + b* + ¢* + d*> + 0} (10.8)

but can also be viewed as the set of three-dimensional subspaces of R*.

We see that there is a duality between points and planes of P2. They both are represented by
one-dimensional subspaces of R* and we see that point X represented by vector X = [x,y,x,w]" is
incident to plane 1 represented by vector 7 = [a,b, ¢, d]T, i.e. X ot, when

ﬁT}_()z[a b c d =ax+by+cz+dw=0 (10.9)

S N R

§3 Lines Lines in IP? are represented by two-dimensional subspaces of R*. Unlike in IP?, lines are
not dual to points.
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11 Camera auto-calibration

Camera auto-calibration is a process when the parameters of image formation are determined from
properties of the observed scene or knowledge of camera motions. We will study camera auto-
calibration methods and tasks related to metrology in images. We have seen in Chapter [7 that to
measure the angle between projection rays we needed only matrix K. Actually, it is enough to know
matrix]

w=K K

to measure the angle between the rays corresponding to image points ¥y, X23 as

COs 1,X2) = "y S = .
Bl gl o /Ty

Knowing w is however (almost) equivalent to knowing K since K can be recovered from w up to two
signs as follows.

§1 Recovering K from w Let us give a procedure for recovering K from w. Assuming

ki1 kiz kis
K = | 0 ko ks (11.2)
0 0 1
we get
_ 1 =k kipkos—kizkan
ki ki ki ki1 kik ki1 k22 my1 Mip M3
K'=|0 ko ks =10 2 s =| 0 my my (11.3)
0 0 1 N 2 o 0 1
0 0 1

for some real my1,m1p, m13, mpp and mp3. Equivalently, we get

1 —Mmip Myp M3 —M113 1M
miq my11m2 M1 M2 M23
K = 0 1 i3 11.4
My My ( )
0 0 1

Introducing the following notation

w11 @12 W13
w=KTK!= w12 @2 W3 (11.5)
w13 @23 W33

yields
w11 W12 @13 m% i1 M2 My my3
w2 Wy w3 | = |mimp m3, + m, M1 M3 + Moo M23 (11.6)
w13 @23 W33 My M3 My M3 + Mo 23 mi), + m§3 +1

'In [15], w is called the image of the absolute conic.
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which can be solved for K~ up to the sign of the rows of K~! as follows. Equation [[T.6 provides
equations

mi = 51 \/@
mi = w12/ (81 Vw11) = s1 w12/ Vo
miz = w13/ (s1 Vw11) = s1 w13/ Vo

2 2
My = $3 AWy — M7, = $2 AW — w},/wn

mys = $3 (W3 — w2 W13/W11)/ \/ W22 — W, /w11

2
w11 = mn
W1 = Mmiq1Mq2

w13 = M1 M3

I AR

2 2
W = My, + M5,

U

W23 = M1 M3 + Mo M3

2 2
= 52 (w11 w23 — W12 W13)/ \/wnwzz — w11 W7,

which can be solved for m;; with sy = £1 and s; = +1. Hence

s1 y/w11 s1 w12/ /w11 s1 w13/ /w11
K = 0 52 AJwn — wi,/on sy (w3 — W wiz/wn)/\/wn — w],/on
0 0 1

(11.7)

Signs s1, s are determined by the choice of the image coordinate system. The standard choice is
s1 = s = 1, which corresponds to ki1 > 0 and kx; > 0.
Notice that /w17 is never zero for a real camera since my; = ]% # 0. There also holds true

1 k%Z 1 2 2
E — 212 = ki1 ks 4/k22 — k12 #0 (11.8)

11722

2 _ 2 _ 2 _
\/wﬂ wpy/on = \/mn mi

since |kiz| is much smaller than |kp;| for all real cameras.

11.1 Constraints on w

Matrix w is a 3 x 3 symmetric matrix and by this it has only sixindependent elements w11, w12, w13, W22, W23
and ws3. Let us next investigate additional constratints on w, which follow from different choices of
K.

§1 Constraints on w for a general K Even a general K yields a constraint on w. Equation
relates the six parameters of w to only five parameters m1, m1, m13, My and my3 and hence the six
parameters of w can’t be independent. Indeed, let us see that the following identity holds true

2 2 2 2 2 2 2 2
W7, @ w w W5, W w w
2 13 712 12 13 2 13 7712 12 13
Wy — —(wp ——)(w———1))" -4 wn — —) (w3 — — —1
(s~ B = T o T 1) 4 - B (o - TR )
(m11mi3)* (maaman)*
= ((1111277113 + m22m23)2 — "
11

2
2 2
2 ,  (mumip) ) 2 (m1ymq3)
—(m, + mby — ————)(my + myy + 1 — — 1)

1 11
(m11m13)2(m11m12)2 (mnmlz)z (7111177113)2

- 4 4 (m%2+m§2_ 2 )(m%3+m§3+1 - 4 _1)

My my myy

2

= ((m12m13 + Tﬂzz?”z?,)2 - (7711277113)2 - (m22m23)2) -4 (7’1’112”’113)2(7112271’123)2
= (2 (mipma3)(manmas))?® — 4 (mipmys)? (mantaz)?
= 0 (11.9)
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Since w11 # 0, we get the following equivalent identity
(0], 035 — Wiy 0], — (V1w — ) (P11 — W]; — wn))?
- 4a)%3 wi (w1122 — a)%z) (w1133 — cu%3 —w11) =0 (11.10)
which is a polynomial equation of degree eight in elements of w.
We shall see next that it makes sense to introduce a new matrix

1 @2 o
1 o012 o13 o wn
— _ | Y12 @ @23
Q=012 022 03| =|37 on on (11.11)
013 023 033 @13 W23 W33

@11 w11 w11

which contains only five unknowns, and use Equation[11.10/to get the positive wi; from Q by solving
the following quadratic equation
A w3y + a w1y +ag =0 (11.12)

with

1 = —40x%015%012° + 023" — 2023%022 033 + 201370127022 033 (11.13)
2022033013 + 012%033% + 20237022 0137 + 2023%012%033
+02% 013" + 02270337 — 202 03370122

a1 = 2013°0127 020 + 20237020 — 20207 033 — 2012" 033 (11.14)
+4.05 033012% — 20237012 + 202270157

a = —20p» 0122 + 0222 + 0124 (11.15)

§2 Constraints on w for K from square pixels Cameras have often square pixels, i.e. HEl | = |I;2H =
1 and A(l;l, by) = /2, which implies, Equations[7.13] [7.15] [7.16] a simplified

ki 0 ki3
K= 0 ki ko (11.16)
0 0 1
This gives also simpler
1 1 0 —k13
w = kT 0 1 —k23 (1117)

11 | —kiz —kos k%l + k%?, + k§3

We see that we get the following three identities

w12 = 0 (1118)
wp—wy = 0 (11.19)
Wiy + W3 — wnwss +wnn = 0 (11.20)
We also get simpler
1 0 013 1 0 _k13
Q=0 1 op|=Keo=| 0 1 —kn3 (11.21)
013 023 033 —kis —kaz K, 4K+,

and use Equation IT.2T]to get
I, = 03— 07, — 03 (11.22)
kiz = —o13 (11.23)
k23 = —023 (1124)
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K>

S

Ki
Ly
Ly

() (b)

Figure 11.1: (a) Parallel lines K, L are projected to lines k, | with vanishing point represented by o.
Vector 7 is parallel to k, I. (b) Vectors ¢, 7> contain the same angle as pairs of lines K, K»
orLi, Ls.

11.2 Camera calibration from angles between projection rays

We will now show how to calibrate a camera by finding the matrix @ = K~ Tk~
In general, matrix w is constrained by knowing angles contained between pairs of projection rays.
Consider two projection rays with direction vectors ¥, ¥. Then the angle between them is related to
w and Q by
fil'ﬁ w 3?2/3 fil'ﬁ Q fz[g
cos Z(X,%p) = = (11.25)
XX ANAL: ¥ QX5 4 /X) QX
X1p W X1 4 [Xop W X2 Y1p 1B A/ Xop 2228

Squaring the above and clearing the denominators gives

(COS L(J?l, fz))z(flTﬁ Qflﬁ) (fZTﬂ szﬁ) = (J?lTﬁ szﬁ)z (11.26)

which is a second order equation in elements of Q. To find Q, which has five independent parameters
for a general K, we need to be able to establish five pairs of rays with known angles and solve a system
of five quadratic equations above.

§1 Camera with square pixels A simpler situation arises when the camera has square pixels.
Then, we can use constraints from [§ 2| to recover w and K from three pairs of rays containing known
angles. That amounts to solving three second order equations[11.26]in 013, 023, 033.

However, this is actually exactly the same problem as we have already solved in Section

Figure[I1.2lshows an image plane 7t with a coordinate system (0,6’) with &’ = (51, 52, Eé) derived from
the image coordinate system (o, ). Having square pixels, vectors 15)1, 52 can be complemented with
Eé to form an orthogonal coordinates system (O = 0,6’). Next, we choose the global orthonormal
coordinate system, (O = 0,0), 0 = (dq,d_;, d_;), such that

1

-

- b - - b/
b= =2 and =2 (11.27)
1D [[B]] |[B1]]
and hence R
laff 00
=1 0 |b]] 0 | % (11.28)
0 0 [bll
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C

Figure 11.2: Images of three points with known angles between their rays can be used to calibrate
cameras with square pixels. The position of image center Cs/ can be computed in the
ortogonal coordinate system (0,6’) using the absolute pose problem from Chapter [7.3
Matrix K is composed from coordinates of Cs'.

We know angles /(¥1,%2), Z(%,%3) and Z(X3,%;). We also know image points /1, = X5/, thhy =
}22(3/, 3q = }235/ and thus we can compute distances di; = ”}Zzé/ — Xm/”, drz = ]\}235/ - )?25/]\ and
dz; = H}?%/ — }_()15/||. Having that, we can find the pose 65/ = [c1,c0,c3]" of the camera center C in
(0, 8") by solving the absolute pose problem from Chapter We will select a solution with c3 < 0
and, if necessary, use a fourth point in 7t to choose the right solution among them. To find K, we can
form the following equation

0
0| =1 [KRy —KR55] (11.29)
11 f

_ o O O

since point o is represented by [0,0,1]" in g and by [0,0,0]" in 6. Coordinate system (O, ) is chosen
such thatR = I and Cs = ||51|| Cs: and thus we get

o B
K1|0| =—-—=Cs (11.30)
1 f

Now, let us consider matrix K as in Equation and use the intepretation of elements of K from
Chapter[7] Equations[716] [7Z.17] We can write

; ) )
2 0 k 161 ]
LI 13 ) 1 7 0 —TFhs .
K=1 0 2L &k anthus K~ = |2V 1] .
o B 0 7 7 ke
o 0 1 0 0 1

99



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

and use it in Equation[I1.30/to get

k13 1
kfza — | (11.32)
el e
and thus
—C3 0
K= 0 —C3 (2 (1133)
0 0 1

11.3 Camera calibration from vanishing points

Let us first make an interesting observation about parallel lines in space an its corresponding vanishing
point in an image. Let us consider a pair of parallel lines K, L in space as shown in Figure [1.1(a).
There is an affine plane ¢ containing the lines. The lines K, L are projected to image plane 7 into lines
k, 1, respectively.

Now, first extend affine plane ¢ to a projective plane L using the camera center C. Then, define
a coordinate system (C, §) with orthonormal basis 0 = (d_;, d_;, d_;) such that vectors d_;, d_; span affine
plane o.

Let 125, ig be homogeneous coordinates of lines K, L w.r.t. 5. Then

@y = K5 x Lg (11.34)

are homogeneous coordinates of the intersection of lines K, L in X.
Next, extend the affine plane 7 to a projective plane I'T using the camera center C with the (camera)
coordinate system (C, 8).

Let EB’ ng be homogeneous coordinates of lines k, I w.r.t. . Then
= kg x I (11.35)

are homogeneous coordinates of the intersection of lines k, [ in I1.
Now, consider Equation for planes X and IT. Since ¢ is orthonormal, we have K’ = I and thus
that there is a homoghraphy
H=KR (11.36)
which maps plane X to plane I'l. Matrices K and R of the camera are here w.r.t. the world coordinate
system (C, ).
We see that there is a real A such that there holds

)\175 = KR Ws (11.37)

true.

§1 Pairs of “orthogonal” vanishing points and camera with square pixels Let us have two
pairs of parallel lines in space, Figure[I1.1(b), such that they are also orthogonal, i.e. let K; be parallel
with L; and K, be parallel with L, and at the same time let K; be orthogonal to K, and L; be
orthogonal to L,. This, for instance, happens when lines Kj, L, Ky, L, form a rectangle but they also
may be arranged in the three-dimensional space as non-intersecting.

Letlines kl, ll, kz, I> be the projections of K3, L1, K3, L, respectively, represented by the corresponding
vectors kl Br I 1B kzﬁ, lzﬁ in the camera coordinates system with (in general non-orthogonal) basis . Lines
ki and I3, resp. ky and 1>, generate vanishing points

271ﬁ = klﬁ_ X 115
’(3)21; = k2ﬁ_ Xlzﬁ‘
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The perpendicularity of @; to @, is, in the camera orthogonal basis 6, modeled by

W]y W =0 (11.38)
We therefore get from Equation [11.37]
z?lTﬁ K 'RTRIK o = 0 (11.39)
ﬁjﬁ K 'K '0 = 0 (11.40)
6{13 wly = 0 (11.41)

which is a linear homogeneous equation in w. Assuming further square pixels, we get,[§2]
ST e _
Z)l B w 02/3 = 0
ST o _
Z)l B Q Z)zﬁ = 0
1 0 o3 [ 021 |
[vi1 v12 vi3] | O 1 o3| |on| = 0
013 023 033 023

013
[023 U11 + V21013 023012 + 022013 023 013] 023 = —(v21011 + v 012)
033

Now, we need only 3 pairs of perpendicular vanishing points, e.g. to observe 3 rectangles not all in
one plane to compute 013,023,033 and then

kiz = —oi3
kos = —o23

_ a2 g2
ki = yJoss — ki — ko,

11.4 Camera calibration from images of squares

Let us exploit the relationship between the coordinates of points X, which all lie in a plane ¢ and
are measured in a coordinate system (O, d;,d») in o, Figure 8.2l The points X are projected by a
perspective camera with the camera coordinate system is (C, ), f = (b1, bz, b3) and projection matrix

o . T . . > .
P into image coordinates [# ©v] , w.rt. an image coordinate system (o, by, by), Equation BI6 See
paragraph[§ I to recall that the columns of P can be writen as

P = [KR] —KR@] — [d; doy sy —51,] (11.42)
and therefore we get the columns
hi=p = d (11.43)
hy=py, = dy (11.44)
hy=ps = —C (11.45)

of the homography H mapping o to 7t as defined in Equation[8.17
Now imagine that we are observing a square with 4 corner points Xj, X», X3 and X} in the plane o
and we construct the coordinate system in ¢ by assigning coordinates to the corners as

X5 = [0 0 0] (11.46)
dis=Xos = [1 0 0] (11.47)
dys =Xss = [0 1 0] (11.48)

X5 = [1 1 0] (11.49)
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We see that we get two constraints on dq(g, d_;(g

dldy = 0 (11.50)
Al dyy—dldys = 0 (11.51)
which lead to
d k" Tkdy, = 0 (11.52)
dTﬁK’TK’ldqﬁ—d;K’TK’ldzv = 0 (11.53)

by using d_;v = KRd_;s fori=1,2,andRTR=1.
These are two linear equations on w and hence also, see[§ 1} on Q

dl edy = 0 (11.54)
d od, —d} ody, = 0 (11.55)
on w in terms of estimated A H
h/ Qh, = 0 (11.56)
h/ @h; —h) @h, = 0 (11.57)

One square provides two equations and therefore three squares in two planes in a general position
suffice to calibrate full K. Actually, such three squares provide one more equations than necessary
since () has only five parameters. Hence, it is enough observe two squares and one rectangle to get
five constraints. Similarly, one square and one rectangle in a plane then suffice to calibrate K when
pixels are square.

Notice also that we have never used the special choice of coordinates of }25. Indeed, point X4 could
be anywhere provided that we know how to assign it coordinates in (O, d:, dé)

To calibrate the camera, we first assign coordinates to the corners of the square as above, then find
the homography H from the plane to the image

Ai%ig = HX;y (11.58)

fora; = 1,...,4 and finally use columns of H the find Q.
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12 Two-view scene reconstruction

Imagine two cameras giving two images of the space from two different view points. We will next
investigate how to (re-)construct camera projection matrices and meaningful coordinates of points in
the space such that the reconstructed cameras and the reconstructed points generate the images.

12.1 Epipolar geometry

Figure [[2.T] shows two cameras with different centers C;, C, and image planes 711, 71, observing a
general point X as uy, u. Baseline b connecting image centers Cq, C; intersects 11, 715 in epipoles ey,
ez. Points Cq, C2 and X form epipolar plane o, which intersects 11 in epipolar line I; and 7, in epipolar
line I;. Epipolar line /1 passes through epipole e; and through image point 1. Epipolar line I, passes
through epipole e; and through image point u5.

Let us next find the relationship between image points, epipoles, epipolar lines as a function of
camera parameters, Figure[12.2] Assume a world coordinate system (O, 9) and cameras C;, C, with
camera projection matrices

P = [K1R1| —K1R1615] and P; = [Ksz‘ —K2R2625:| (12.1)

Point X is projected to image planes 711, 7o, with respective coordinate systems (01, 1), (02, f2), as

= )_() ) = }_() )
C1 X1, = P1 { 10} and (X, =P { 1‘5} (12.2)
for some (; > 0 and (» > 0, which then leads to
G1 flﬁl = KiRy (X)b — 615) and (G J?zﬁz = K7R» (X)g) — 625) (12.3)
GR{ KT, = X5 — Cus Ry K, g, = X5 — Cos (12.4)
X
sl U
h o )
Uy [2%)
Cy e1 b e C,

Figure 12.1: Epipolar geometry of two cameras.
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X
T X) — _)1 X-C Tl
L L
fl JZ)2
C1 @l 62 — C—')l & C

Figure 12.2: Vectors of the epipolar geometry.

Consider now that vectors }_()5 — 615, )_()5 — 625 and 625 — 615 form a triangle and hence
Cos —Cis = (X5 —Cyp) — (X5 — Cos)
Cas—Cis = GR{K'¥p — LRy K; g,

with {; > 0 and (; > 0 for the standard choice of camera coordinate systems.

(12.5)
(12.6)

We shall next eliminate depths C;, (; by exploiting the vector product identities, see Paragraph[2.3]

N
X

X f:[f]xf
= JEx) =7 .7

oL Oy

for all ¥, i € R>.
We first vector-multiply Equation[12.6 by Cas — Cis from the left to get

0 = [Cz(s - Clé] 5 GRIK 'Fp — [C26 — Clé] § G Ry K, Mo,

and then multiply Equation[2.9by C; X}, K TR, from the left to get

_ g - _1 >
0 = & szﬁsz Ry [Cza - Clé] § G RlTKl 1x1/31

which, since (; # 0 and (; # 0, is equivalent with

ST =T 2 2 Te—12
0 = XZﬁsz Ry [C25—C15]XR1K1 X1ﬁ1
2T @7—T -1z
0 = XZﬁsz EKl xlﬁl
dl -
0 = xzﬁzFxlﬁ]

where we introduced the essential matrix E € R3>*3 as
- - T
E=R [Cza - Clé] R
and the fundamental matrix F € R*>*3 as

F=K, Ry [C25 — Cw] ) R{K!
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Let us next introduce epipoles to pass from vectors in 6 to vectors in 31, f2, which are measurable
in images.

The projection e; of the the camera center C, to the first image as well as the projection e; of the the
camera center 51 to the second image are obtained as

- C—) S = =

C1e1p, Py { 120} = KRy (Co5 — Cyp) (12.16)
- C_:) - -

Cal2p, = P2 { 116} = KRy (C15 — Cos) (12.17)

for some (; > 0 and (; > 0.
We can now substitute Equation into Equation to get

F = K 'R [525—515] R/K]! (12.18)
= K, 'Ry [C1R1K1 elﬁl] R{K! (12.19)
= UK, 'R (RIK?) [ép, ], (12.20)

&7
— |IE1|K TRR[K] [&1, ], (12.21)

We used the result from which shows how the vector product behaves under the change of a
basis.
Analogically, we substitute Equation into Equation to get

F = K 'R [ézé—déLRlTKl‘l (12.22)
= K 'R [—CZR;Kz_le_’zﬁz]leTKl_l (12.23)
T
_ <[C2R2TK2 ezﬁz] R2TK2_1> RJK, (12.24)
G i
-1
= <|K ‘RzTKZ [@6,], ) R, K] (12.25)
- é | &5, KoRoR{ K (12.26)

We used additional properties of the linear representation of the vector product from
We see from Equations [12.21] and [12.26] that it is possible to recover homogeneous coordinates of
the epipoles from F by solving equations

Féijp, =0 and F'éy, =0 (12.27)

for a non-zero multiples of é1g,, €25, We also see that matrix F has rank smaller than three since it has
a non-zero null space Zlﬁ]. Since, rank of [625 — 615] is two for non-zero 625 — 61(5, F has rank two
X

when camera centers do not coincide.
Let us look at the epipolar lines. Epipolar lines pass through the corresponding points in images
and the epipoles, i.e. [; = x; v e; and [px = x2 v e2. Consider that there holds

Yy Féig =0 and X[, Fléy, =0 (12.28)
%5, F g, = 0 ) F g, = 0 (12.29)
(12.30)
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and therefore homogeneous coordinates fl[% fZBz of epipolar lines generated by X2, and ¥4,, respec-
tively, are obtained as

Y

Lj =F s and Ly = Fiy, (12.31)

for 3?252 #* é)zﬁz and flﬁl # glﬁl'

12.2 Computing epipolar geometry from image matches

Let us look at how to compute the epipolar geometry between images from image matches. Our goal
is to find matrix G = 7F for some real non-zero 7 using Equation Let us introduce

811 S12 §13
G=|g1 82 g2 (12.32)
831 &32 833
and write Equation as
811 812 413 Ui
0 = f;ﬁszli/sl=[u2i i Wi | g1 &2 &3 U1 (12.33)
831 832 &33 wii
g1
g12
0 = [M2iu1i Ui U1i Ui W1 TojUyi U2i V1 U2 Wi Woi U1 W2i Uy w2iw1i]
933

for the i-th pair of the corresponding points Xi;g,, ¥2ig, in the two images. Notice that we can work
even with ideal points when wy; = 0 or wp; = 0.

We can solve this way for a non-zero multiple of F from eight correspondences in a general position,
i.e. not all on a plane or on some special quadrics passing through camera centers [15]. If there is
noise in image coordinates, we in general get a rank three matrix.

To avoid this problem, we can use only seven point correspondences to compute a two dimensional
space of solutions

G=G+ak (12.34)

generated form its basis Gy, G by a. Then we use the constraint

8111 8112 8113 8211 8212 8213
0=1[6] =[G +aG|=|| g1 S1n &z | T@ | %22 820 823 (12.35)
8131 8132 8133 8231 823 8233
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to find a by solving a third order polynomial

0 = ma’+ma®+aa+a (12.36)
a3 = |Gyl
a = 8221 8232 8113 — §221 8212 §133 + £211 8222 §133 + £231 §112 §223

+8231 8212 8123 — §211 8223 132 — £231 §122 §213 — §231 §222 §113
—&211 8123 8232 + §121 8232 §213 + £221 §132 §213 + £131 §212 §223
—8121 8212 8233 — §111 8223 8232 — §221 8112 §233 + §211 122 §233
+8111 8222 8233 — 8131 §222 8213

M = 111 8122 8233 + §111 8222 §133 + $231 112 §123 — 121 112 233
—8211 8123 §132 — §221 §112 §133 — £231 §122 $113 + $211 122 §133
+8121 8132 8213 + 121 §232 §113 + £131 §212 $123 — 121 8212 §133
—8131 8222 8113 + §221 132 §113 — §111 §123 §232 — $131 122 §213
+8131 8112 §223 — 111 §223 §132

a = |G

That will give us up to three rank two matrices G.

Notice that we assumed that G was constructed with a non-zero coefficient at G;. We therefore also
need to check G = G, for a solution.

12.3 Ambiguity in two-view reconstruction

The goal of scene reconstruction from its two views is to find camera projection matrices Py, Py,
and coordinates of points in the scene X; such that the points X; are projected by cameras Py, P, to
observed image points ¥1g,, X2,

R X , X
Cixip, =P1 [ 16] and (X, =P [ 16] (12.37)

for some positive real g, Cp.

Assume that there are some cameras Pq, P, and coordinates of points in the scene )Z(g such that
Equation[12.371holds true. Then, for every 4 x 4 real regular matrix H we can get new camera matrices
P/, P and new point coordinates X 5as

72
3/ -
Pl =PH ' P,=PH "' )io] =" [)ié] (12.38)
which also project to the same image points

B X Ly [X X!

Gxip, = P [ 1‘5] — P H H [ 16] =P, 16] (12.39)
, X Ly [X X!

Xy, = P2 [ 1‘5] —PH H [ 16] =P, 1@] (12.40)

We see that in general we can reconstruct the cameras and the scene points only up to some
unknown transformation of the space. We also see that the transformation is more general than just
changing a basis in R?> where we represent affine points Xs. Matrix H acts in the three-dimensional
affine space exactly as homography on two-dimensional affine space.

Let us next look at a somewhat simpler situation when camera calibration matrices K, K, are
known. In such a case we can make sure that H has a special form which corresponds to a special
change of a coordinate system in the three-dimensional affine space.
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12.4 Reconstruction from two calibrated views

Let us further assume that camera calibration matrices K, K, are known. Hence we can pass from F
to E using Equations[12.14] as
E=K, FK (12.41)

then recover the relative pose of the cameras, set their coordinate systems and finally reconstruct
points of the scene.

12.4.1 Camera computation

To simplify the setting, we will first pass from “uncalibrated” image points ¥14,, X3, using Ky, K to
“calibrated”

- -1 - _ 12

X1y, = Kl X1, and X2y, = K2 X2, (12.42)

and then use camera projection matrices as follows

C1 %y, = Py, [}i{)] and (X, = Py, [}ié] (12.43)
Matrix H allows us to choose the global coordinate system of the scene as (Cy, €1). Setting
H! = [1§ Clwl (12.44)
we get from Equation
Py = [I 0 ] (12.45)
Py, = [Rz R/| — Ry (Co5 — 616)] = [Rz R/| — RoR] (Coe, — 6161)] (12.46)
_ [R\ _ Réel] (12.47)
and the corresponding essential matrix
E=R [(11] ) (12.48)

From image measurements, X, , X2,,, we can compute, Section [12.2] matrix

G—7E—1R [@1] (12.49)

X

and hence we can get E only up to a non-zero multiple 7. Therefore, we can recover (il only up to 7.
We will next fix 7 up to its sign s;. Consider that the Frobenius norm of a matrix G

il}Zl Gizj = /trace (GTG) = \/trace (72 [661]1 RTR [661] X)
\/T2 trace <[6€1]I [661] X) (12.50)

IGlr =

= Il V21Ce |2 = It V2| Cell (1251)
We have used the following identities
T
T _ [ = T - 2[R -

GG = 1 [Cel]XR R [Cel]x — 1 [cq]x [cq]x (12.52)

0 z -y 0 -z vy v +z22 —xy  —xz

= |-z 0 «x z 0 —x|=7| —xy 2>+ =yz

y —x 0 -y x 0 —XZ —yz X +y?
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We can now construct normalized matrix G as
V26

C N
26 %R[ . ] A (12.53)
\/ 21 Giz]- ’ [Cerll ]« )

with new unknown s; € {+1,—1} and f;l denoting the unit vector in the direction of the second
camera center in €1 basis.
We can find vector 7, = s t;, with new unknown s; € {+1, —1} by solving

G:

GUe, =0 subjectto |[7g] =1 (12.54)
to get
& = R [i @IL - Z—;R (7.1, (12.55)
sG = R[Ug], (12.56)
[sg1 sg sg3] = R[vi v2 v3] (12.57)
with unknown s € {+1,—1}, unknown rotation R and known matrices [91 g2 gg] = G and

[V1 \'%) Vg] = [1761]><‘

This is a matricial equation. Matrices G, [7, ], are of rank two and hence do not determine R
uniquely unless we use R'R = I and |R| = 1. That leads to a set of polynomial equations. They can
be solved but we will use the property of vector product,[§2} to directly construct regular matrices
that will determine R uniquely for a fixed s.

Consider that for every regular A € R**3, we have,[§2]

(AXp) x (A¥p) = Xpr x Ypr = 2_1‘ (X5 x 1p) (12.58)
which for R gives
(R¥g) x (R¥g) = R(¥p x ¥p) (12.59)
Using it fori,j =1,2,3 to get
(sgi) x (sg;) = (Rvi) x (Rvj) (12.60)
2 (gi ¥ gj) = R(vixvj) (12.61)
(9i x gj) = R(vixv)) (12.62)

i.e. three more vector equations. Notice how s disappeared in the vector product.
We see that we can write

[s91 sg s93 91x g 9x g3 g% g3]|=
= R [vl Vo) V3 V] XVy V3 X V3 v1><V3] (12.63)

Ihere are two solutions Ry for s = +1 and R_ for s = —1. We can next compute two solutions
tye, = +U, and F_el = —0e, and combine them together to four possible solutions
Py,++ = Ri :1 | — F+€1: (12.64)
Py, = Ry :1 |- F_q: (12.65)
Py,—+ = R_ :I | — tleli (12.66)
Py, = R_|I| - (12.67)

The above four camera projection matrices are compatible with G. The one which corresponds to the
actual matrix can be selected by requiring that all reconstructed points lie in front of the cameras, i.e.
that the reconstructed points are all positive multiples of vectors ¥, and X5, for all image points.
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12.4.2 Point computation

Let us assume having camera projection matrices Py, P, and image points 3?1;31, 3?252 such that
=2 }_() - }_()
C1xp, =P [ 16} and CpXop, = P2 [ 16} (12.68)

We can get Xs,and (1, G by solving the following system of (inhomogeneous) linear equations

R G

e B = (12.69)
0 X28, —P3 X5
1

12.5 Calibrated relative camera pose computation

In the previous chapter, we had first computed a multiple of the fundamental matrix from seven point
correspondences and only then used camera calibration matrices to recover a multiple of the essential
matrix. Here we will use the camera calibration right from the beginning to obtain a multiple of the
essential matrix directly from only five image correspondences. Not only that five is smaller than
seven but using the calibration right from the beginning permits all points of the scene generating
the correspondences to lie in a plane.

We start from Equation [12.42]to get X},, and %2, from Equation[12.43| which are related by

= —T —1-
Ty Ky 'ER g = 0 (12.70)
f;yzE;ayl =0 (12.71)

The above equation holds true for all pairs of image points (¥},,, ¥2,,) that are in correspondence, i.e.
are projections of the same point of the scene.

12.5.1 Constraints on E
Matrix E has rank two, and therefore there holds
|E| =0 (12.72)

true.
We will now derive additional constraints on E. Let us consider that we can write, Equation [12.48]

E — R [@1] ) (12.73)

Let us introduce C; =[x vy Z]T and evaluate

o ! 2 2 T =2 - T =3
ETE - <R [Cel]x> R[C.| =G| RRIC.| =|Ca] |Cal. (12.74)
= -z 0 x z 0 —x|=| —xy 22+x* —yz
|y —x 0 -y x 0 —xz —yz P+
[ X%+ y? +2° XX Xy xz
= X2+ y? 4 2 “xy vy yz
L x? + yz + Z2 Xz Yz zz
- ICaP1-Ca G (12.75)
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We can multiply the above expression by E from the left again to get an interesting equation
= 1
EE'E = E (HCel 1’1 - G, ¢ ) |Cei|PE = Strace (ETE)E (12.76)

or equivalently
2EE'E = trace (E'E)E (12.77)

which provides nine equations on elements of E.
In fact, these equations also imply |E| = 0. Consider that Equation[12.77/implies

(2EE" —trace (E'E)I) E=0 (12.78)

For Equation[I2.78to hold true, either E can’t have the full rank, i.e. |E| = 0,or2EET —trace (E'E) I = 0.
The latter case gives

0 = trace(2EE' — trace (E'E)I) = 2trace (EE") — 3trace (E'E) (12.79)
Let us check the relationship between trace (E'E) and trace (EET) now. We write
T 2 2 2
trace (E'E) = (EJ, + E5, +E3)) + (E], + E5, + E3,) + (E]; + E55 + E3;)
2 2 2 2 2 2 2 2 2
= (Ep +Epp +Ej3) + (Byy + Epp + Ez) + (B3 + Egp + Egg)
— trace (EE') (12.80)

Substituting the above into Equation[12.79] gets us
0 = 2trace(EE') —3trace (E'E) = —trace (E'E) (12.81)

Equation 2EE" — trace (ETE) I = 0 also implies

2EE" = trace(E'E)I (12.82)
2EE"| = |trace (E'E)I| (12.83)
2|E* = (trace (E'E))® (12.84)
2E? = 0 (12.85)

E = 0 (12.86)

Therefore, Equation[12.77/implies |E| = 0.
Let us now look at constraints on matrix G = 7E, for some non-zero real 7. We can multiply
Equation [[2.78 by 7° to get

> (2EE" —trace(E'E)I)E = 0 (12.87)
(2(tE) (1 E') —trace (TE") (TE)) ) (TE) = 0 (12.88)
(2GG" —trace (G'G)I) G = © (12.89)

Clearly, rank (G) = rank (7E) = rank (E) = 2.
We conclude that constraints on E and G are the same.
12.5.2 Geometrical interpretation of Equation 12.77|

Let us provide a geometrical interpretation of Equation [12.771 We will mutiply both sides of Equa-
tion by a vector i € R® and write

2EE'Ey = trace(E'E)E7 (12.90)

r[C] [l [ 7 = 21curr[c] g 1291
R|Co| |Ca] [Ca] 7 = rICL1P|C] ¥ (12.92)
e [ [e].7 - erle] s 1299
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¢

<y

C x v
Figure 12.3: Identity Ce, x (Ce, x (Ce, x 7)) = —|Ce,|2(Ce, x 7).

Now, we use that for every two vectors %, i € R? there holds [¥],, = ¥ x ¥/ true to get
Co % (Coy x (Cor x ) = ~ICailf(Cer x 7) (1294)
which is a familiar identity of the vector pruduct in R3, Figure

12.5.3 Characterization of E

Let us next see that a non-zero 3 x 3 real matrix satisfying Equation [[2.77 has rank two and can be
written in the form of Equation[I2.73|for some rotation R and some vector Ce,.

Consider a real 3 x 3 matrix E such that Equation [12.77 holds true. We will make here use of the
SVD decomposition [5} p. 411] of real matrices. We can write

a
E=U b v’ (12.95)
Cc

for some real non-negative a, b, c and some orthogonal real 3 x 3 matrices U, V, such that UTU=1I, and
VTV =1I[B,p.411]. One can see that U' U =I,and V' V = I implies |U| = +1,|V| = £1.
Using Equation we get
2
EE' =U b2 U', E'E=V b2 v’ (12.96)
c? c?

2

and trace (E'E) = trace (VD?V') = trace (VD?V~!) = trace (D?) since matrices D?> and EE' are similar
and hence their traces, which are the sums of their eigenvalues, are equal. Now, we can rewrite
Equation as

a? [ l
2U b? Ul — @+ +A)1|U b vl = 0 (12.97)

c? | c |

ad [ l
2U 5 Vi — @+ +A)U b vi = 0 (12.98)

3 c
Matrices U, V are regular and thus we get
a° a

2 v — (@ + 1+ b -0 (12.99)
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which finally leads to the following three equations

®—ab? —act=a@--c* =0 (12.100)
P—ba*—b>=b(l*—c*—a*) = 0 (12.101)
S—ca’?—chr=c(P-a®-1) = 0 (12.102)

We see that there are the following two exclusive cases:

1. If any two of a,b,c are zero, then the third one is zero too. For instance, if a = b = 0, then
Equation[12.102 gives ¢® = 0. This can’t happen for a non-zero E.

2. If any two of a,b, c are non-zero, then the two non-zero are equal and the third is zero. For
instance, if 2 # 0 and b # 0, then Equations 12,100, I2.10Tlimply ¢* = 0 and thus a? = b?, which
gives a = b since a, b are non-negative, i.e. rank (E) = 2.

We thus conclude that E can be written as

a 010 0 —a O
E = U a vi=ul|l-100||a 00|Vl (12.103)
| 0 001|]|0 00
= w||o vi=w|viv]o Vi=W———— |V |0 (12.104)
[ la]], all. (V)= T all.
= (sign (JW)*wVT sign ([VT]) [avs], (12.105)
= sign(\W|)WVTsign(|VT’) [sign ([W|)avs],, (12.106)
= R[sign ([U])avs], (12.107)

for some non-negative a and the third column v3 of V. Parameter a is zero for E = 0 and positive for
rank two matrices E. We introduced a new matrix W in Equation which is the product of U and
a rotation round the z axis. We also used V'V = I, and finally Equation 256 In Equation[12.105we
used (sign (|W[))?> =1, V-7 =V for V'V = I. Matrix R = sign (|(W)|) WV sign (|V"|) in Equation [2.107]
is a rotation since sign (|(W)|)W as well as V' sign(|[V'|) are both rotations. Finally, we see that
sign ([W|) = sign (|U]).

12.5.4 Computing a non-zero multiple of E

Let us now disscuss how to compute a non-zero multiple of matrix E from image matches.

12.5.4.1 Selecting equations

Every pair of image matches (X},,, X2),) provides a linear constratint on elements of E in the form of
Equation [12.71land matricial Equation [12.77gives nine polynomial constraints for elements of E.

We have already seen in Paragraph [12.2] that a non-zero multiple of E can be obtained from seven
absolutely accurate point correspondences using the constraint |E| = 0. The solution was obtained by
solving a set of polynomial equations out of which seven were linear and the eighth one was a third
order polynomial.

Let us now see how to exploit Equation[I2.77lin order to compute a non-zero multiple of E from as
few image matches as possible.

An idea might be to use Equations instead of |E| = 0. It would be motivated by the fact that
Equations[12.77limply equation |E| = 0 for real 3 x 3 matrices E. Unfortunately, this implication does

113



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

not hold true when we allow complex numbers in , which we have to do if we want to obtain E as a
solution to a polynomial system without using any additional constraints. We have to therefore use
|E| = 0 as well.

The next question is whether we have to use all nine Equations[12.77] It can be shown similarly as
above that indeed none of the equations is in the ideal [2] generated by the otherd. Therefore,
we have to use all Equations 12.77] as well as |[E| = 0. Hence we have altogether ten polynomial
equations of order higher than one.

We have more equations than unknowns but they still do not fully determine E. We have to add
some more equations from image matches. To see how many equations we have to add, we evaluate
the Hilbert dimension [2] of the ideal generated by Equations[12.77]and |E| = 0. We know [2] that a
system of polynomial equations has a finite number of solutions if and only if the Hilbert dimension
of the ideal generated by the system is zero.

!Equation |E| = 0 can’t be generated from Equations[I2.77]as their algebraic combination, i.e. |E| = 0 is not in the ideal [2]
generated by Equations[[2.77] It means that there might be some matrices E satisfying Equations [2.77] which do not
satisfy |E| = 0. We know that such matrices can’t be real. The proof of the above claim can be obtained by the following
program in Maple [18]

>with(LinearAlgebra):

>with(Groebner):

>E:=<<ell|el2|e13>,<e21|e22|e23>,<e31|e32|e33>>:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM, Vector),list)):

>v:=indets(eq):

>mo:=tdeg(op(v)):

>G:=Basis(eq,mo):

>Reduce(Determinant(E),G,mo);

ell e22 e33 - ell e23 e32 + e21 e32 e13 - e21 e12 €33 + e31 el2 e23 - e31 €22 €13

which computes the Groebner basis G of the ideal generated by Equations and verifies that the remainder on
division of |E| by G is non-zero [2].
2To show that none of the equations [[2.77] is in the ideal generated by the others, we run the following test in
Maple.
>with(LinearAlgebra):
>with(Groebner):
>E:=<<ell|el2|el3>,<e21]e22|e23>,<e31|e32|e33>>:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM, Vector),list)):
>
>ReduceEqByEqn:=proc(eq,eqn)
local mo,G;
mo:=tdeg(op(indets(eqn)));
G:=Basis(eqn,mo);
Reduce(eq,G,mo);
end proc:
>
>forifrom 1to 9 do
ReduceEqByEqn(eq[i],eq[[op({$1..9} minus {i})]]);
end;

€113 + e11e122 + e11€132 + ¢11e212 + 2211222 4 22161323 + 11312 4 2¢31¢12e32 + 2¢31€13¢33 — e11¢222 — e11322 — e11¢23% — e11¢332
€112 21 4 2¢11 12022 + 211 €13€23 + 213 + ¢21222 + ¢21 232 + e21 312 + 231622632 + 2¢31 23033 — €21 ¢122 — €21 322 — €21 ¢13% — €21 332
€112 €31 4 2¢e11 1232 + 211 €13 €33 + €212 €31 + 262162232 + 221 23€33 + 313 + e31e322 + ¢31¢332 — 31122 — 316222 — ¢31¢13% — €31 232
120112 + €123 + ¢12€132 + 26221121 + 126222 + 2221323 + 2321131 + 12322 + 2¢32¢13¢33 — 120212 — 12312 — ¢12¢23% — ¢12¢332
2¢12¢€11e21 + €122 ¢22 + 21213623 + 22212 + €223 + €22¢232 4 2322131 + 220322 + 2322333 — 220112 — 22312 — ¢22¢13% — ¢22¢332
2¢12¢11e31 + €122 32 + 2¢12 €13 €33 + 262221 €31 + €222 ¢32 + 202223 €33 + 32312 + 323 + ¢320332 — 32112 — 32212 — 32132 — 326232
e13¢112 + €136122 + €13% + 2623 €11 21 4 22312622 + e13e232 + 233 €11 631 + 2€33 1232 + e13e332 — ¢13¢212 — 13312 — 136222 — €13 322
2¢13¢e11¢e21 + 2¢13€12¢22 + €132 ¢23 + 23212 + 23222 + ¢23% + 2¢33¢21e31 + 23362232 + 23332 — 23112 — 23312 — €23 ¢12% — ¢23 322

26131131 + 2e13€12632 + €132 €33 + 262321 €31 + 26232232 + 232 €33 + 33312 + 33322 + ¢33% — 33112 — 33212 — 33122 — €33 ¢222
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The Hilbert dimension of the ideal generated by Equations [12.77 and |E| = 0 is equal to sil. An
extra linear equation reduces the Hilbert dimension by one [2]. Hence, five additional (independent)
linear equations from image matches will reduce the Hilbert dimension of the system to one.

Since all equations[12.71][12.77land |E| = 0 are homogeneous, we can’t reduce the Hibert dimension
below one by adding more equations [12.77 from image matches. This reflects the fact that E is fixed
by image measurements only up to a non-zero scale.

To conclude, five independent linear equations [12.71] plus Equations and |[E| =0fixEup toa
non-zero scale.

The scale of E has to be fixed in a different way. For instance, one often knows that some of the
elements of E can be set to one. By doing so, an extra independent linear equation is obtained and the
Hilbert dimension is reduced to zero. Alternatively, one can ask for |E|> = 1, which adds a second
order equation. That also reduces the Hilbert dimension to zero but doubles the number of solutions
for E.

12.5.4.2 Solving the equations

We will next describe one way how to solve equations
%},EXi1y, =0, (2EE" —trace(E'E)I)E=0, [E[=0, i=1...,5 (12.108)

We will present a solution based on [20], which is somewhat less efficient than [21} 22] but requires
only eigenvalue computation.
First, using Equation from Paragraph 2.5 we can write

- ST -
x ® x1,2y2 [ 7]
- -
X ® x2T 2,
ST ST
i§ﬁ171® Ji§r/272
® Xy,
ST
® x5,2)/2

Fil 1]

(12.109)

X

—_ o OO oo

5,1}/1

to obtain a 6 x 9 matrix of a system of linear equations on v(E). Row @' can be chosen randomly to fix

the scale of v(E). There is only a negligible chance that it will be chosen in the orthogonal complement
of the span of the solutions to force the solutions be trivial. If so, it can be detected and a new @'
generated.

Assuming that the rows of the matrix of the system are linearly independent, we obtain a 3-
dimensional affine space of solutions. After rearranging the particular solution, resp. the basis of the
solution of the associated homogeneous system, back to 3 x 3 matrices G, resp. Gi, G, Gz, we will get
all solutions compatible with Equation[12.109in the form

G=Gy+xG +yGy +2zG3 (12.110)

forx,y,ze R.

3The Hilber Dimension of the ideal is computed in Maple as follows
>with(LinearAlgebra):
>E:=<<elll|el2|e13;,<e21|e22|e23>,<e31|e32|e33>>:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM, Vector),list)):
>with(Polynomialldeals):
>HilbertDimension(jop(eq),Determinant(E););

6
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Now, we can substitute G for E into the two remaining equations in We get ten trird-order
polynomial equations in three unknowns and with 20 monomials. We can write it as

Mm =0 (12.111)
where M is a constant 10 x 20 matrixf and
m = [x3, y x?, ny, y3, zx%,z yx,z yz, z2x, zzy, 23, %%, yx, yz, zZX,2Y, 22, x, v,z,1] (12.112)
is a vector of 20 monomials.
Next, we rewrite the systemm as
(23(23 +22Co +2C + Cp)c = 0 (12.113)
with
C = 28C3+72°C+2C+C (12.114)

containing 10 monomials. Matrices Cy, ..., C4 are constant 10 x 10 matrices

Co = [m m mg my myy mp m3 my mg my| (12.115)
C1 [@ O 0 O ms mg my my4 M5 m19] (12116)
G = [060 00 0 0 0 m m my (12.117)
GG = [00 060600 0 0 0 mp] (12.118)

where m; are columns of M.

Since m contains all monomials in x, v, z up to degree three, we could have written similar equations
as Equation with x and y.

Equation is known as a Polynomial Eigenvealue Problem (PEP) [23] of degree three. The
strandard solution to such a problem is to relax it into a generelized eigenvalue problem of a larger
size as follows.

We can write z2c = z (zc) and zc = z (c) altogether with Equation [I2.113lin a matrix form as

0 I 0 C I 0 0 C
0 0 I zc = z |0 I 0 zc (12.119)
—Cy —C -G || 7% 0 0 G| |z%

Av = zBv (12.120)

This is a Generelized Eigenvalue Problem (GEP) [23] of size 30 x 30, which can be solved for z and
v. Values of x, y can be recovered from v as x = cg/cyp and x = cg/cyg. It provides 30 solutions in
general.

“Matrix M can be obtained by the following Maple [18] program

>with(LinearAlgebra):
>G0:=<<g011—g012—g013>,<g021—g022—g023>,<g031—g032—g033>>:
>Gl:i=<<gll11l—gl12—g113>,<g121—g122—g123>,<g131—g132—g133>>:
>G2:=<<g211—g212—g213>,<g221—g222—g223> ,<g231—g232—g233>>:
>G3:=<<g311—g312—g313>,<g321—g322—g323>,<g331—g332—g333>>:
>tre:=E-;simplify((2*E.Transpose(E)-Trace(Transpose(E).E)*IdentityMatrix(3,3)).E):
>eq:=[op(convert(trc(G) listlist)), Determinant(G)]:
>mo:=tdeg(x,y,z);
>m:=PolyVarMonomials(eq,mo);

mi= |x3,]/x2/y2x/ }/3,zx2/z yx,z yz,zzx/ zzy,z3,x2,]/x, yz,zx/z Y, 22,x, y,z,1]
>M:=PolyCoeffMatrix(eq,m,mo):
>M[1,1];

21224112 ¢121 + 2133 g113 g131 — 1232 g111 — 1222 ¢111 + 2¢132 112 g131 — 1322 g111 + 1312 g111 + 1122 g111 + ¢1113 4 2¢123 g113 g121 — 1332 111 +
91212 g111 + g113% g111
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When C is regular, we can pass to a standard eigenvalue problem for a non-zero z by inverting A
and usingw = 1/z

—¢;'a -Gl —¢'c | [wie w?c
I 0 0 wc = w | wc (12.121)
0 I 0 C C
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sign, horizon,
1
Sl}(;?ceiinant [Z ideal line, B3
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. image calibration matrix,
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. image plane,
permutation, image projection matrix
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. . join, 871
affine coordinate system, 23]
affine function, Kronecker product, [14]
affme SPE}C1§, il line at infinity,
axioms of linear space, [19 linear function, @
axioms of affine space, linear space,
basis, [19] marked ruler, [16]
bound vector, 171 meet,
camera pose, omnidirectional image,
camera calibration matrix, origin of affine coordinate system, 23

camera cartesian coordinate system,
camera calibration,

camera coordinate system,

camera projection matrix,
coordinate linear space,

coordinates,

panoramic image,
partition,
perspective camera, 33]
point at infinity,
position vector, 23]

. principal plane,
cross product, principal point,
dual basis, 1T projection center,
dual space, ] projective space,

. real projective plane
epipolar plane, [103] . . .
epipolar geometry, affmbe pgmt, ?’1
epipolar line, 103 algebraic model,
epipole geometrical model, [82]
essential matrix, 1fiea1 point,[82]

line,
focal length, point,
free vector, L
. - spherical image,
Frobenius norm, standard basis,

fundamental matrix, 104
three-dimensional real projective space,
geometric scalars, [I7]

geometric vector, [17] vanishing point,
vanishing line,

homogeneous coordinates, vector product,

homogeneous coordinates of a line, vector product,
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world coordinate system, zero bound vector, [17]
world unit length, 7]

END
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