Medical ultrasound imaging Modern ultrasound imaging

J. Kybic¹

Department of cybernetics, FEE CTU http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz

2008-2022

¹Using images from J.Hozman, E.Dove, A. Stoylen

Doppler ultrasound

US contrast agents

Harmonic imaging

3D US imaging

Christian Doppler

1803-1853

Doppler frequency shift

Stationary source, moving receiver

$$f_r = f_s + \frac{v_r}{\lambda_s} = f_s + \frac{v_r}{c} f_s = f_s + f_d$$
, since $\lambda_s = \frac{c}{f_s}$

Doppler shift

$$f_d = \frac{v_r}{c} f_s$$

Stationary source, moving receiver

$$f_r = f_s + \frac{v_r}{\lambda_s} = f_s + \frac{v_r}{c} f_s = f_s + f_d$$
, since $\lambda_s = \frac{c}{f_s}$

Doppler shift

$$f_d = \frac{v_r}{c} f_s$$

Example: For f = 5 MHz, $v_r = 1 \text{ cm/s}$, $f_d = 33 \text{ Hz}$.

Stationary receiver, moving source

Wavelength change

$$\delta\lambda = v_s T_s = \frac{v_s}{f_s}$$

$$\lambda_r = \lambda_s - \delta\lambda = \frac{c}{f_s} - \frac{v_s}{f_s}$$

$$f_r = \frac{c}{\lambda_r} = \frac{c}{c - v_s} f_s$$

Stationary receiver, moving source (2)

$$f_r = \frac{c}{\lambda_r} = \frac{c}{c - v_s} f_s = \frac{1}{1 - \frac{v_s}{c}} f_s$$

Stationary receiver, moving source (2)

$$f_r = \frac{c}{\lambda_r} = \frac{c}{c - v_s} f_s = \frac{1}{1 - \frac{v_s}{c}} f_s$$

From Taylor series, for $x \ll 1$

$$\frac{1}{1-x} = 1 + x + \frac{x^2}{2} + \dots \approx 1 + x$$

For $v \ll c$

$$f_r \approx \left(1 + \frac{v_s}{c}\right) f_s = f_s + f_d$$

Doppler shift

$$f_d = \frac{v_s}{c} f_s$$

Blood flow speed measurement

- ▶ Doppler effect: Frequence changes if the source moves with respect to the receiver.
- Reflection from red blood cells
- Red blood cells
 - Moving receiver
 - Moving source
- Doppler shift

$$f_r = f_t + f_d$$
 $f_d \approx 2 \frac{v}{c} f_c$

Moving scatterer

time and frequency domains

Angle dependency

We only measure the projection along the ray: $v\cos\theta$

$$f_0 = f_s$$

Angle dependency (2)

- ▶ Insonation angle 90° \longrightarrow weak or no signal.
- ightharpoonup Known angle \longrightarrow angle correction.

Continuous wave Doppler

- separate transmitter and receiver
- ► can measure high velocities
- no spatial information

Quadrature detector

- Input: $g_a = \cos(at)$, $g_b = \cos(bt)$
- Output: $g = g_a g_b = \frac{1}{2} \cos((a+b)t) + \frac{1}{2} \cos((a-b)t)$
- ▶ Signal cos((a+b)t) can be filtered (low-pass filter)
- ▶ Difference frequence signal $s_r = \cos((a-b)t)$
- "Imaginary" signal s_i shifted by 90°: $\sin((a-b)t)$

Directional demodulation

To distinguish positive/negative flow direction, $\pm f_d$.

Method 1: Phase-domain processing

- \triangleright Quadrature mixer with f_s
- ▶ Phase offset $\angle s_r = \angle s_i = \pm 90^\circ$

	$f_{d} > 0$	$f_d < 0$
$s_r + T_{90}s_i$	0	$2s_r$
$T_{90}s_r + s_i$	$2s_r$	0

Directional demodulation

To distinguish positive/negative flow direction, $\pm f_d$.

Method 2: Frequency shift

- Quadrature mixer with $f_s + f_o$
- $f_d = 0 \longrightarrow \text{mixer output } f_o$
- $f_d = \operatorname{freq}(s_r) f_o$

Pulsed wave Doppler

(PW)

- single transducer
- repeated pulses

- spatial information
- limited velocity

Sampled Doppler shift signal

 $PRF = pulse repetition frequency f_p$,

PW Doppler shift signals

PRF:pulse repetition frequency, 2:transmitted signal, 3:received signal, 4:gated signal, 5:demodulated signal, 6:interpolated signal, 7:output

PW Doppler spectrum

Speed uncertainty

$$\Delta f_d = \frac{2v}{c\tau} = \underbrace{\frac{f_d}{f_s\tau}}_{Q}, \qquad \Delta v = \frac{v}{Q}$$

au — pulse length, Q — quality factor, number of cycles in a pulse

Speed uncertainty

Angle dependency

small angle \longrightarrow higher number of cycles Q

Aliasing

Nyquist
$$\longrightarrow f_d < f_p/2$$

Aliasing example

B-mode+Doppler+velocity spectrum — high PRF f_p

Aliasing example

 ${\sf B-mode+Doppler+velocity\ spectrum\ --low\ PRF\ } f_p$

Range-velocity tradeoff

$$f_d < f_p/2 \longrightarrow v_{\text{max}} = \frac{f_p c}{4f_s}$$

$$z_{\text{max}} = \frac{T_p c}{2} = \frac{c}{2f_p}$$

$$v_{\text{max}} z_{\text{max}} = \frac{c^2}{8f_s}$$

Range-velocity tradeoff

$$f_d < f_p/2 \longrightarrow v_{\text{max}} = \frac{f_p c}{4f_s}$$

$$z_{\text{max}} = \frac{T_p c}{2} = \frac{c}{2f_p}$$

$$v_{\text{max}} z_{\text{max}} = \frac{c^2}{8f_s}$$

Limitation is for $(v \cos \theta)_{\text{max}}$.

Range-velocity tradeoff

Minimum velocity

Observe at least one period of f_d

$$T_d < NT_p$$

with N transmissions per line

$$f_d > rac{f_p}{N}$$
 $v_{min} = rac{f_p c}{2Nf_s}$

Minimum velocity

Observe at least one period of f_d

$$T_d < NT_p$$

with N transmissions per line

$$f_d > \frac{f_p}{N}$$

$$v_{\min} = \frac{f_p c}{2Nf_s}$$

- ▶ Usually 2 \sim 3 cycles required
- $ightharpoonup N = 5 \sim 10$ or more
- Temporal averaging
- ightharpoonup slow f_p

Doppler US — examples

heart

Doppler US — examples

Doppler US — examples

liver

Doppler ultrasound

US contrast agents

Harmonic imaging

3D US imaging

Contrast agents

- ▶ 1968, Gramiak, saline injection
- ▶ Microbubbles $(2 \sim 5 \,\mu\text{m})$
- ► Asymmetric compression/expansion
- ▶ Stabilization (synthetic polymers), up to $5 10 \, \text{min}$.
- Injection
- Albunex, Optison, Echovist, Levovist...

Flash contrast imaging

US bubble destabilization.

normal

Flash contrast imaging

US bubble destabilization.

flash, bubbles broken

Flash contrast imaging

US bubble destabilization.

filling up

Myocardial perfusion evaluation.

Doppler ultrasound

US contrast agents

Harmonic imaging

3D US imaging

Nonlinear response

Assymetric bubble compression

Harmonic imaging

▶ Transmit f_0 , receive $2f_0$

Harmonic imaging

- ▶ Transmit f_0 , receive $2f_0$
- Bandwith limitation

2b

standard US

2nd harmonic

Harmonic imaging

- ightharpoonup Transmit f_0 , receive $2f_0$
- Bandwith limitation
- ▶ Bubbles not needed, tissue nonlinearity

standard US

2nd harmonic

Pulse Inversion Harmonic Imaging

- ► Two pulses, second inverted
- Responses summed
- ► Filtration not needed

Pulse Inversion Harmonic Imaging

- ► Two pulses, second inverted
- Responses summed
- Filtration not needed

standard image (liver)

pulse inversion

Pulse Inversion Harmonic Imaging

- ► Two pulses, second inverted
- Responses summed
- Filtration not needed
- Several pulses (Power Pulse Inversion)

standard image (liver)

pulse inversion

Doppler ultrasound

US contrast agents

Harmonic imaging

3D US imaging

3D Reconstruction

3D Ultrasound

Traditional 2D

New 3D

Real-time 3D Ultrasound

Velocity of Contraction

Biological effects

- Thermal effects
 - ► 1.5 °C indefinitely or 6 °C for 1 min
 - highest risk in bones (transcranial imaging)
- Cavitation growth/collapse of bubbles
 - for long pulse lengths or high pressure
 - may damage cells
 - unlikely to occur in vivo
- Radiation pressure makes tissues/fluids move

Biological effects

- Thermal effects
 - ▶ 1.5 °C indefinitely or 6 °C for 1 min
 - highest risk in bones (transcranial imaging)
- Cavitation growth/collapse of bubbles
 - for long pulse lengths or high pressure
 - may damage cells
 - unlikely to occur in vivo
- Radiation pressure makes tissues/fluids move
- Clinical studies found no harmful effects

Biological effects

- Thermal effects
 - ► 1.5 °C indefinitely or 6 °C for 1 min
 - highest risk in bones (transcranial imaging)
- Cavitation growth/collapse of bubbles
 - for long pulse lengths or high pressure
 - may damage cells
 - unlikely to occur in vivo
- ► Radiation pressure makes tissues/fluids move
- Clinical studies found no harmful effects
- ... ultrasound power output is increasing.

Conclusions

- Non-invasive, affordable and portable imaging technique
- Excellent soft tissue imaging
- Lower image quality (wrt CT or MRI) due to speckle but improving
- Low penetration depth versus resolution
- Does not pass through air or gas
- Does not pass through bones, shadows
- Modern techniques 3D, contract agents, Doppler