Computed tomography (CT)
 Part 2

J. Kybic ${ }^{1}$

2005-2022

[^0]
Analytical methods

Algebraic reconstruction

3D CT

Radiation dose

Reconstruction methods

- Backprojection (not an inverse)
- Fourier reconstruction (slow)
- Filtered backprojection
- Algebraic reconstruction (iterative)

Forward projection

sinogram

$$
\begin{aligned}
P_{\varphi}(r) & =\int_{(x, y) \in L(r, \varphi)} \mu(x, y) \mathrm{d} / \\
r & =x \cos \varphi+y \sin \varphi \\
P_{\varphi}(r) & =\int_{t} o(x, y) \mathrm{d} t \\
x & =r \cos \varphi-t \sin \varphi \\
y & =r \sin \varphi+t \cos \varphi
\end{aligned}
$$

Variable correspondence:

$$
\xi^{\prime}=r, \quad \eta^{\prime}=t, \quad \xi=x, \quad \eta=y
$$

Backprojection

laminogram

$$
\mu_{b}(x, y)=\int_{0}^{\pi} P_{\varphi}(r) \mathrm{d} \varphi
$$

$$
r=x \cos \varphi+y \sin \varphi
$$

Backprojection

laminogram

$$
\begin{aligned}
\mu_{b}(x, y) & =\int_{0}^{\pi} P_{\varphi}(r) \mathrm{d} \varphi \\
r & =x \cos \varphi+y \sin \varphi
\end{aligned}
$$

for uniformly discretized φ

$$
\begin{aligned}
\varphi_{i} & =\pi(i-1) / n_{\varphi}, \quad i=1, \ldots, n_{\varphi} \\
\mu_{b}(x, y) & \approx \frac{\pi}{n_{\varphi}} \sum_{i=1}^{n_{\varphi}} P_{\varphi}\left(x \cos \varphi_{i}+y \sin \varphi_{i}\right)
\end{aligned}
$$

Backprojection

... is not an inverse of the Radon transform, leads to star artifacts

laminogram μ_{b} - the original object μ blurred, convolved by $1 /|r|$

Backprojection

. . . is not an inverse of the Radon transform, leads to star artifacts

laminogram μ_{b} — the original object μ blurred, convolved by $1 /|r|$

Central slice theorem

(Projection Theorem, Věta o centrálním řezu)

$$
P_{\varphi}(r)=\int \mu(r \cos \varphi-t \sin \varphi, r \sin \varphi+t \cos \varphi) \mathrm{d} t
$$

Fourier transform of the Radon transform by r :

$$
\begin{aligned}
\mathscr{F}\{\mathscr{R}[\mu(x, y)]\} & =\mathscr{F}\left\{P_{\varphi}(r)\right\}=\hat{P}_{\varphi}(\omega)=\int P_{\varphi}(r) \mathrm{e}^{-2 \pi j \omega r} \mathrm{~d} r \\
& =\iint \mu(r \cos \varphi-t \sin \varphi, r \sin \varphi+t \cos \varphi) \mathrm{e}^{-2 \pi j \omega r} \mathrm{~d} r \mathrm{~d} t
\end{aligned}
$$

Substitution $(r, t) \rightarrow(x, y)$:

$$
\hat{P}_{\varphi}(\omega)=\int \mu(x, y) \mathrm{e}^{-2 \pi j \omega(x \cos \varphi+y \sin \varphi)} \mathrm{d} x \mathrm{~d} y
$$

Central slice theorem

$$
\hat{P}_{\varphi}(\omega)=\int \mu(x, y) \mathrm{e}^{-2 \pi j \omega(x \cos \varphi+y \sin \varphi)} \mathrm{d} x \mathrm{~d} y
$$

Denote $u=\omega \cos \varphi \quad v=\omega \sin \varphi$

$$
\hat{P}(u, v)=\int \mu(x, y) \mathrm{e}^{-2 \pi j(x u+y v)} \mathrm{d} x \mathrm{~d} y
$$

and therefore

$$
\begin{aligned}
\hat{P}(u, v) & =\mathscr{F}\{\mu(x, y)\} \\
\hat{P}_{\varphi}(\omega) & =\mathscr{F}\{\mu(x, y)\}(\omega \cos \varphi, \omega \sin \varphi)=\hat{\mu}(\omega \cos \varphi, \omega \sin \varphi)
\end{aligned}
$$

Central slice theorem

$$
\begin{aligned}
\hat{P}(u, v) & =\mathscr{F}\{\mu(x, y)\} \\
\hat{P}_{\varphi}(\omega) & =\mathscr{F}\{\mu(x, y)\}(\omega \cos \varphi, \omega \sin \varphi)=\hat{\mu}(\omega \cos \varphi, \omega \sin \varphi)
\end{aligned}
$$

Slice of the 2D Fourier transform of the image μ at angle φ is the 1D Fourier transform of the projection P_{φ} of the same image μ.

Fourier reconstruction

Fourier reconstruction (2)

- 1D FT $\hat{P}_{\varphi}(\omega)$ of each projection $P_{\varphi}(r)$
- Interpolate FT from polar to Cartesian grid (to get $\hat{P}(u, v)$)
- Inverse 2D FT $\hat{P}(u, v)$ to get object μ

Cons: computational complexity, interpolation artifacts

Inverse Radon transform

From the Fourier slice theorem:

$$
\begin{aligned}
\hat{P}(u, v) & =\mathscr{F}\{\mu(x, y)\} \\
\mu(x, y) & =\mathscr{F}^{-1}\{\hat{P}(u, v)\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{P}(u, v) \mathrm{e}^{2 \pi j(x u+y v)} \mathrm{d} u \mathrm{~d} v
\end{aligned}
$$

Polar coordinates $u=\omega \cos \varphi, \quad v=\omega \sin \varphi$:

$$
\mu(x, y)=\int_{0}^{\pi} \int_{-\infty}^{\infty} \hat{P}_{\varphi}(\omega) \mathrm{e}^{2 \pi j \omega(x \cos \varphi+y \sin \varphi)}|\omega| \mathrm{d} \omega \mathrm{~d} \varphi
$$

where $|\omega|$ is the Jacobian (determinant) of $(\omega, \phi) \rightarrow(u, v)$

$$
\left|\begin{array}{ll}
\frac{\partial u}{\partial \varphi} & \frac{\partial u}{\partial \omega} \\
\frac{\partial v}{\partial \varphi} & \frac{\partial v}{\partial \omega}
\end{array}\right|=\left|-\omega \sin ^{2} \varphi-\omega \cos ^{2} \varphi\right|=|\omega|
$$

Inverse Radon transform

$$
\mu(x, y)=\int_{0}^{\pi} \int_{-\infty}^{\infty} \hat{P}_{\varphi}(\omega) \mathrm{e}^{2 \pi j \omega(x \cos \varphi+y \sin \varphi)}|\omega| \mathrm{d} \omega \mathrm{~d} \varphi
$$

can be written as

$$
\begin{aligned}
& \mu(x, y)=\int_{0}^{\pi} Q_{\varphi}(\underbrace{x \cos \varphi+y \sin \varphi}_{r}) \mathrm{d} \varphi \\
& Q_{\varphi}(r)=\int_{-\infty}^{\infty} \hat{P}_{\varphi}(\omega) \mathrm{e}^{2 \pi j \omega r}|\omega| \mathrm{d} \omega
\end{aligned}
$$

where $Q_{\varphi}(r)$ is a modified projection

Inverse Radon transform

$$
\begin{aligned}
\mu(x, y) & =\int_{0}^{\pi} Q_{\varphi}(r) \mathrm{d} \varphi \\
Q_{\varphi}(r) & =\int_{-\infty}^{\infty} \hat{P}_{\varphi}(\omega) \mathrm{e}^{2 \pi j \omega r}|\omega| \mathrm{d} \omega \\
Q_{\varphi}(r) & =\mathscr{F}^{-1}\left\{|\omega| \hat{P}_{\varphi}(\omega)\right\}=\mathscr{F}^{-1}\{|\omega|\} * P_{\varphi}(r)
\end{aligned}
$$

defining the exact inverse Radon transform

$$
\begin{aligned}
P_{\varphi}(r) & =\mathscr{R}[\mu(x, y)] \\
\mu(x, y) & =\mathscr{R}^{-1}\left[P_{\varphi}(r)\right]
\end{aligned}
$$

Filtered backprojection

Filtrovaná zpětná projekce

- Filter all projections $P_{\varphi}(r)$ for all φ, get modified projections $Q_{\varphi}(r)$
- Backproject modified projections and sum

$$
\begin{aligned}
\mu(x, y) & =\int_{0}^{\pi} Q_{\varphi}(r) \mathrm{d} \varphi \\
Q_{\varphi}(r) & =h(t) * P_{\varphi}(r)=\mathscr{F}^{-1}\{H(\omega)\} * P_{\varphi}(r) \\
H(\omega) & =|\omega|
\end{aligned}
$$

- No Fourier transform involved.

Practical implementation of filtered backprojection

- Problem: Ideal filter $H(\omega)=|\omega|$ amplifies noise
- Solution: Make $\hat{P}_{\varphi}(\omega)$ frequency limited. Ramakrishnan-Lakshiminaryanan \longrightarrow Ram-Lak filter:

$$
H(\omega)= \begin{cases}|\omega| & \text { if }|\omega| \leq \Omega \\ 0 & \text { otherwise }\end{cases}
$$

Practical implementation of filtered backprojection

- Problem: Ideal filter $H(\omega)=|\omega|$ amplifies noise
- Solution: Make $\hat{P}_{\varphi}(\omega)$ frequency limited. Ramakrishnan-Lakshiminaryanan \longrightarrow Ram-Lak filter:

$$
H(\omega)= \begin{cases}|\omega| & \text { if }|\omega| \leq \Omega \\ 0 & \text { otherwise }\end{cases}
$$

- Ram-Lak filter causes artefacts (Gibbs). Many solutions (Hamming filter, Shepp-Logan filter). Tradeoff between SNR and resolution.

Bandlimited ramp filter h

in space domain

Filtered backprojection example

Top sinogram row

Ramp filtered sinogram Top row of filtered sinogram

Filtered backprojection

original image, $1,3,4,16,32$, a 64 projections

Fan-beam reconstruction

- Rays not parallel, not a Radon transform.
- Rebinning

image courtesy of Gillian Henderson

Fan-beam reconstruction

- Rays not parallel, not a Radon transform.
- Rebinning

image courtesy of Jonathan Mamou and Yao Wang

Fan-beam reconstruction (2)

- Rays not parallel, not a Radon transform.
- Exact algorithms:
- Rebinning
- filtered backprojection (Katsevich) - computational complexity, increased dose.
- Approximate algorithms: Modified filtered backprojection (quadratic cosine correction, $\cos \theta$). Feldkamp-Davis-Kress

Fan-beam reconstruction (2)

- Rays not parallel, not a Radon transform.
- Exact algorithms:
- Rebinning
- filtered backprojection (Katsevich) - computational complexity, increased dose.
- Approximate algorithms: Modified filtered backprojection (quadratic cosine correction, $\cos \theta$). Feldkamp-Davis-Kress
- Algebraic reconstruction. Best quality but slow.

Analytical methods

Algebraic reconstruction

3D CT

Radiation dose

Algebraic reconstruction

- Setup and solve a (large) system of equations describing the measurements.
- Mostly (but not necessarily) linear

Algebraic reconstruction

- Setup and solve a (large) system of equations describing the measurements.
- Mostly (but not necessarily) linear

Advantages over FBP

- Better modeling of the physics - attenuation, scattering, limited resolution, beam geometry, sensor noise, beam hardening. . .
- Flexible, better handling of limited acquisition - restricted region, restricted angles, few measurements required
- Can use a statistical image model (regularization)
- Higher quality, less apparent artifacts

Disadvantage - speed

FBP versus ART

few projections

Phantom

FBP (iradon)

ART w/ box constraints

Courtesy of Technical University of Denmark

FBP versus ART

missing angles

Phantom

ART w/ box constr.

Filtered back projection

Courtesy of Technical University of Denmark

Linear reconstruction

- Discretize continuous $\mu(\mathbf{x})$ to pixels μ_{i}

$$
\mu(\mathbf{x})=\sum_{i=1}^{M} \mu_{i} \psi_{i}(\mathbf{x})
$$

Linear reconstruction

- Discretize continuous $\mu(\mathbf{x})$ to pixels μ_{i}

$$
\mu(\mathbf{x})=\sum_{i=1}^{M} \mu_{i} \psi_{i}(\mathbf{x})
$$

- Basis functions (piecewise constant, P0)

$$
\psi_{i}(\mathbf{x})=\left\{\begin{array}{l}
1, \text { if } \mathbf{x} \text { in pixel } i \\
0, \text { otherwise }
\end{array}\right.
$$

Linear reconstruction

- Discretize continuous $\mu(\mathbf{x})$ to pixels μ_{i}

$$
\mu(\mathbf{x})=\sum_{i=1}^{M} \mu_{i} \psi_{i}(\mathbf{x})
$$

- Basis functions (piecewise constant, P0)

$$
\psi_{i}(\mathbf{x})=\left\{\begin{array}{l}
1, \text { if } \mathbf{x} \text { in pixel } i \\
0, \text { otherwise }
\end{array}\right.
$$

- Radon transform

$$
P_{\varphi}(r)=\mathscr{R}[\mu](\varphi, r)=\sum_{i=1}^{M} \mu_{i} \mathscr{R}\left[\psi_{i}\right](\varphi, r)
$$

Linear reconstruction (2)

- For all projections $p_{j}=P_{\varphi_{j}}\left(r_{j}\right), j=1, \ldots, N$

$$
\begin{aligned}
p_{j} & =P_{\varphi_{j}}\left(r_{j}\right)=\sum_{i=1}^{M} \mu_{i} \underbrace{\mathscr{R}\left[\psi_{i}\right]\left(\varphi_{j}, r_{j}\right)}_{w_{i j}} \\
p_{j} & =\sum_{i=1}^{M} w_{i j} \mu_{i} \\
\mathbf{p} & =W \boldsymbol{W} \boldsymbol{\mu}
\end{aligned}
$$

where μ_{i} are pixel values, p_{j} are the projections.
Knowing p, solve for $\boldsymbol{\mu}$.

Linear reconstruction (2)

- For all projections $p_{j}=P_{\varphi_{j}}\left(r_{j}\right), j=1, \ldots, N$

$$
\begin{aligned}
p_{j} & =P_{\varphi_{j}}\left(r_{j}\right)=\sum_{i=1}^{M} \mu_{i} \underbrace{\mathscr{R}\left[\psi_{i}\right]\left(\varphi_{j}, r_{j}\right)}_{w_{i j}} \\
p_{j} & =\sum_{i=1}^{M} w_{i j} \mu_{i} \\
\mathbf{p} & =\mathrm{W} \boldsymbol{\mu}
\end{aligned}
$$

where μ_{i} are pixel values, p_{j} are the projections.
Knowing \mathbf{p}, solve for $\boldsymbol{\mu}$.

- Linear equation system
- is big ($10^{4} \sim 10^{6}$ unknowns and measurements)
- can be overdetermined
- can be underdetermined
- is sparse

Weight coefficients

For line rays - intersection length

$$
w_{i j}=\int_{\mathbf{x} \in L\left(r_{j}, \varphi_{j}\right)} \psi_{i}(\mathbf{x}) \mathrm{d} /
$$

Weight coefficients

For line rays - intersection length

$$
w_{i j}=\int_{\mathbf{x} \in L\left(r_{j}, \varphi_{j}\right)} \psi_{i}(\mathbf{x}) \mathrm{d} /
$$

For thick rays - intersection area

$$
w_{i j}=\int_{\mathbf{x} \in L^{\prime}\left(r_{j}, \varphi_{j}\right)} \psi_{i}(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

Weight coefficients

For line rays - intersection length

$$
w_{i j}=\int_{\mathbf{x} \in L\left(r_{j}, \varphi_{j}\right)} \psi_{i}(\mathbf{x}) \mathrm{d} /
$$

Binary approximation

$$
w_{i j}= \begin{cases}1, & \text { if ray } L\left(r_{j}, \varphi_{j}\right) \text { intersects pixel } \psi_{i} \\ 0, & \text { otherwise }\end{cases}
$$

Least squares solution

for overdetermined systems

Minimize the reconstruction error \mathbf{e}

$$
\boldsymbol{\mu}^{*}=\arg \min _{\boldsymbol{\mu}}\|\underbrace{\mathrm{W} \boldsymbol{\mu}-\mathbf{p}}_{\mathbf{e}}\|^{2}
$$

Least squares solution

for overdetermined systems

Minimize the reconstruction error \mathbf{e}

$$
\boldsymbol{\mu}^{*}=\arg \min _{\boldsymbol{\mu}}\|\underbrace{\mathrm{W} \boldsymbol{\mu}-\mathbf{p}}_{\mathbf{e}}\|^{2}
$$

The reconstruction error \mathbf{e} must be perpendicular to range of W .

$$
0=W^{T} \mathbf{e}=W^{T}\left(W \mu^{*}-\mathbf{p}\right)
$$

Normal equations

$$
W^{T} \mathbf{p}=W^{T} W \boldsymbol{\mu}^{*}
$$

Pseudoinverse solution

$$
\boldsymbol{\mu}^{*}=\left(\mathrm{W}^{T} \mathrm{~W}\right)^{-1} \mathrm{~W}^{T} \mathbf{p}
$$

suitable for smaller problems

Minimum-norm solution

for underdetermined systems or noisy data

Add regularization D

$$
\boldsymbol{\mu}^{*}=\arg \min _{\boldsymbol{\mu}}\|\underbrace{\mathrm{W} \boldsymbol{\mu}-\mathbf{p}}_{\mathbf{e}}\|^{2}+\lambda\|\mathrm{D} \boldsymbol{\mu}\|^{2}
$$

Normal equations

$$
W^{T} \mathbf{p}=\left(W^{T} W+\lambda D^{T} D\right) \boldsymbol{\mu}^{*}
$$

Pseudoinverse solution

$$
\boldsymbol{\mu}^{*}=\left(\mathrm{W}^{T} \mathrm{~W}+\lambda \mathrm{D}^{T} \mathbf{D}\right)^{-1} \mathrm{~W}^{\top} \mathbf{p}
$$

Iterative methods

Principles

- Start from an initial guess of $\boldsymbol{\mu}$
- Compare measured projections and simulations
- Correct pixel values to decrease the difference
- Iterate until convergence

Properties

- Take advantage of the sparseness (complexity $O(N)$ per iteration)
- Low memory complexity $(O(M))$
$-\longrightarrow$ Suitable for large systems of equations
- Early stopping
- Slower for small problems (compared to direct methods)

Projection method

Kaczmarz's method

$$
\begin{aligned}
& p_{j}=\sum_{i=1}^{M} w_{i j} \mu_{i}, \quad j=1,2, \ldots, N \\
& p_{j}=\left\langle\mathbf{w}_{j}, \boldsymbol{\mu}\right\rangle=\mathbf{w}_{j}^{T} \boldsymbol{\mu}
\end{aligned}
$$

Projection method

Kaczmarz's method

$$
\begin{aligned}
& p_{j}=\sum_{i=1}^{M} w_{i j} \mu_{i}, \quad j=1,2, \ldots, N \\
& p_{j}=\left\langle\mathbf{w}_{j}, \boldsymbol{\mu}\right\rangle=\mathbf{w}_{j}^{T} \boldsymbol{\mu}
\end{aligned}
$$

- Affine solution space of equation j

$$
\mathcal{S}_{j}=\left\{\boldsymbol{\mu} \in \mathbb{R}^{M} ; p_{j}=\left\langle\mathbf{w}_{j}, \boldsymbol{\mu}\right\rangle\right\}
$$

Normal vector \mathbf{w}_{j}

$$
\forall \boldsymbol{\mu} \in \mathcal{S}_{j}, \boldsymbol{\mu}^{\prime} \in \mathcal{S}_{j} ;\left\langle\mathbf{w}_{j}, \boldsymbol{\mu}-\boldsymbol{\mu}^{\prime}\right\rangle=0
$$

Projection to an affine space

Projection onto \mathcal{S}_{j}

$$
\mathbf{g}^{*}=\mathcal{P}_{\mathcal{S}_{j}}(\mathbf{h})=\arg \min _{\mathbf{g} \in \mathcal{S}_{j}}\|\mathbf{g}-\mathbf{h}\|
$$

Projection to an affine space

Projection onto \mathcal{S}_{j}

$$
\mathbf{g}^{*}=\mathcal{P}_{\mathcal{S}_{j}}(\mathbf{h})=\arg \min _{\mathbf{g} \in \mathcal{S}_{j}}\|\mathbf{g}-\mathbf{h}\|
$$

Moving in the normal direction (minimum change) until hitting \mathcal{S}_{j}

$$
\begin{aligned}
\mathbf{g}^{*} & =\mathbf{h}-\lambda \mathbf{w}_{j} \\
p_{j} & =\left\langle\mathbf{w}_{j}, \mathbf{h}\right\rangle
\end{aligned}
$$

Solution

$$
\begin{aligned}
\lambda & =\frac{\left\langle\mathbf{w}_{j}, \mathbf{h}\right\rangle-p_{j}}{\left\langle\mathbf{w}_{j}, \mathbf{w}_{j}\right\rangle} \quad \text { normalized residual } \\
\mathbf{g}^{*} & =\mathbf{h}-\frac{\left\langle\mathbf{w}_{j}, \mathbf{h}\right\rangle-p_{j}}{\left\langle\mathbf{w}_{j}, \mathbf{w}_{j}\right\rangle} \mathbf{w}_{j}
\end{aligned}
$$

Projection method

the algorithm

- Initial solution $\boldsymbol{\mu}^{(0)}$ (e.g. random)
- Project sequentially to constraints $1,2, \ldots, N, 1,2, \ldots$

$$
\begin{aligned}
\boldsymbol{\mu}^{(1)} & =\mathcal{P}_{\mathcal{S}_{1}} \boldsymbol{\mu}^{(0)} \\
\boldsymbol{\mu}^{(2)} & =\mathcal{P}_{\mathcal{S}_{2}} \boldsymbol{\mu}^{(1)} \\
\boldsymbol{\mu}^{(3)} & =\mathcal{P}_{\mathcal{S}_{3}} \boldsymbol{\mu}^{(3)}
\end{aligned}
$$

- Repeat until convergence

Interpretation of the update

$$
\begin{aligned}
\boldsymbol{\mu}^{(k+1)} & =\boldsymbol{\mu}^{(k)}-\underbrace{\frac{\left\langle\mathbf{w}_{j}, \boldsymbol{\mu}^{(k)}\right\rangle-p_{j}}{\left\langle\mathbf{w}_{j}, \mathbf{w}_{j}\right\rangle}}_{\tilde{p}_{j}} \mathbf{w}_{j} \\
p_{j} & =\sum_{i=1}^{M} w_{i j} \mu_{i}=\left\langle\mathbf{w}_{j}, \boldsymbol{\mu}\right\rangle
\end{aligned}
$$

Projection $\hat{p}_{j}\left\langle\mathbf{w}_{j}, \boldsymbol{\mu}^{(k)}\right\rangle$ along ray j
Backprojection of the correction \tilde{p}_{j} along ray j

Projection example

$N=2$

Projection method

- Computationally cheap: one projection cost $O(M)$, applying all constraints $O(M N)$
- Low-memory complexity: $O(M)$ if $\mathbf{w}_{i j}$ can be calculated on the fly.
- If a solution exists, the projection method converges to it.
- Convergence may be slow.
- If no solution exists, the method may oscillate.

Projection method improvements

- Constraint ordering

Projection method improvements

- Constraint ordering
- Under/overrelaxation,

$$
\begin{aligned}
& \boldsymbol{\mu}=\boldsymbol{\mu}^{(0)}-\alpha \frac{\left\langle\mathbf{w}_{j}, \boldsymbol{\mu}\right\rangle-p_{j}}{\left\langle\mathbf{w}_{j}, \mathbf{w}_{j}\right\rangle} \mathbf{w}_{j} \\
& 0<\alpha<2
\end{aligned}
$$

Projection method improvements

- Constraint ordering
- Under/overrelaxation,

$$
\begin{aligned}
& \boldsymbol{\mu}=\boldsymbol{\mu}^{(0)}-\alpha \frac{\left\langle\mathbf{w}_{j}, \boldsymbol{\mu}\right\rangle-p_{j}}{\left\langle\mathbf{w}_{j}, \mathbf{w}_{j}\right\rangle} \mathbf{w}_{j} \\
& 0<\alpha<2
\end{aligned}
$$

- Incorporating constraints - positivity $\left(\mu_{i} \geq 0\right)$, zero outside,...

Simplified update rules

- Binary additive case $\left(w_{i j} \in\{0,1\}\right)$

$$
\forall j ; g_{k}^{*}=h_{k}-\frac{\sum_{i, w_{i j}=1} h_{i}-p_{j}}{N_{j}}, \quad \text { for } w_{k j}=1, \quad N_{j}=\sum_{i} w_{i j}=1
$$

- Binary multiplicative case ($w_{i j} \in\{0,1\}$)

$$
\forall j ; g_{k}^{*}=h_{k} \frac{p_{k}}{\sum_{i, w_{i j}=1} h_{i}}, \quad \text { for } w_{k j}=1
$$

Projections by integration

$$
\begin{aligned}
& p_{j}=\int \mu\left(r_{j} \cos \varphi_{j}-t \sin \varphi, r_{j} \sin \varphi_{j}+t \cos \varphi\right) \mathrm{d} t \\
& p_{j}=\sum_{i=1}^{M} w_{i j} \mu_{i}=\left\langle\mathbf{w}_{j}, \boldsymbol{\mu}\right\rangle
\end{aligned}
$$

Projections by integration

$$
\begin{aligned}
& p_{j}=\int \mu\left(r_{j} \cos \varphi_{j}-t \sin \varphi, r_{j} \sin \varphi_{j}+t \cos \varphi\right) \mathrm{d} t \\
& p_{j}=\sum_{i=1}^{M} w_{i j} \mu_{i}=\left\langle\mathbf{w}_{j}, \boldsymbol{\mu}\right\rangle \\
& \mu(\mathbf{x})=\sum_{i=1}^{M} \mu_{i} \psi_{i}(\mathbf{x}) \\
& w_{i j}=\int \psi_{i}\left(r_{j} \cos \varphi_{j}-t \sin \varphi, r_{j} \sin \varphi_{j}+t \cos \varphi\right) \mathrm{d} t \\
& p_{j}=\Delta s \sum_{k} \mu\left(r_{j} \cos \varphi_{j}-t \sin \varphi, r_{j} \sin \varphi_{j}+t \cos \varphi\right), \\
& \text { with } t=\Delta s k
\end{aligned}
$$

Backprojections by integration

Backprojection can be also interpreted by sampling the integration path.

Other iterative methods

- simultaneous iterative reconstruction (SIRT), Cimmino's method - block update
- simultaneous algebraic reconstruction technique (SART) bilinear ψ, projection by integration, Hamming window over rays
- iterative least-squares technique (ILST)
- multiplicative algebraic reconstruction technique (MART)
- iterative sparse asymptotic minimum variance (SAMV)
- (preconditioned) conjugated gradients (CG) - needs regularization for ill-posed problems

Example

moving heart

filtered back projection iterative (nonlinear)

Courtesy of Biomedizinische NMR Forschungs GmbH

Analytical methods

Algebraic reconstruction

3D CT

Radiation dose

3D computed tomography

- Technical challenges: power, cooling
- Rotation method (slice by slice)
- Spiral/helix method

Spiral method

- Acceleration: $10 \mathrm{~min} \rightarrow 1 \mathrm{~min}$

Spiral method

- Acceleration: $10 \mathrm{~min} \rightarrow 1 \mathrm{~min}$
- Pitch:

$$
P=\Delta I / d
$$

$\Delta /$ bed shift per rotation, d slice thickness.
Normally $0<P<2$. Overlap for $P<1$. Typically $P=1.5$.

Spiral method (2)

- Interpolation in zaxis
- Interpolation wide - 1 turn. Less noise, larger effective slice thickness.
- Interpolation Slim - 1/2 turn, symmetry. More noise, smaller effective slice thickness.

Spiral method (2)

- Interpolation in z axis
- Interpolation wide - 1 turn. Less noise, larger effective slice thickness.
- Interpolation Slim - $1 / 2$ turn, symmetry. More noise, smaller effective slice thickness.

Multislice acquisition

- Acceleration

Multislice acquisition

- Multi-plane reconstruction / multi-slice linear interpolation / multi-slice filtered interpolation

Multislice acquisition

- Multi-plane reconstruction / multi-slice linear interpolation / multi-slice filtered interpolation

CT image quality

- Parameters:
- Resolution (0.5 mm)
- Contrast ($\delta \mathrm{H}$, about 5 - 10 HU .)
- Detection threshold (about 1 mm at $\Delta H=200,5 \mathrm{~mm}$ at $\Delta H=5)$.
- Noise (SNR)
- Artifacts
- Scanner defects, malfunctions, operator error
- Metal parts (shadows)
- Motion artifacts
- Partial volume

Artifact examples

Figure 2.19 Example of image artlfacts: (a) test phantom, (b) second phantom, (c) noise, (d) detector under-sampling, (e) view under-sampling, (f) beam hardening, (g) scatter,(b) nonlinear partial volume effect, and (i) object motion. (unpublished results)

Analytical methods

Algebraic reconstruction

3D CT

Radiation dose

Radiation dose

- Absorbed dose D. 1 Gy (gray) $=1 \mathrm{~J} / \mathrm{kg}$ Before $1 \mathrm{~Gy}=100 \mathrm{rad}$
- Effective dose equivalent (dávkový ekvivalent) H_{E} [Sv] (sievert)

$$
H_{\mathrm{E}}=\sum_{i} w_{i} H_{i}=\sum_{i} w_{i} c_{i} D_{i}
$$

$H=c D$. Quality factor c is 1 for X-rays and γ rays, 10 for neutrons, 20 for α particles.

Coefficient w is organ dependent: male/female glands 0.2 , lungs 0.12 , breast 0.1 , stomach 0.12 , thyroid gland 0.05 , skin 0.01. $\sum w_{i}=1$

Before $1 \mathrm{~Sv}=100 \mathrm{rem}$

Radiation dose

- Absorbed dose D. 1 Gy (gray) $=1 \mathrm{~J} / \mathrm{kg}$ Before $1 \mathrm{~Gy}=100 \mathrm{rad}$
- Effective dose equivalent (dávkový ekvivalent) $H_{\mathrm{E}}[\mathrm{Sv}]$ (sievert)

$$
H_{\mathrm{E}}=\sum_{i} w_{i} H_{i}=\sum_{i} w_{i} c_{i} D_{i}
$$

$H=c D$. Quality factor c is 1 for X-rays and γ rays, 10 for neutrons, 20 for α particles.

Coefficient w is organ dependent: male/female glands 0.2 , lungs 0.12 , breast 0.1 , stomach 0.12 , thyroid gland 0.05 , skin 0.01. $\sum w_{i}=1$ Before $1 \mathrm{~Sv}=100 \mathrm{rem}$

- Sum the doses

Radiation dose

- Medical limit (USA) is 50 mSv /year (=limit for a person working with radiation in CR), corresponding to 1000 chest X-rays, or 15 head CTs, or 5 whole body CTs (1 $\mathrm{CT} \approx 10 \mathrm{mSv}$).
- low-dose $\mathrm{CT} \approx 2 \sim 5 \mathrm{mSv}, \mathrm{PET} \approx 25 \mathrm{mSv}$
- In CR radioactive background about $3 \mathrm{mSv} /$ year (mainly radon), similar to USA. In Colorado (altitude $1500 \sim 4000 \mathrm{~m}$) about 4.5 mSv /year. Mean dose from medical imaging $0.3 \mathrm{mSv} /$ year, about 3 long flights.

Radiation dose

- Medical limit (USA) is 50 mSv /year (=limit for a person working with radiation in CR), corresponding to 1000 chest X-rays, or 15 head CTs, or 5 whole body CTs (1 $\mathrm{CT} \approx 10 \mathrm{mSv}$).
- low-dose $\mathrm{CT} \approx 2 \sim 5 \mathrm{mSv}, \mathrm{PET} \approx 25 \mathrm{mSv}$
- In CR radioactive background about 3 mSv /year (mainly radon), similar to USA. In Colorado (altitude $1500 \sim 4000 \mathrm{~m}$) about $4.5 \mathrm{mSv} /$ year. Mean dose from medical imaging $0.3 \mathrm{mSv} /$ year, about 3 long flights.
- cancer related death 20%. $1 \mathrm{CT}=10 \mathrm{mSv}$ - relative increase by $10^{-3} \sim 10^{-4}$

Computed tomography, conclusions

- Excellent spatial resolution
- 3D image
- Fast acquisition
- Weak soft tissue contrast (contrast agents available)
- Reconstruction algorithm
- Radiation dose

[^0]: ${ }^{1}$ Using images from J. Hozman, J. Fessler, S. Webb, M. Slaney, A. Kak and others

