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Analytical methods

Algebraic reconstruction

3D CT

Radiation dose
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Reconstruction methods

I Backprojection (not an inverse)
I Fourier reconstruction (slow)
I Filtered backprojection
I Algebraic reconstruction (iterative)
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Forward projection
sinogram

Pϕ(r) =
∫

(x ,y)∈L(r ,ϕ)

µ(x , y)dl

r = x cosϕ+ y sinϕ

Pϕ(r) =
∫

t
o(x , y)dt

x = r cosϕ− t sinϕ
y = r sinϕ+ t cosϕ

Variable correspondence:

ξ′ = r , η′ = t, ξ = x , η = y
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Backprojection
laminogram

µb(x , y) =
π∫

0

Pϕ(r)dϕ

r = x cosϕ+ y sinϕ 5 / 49



Backprojection
laminogram

µb(x , y) =
π∫

0

Pϕ(r)dϕ

r = x cosϕ+ y sinϕ

for uniformly discretized ϕ

ϕi = π(i − 1)/nϕ, i = 1, . . . , nϕ

µb(x , y) ≈ π

nϕ

nϕ∑
i=1

Pϕ(x cosϕi + y sinϕi )
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Backprojection
. . . is not an inverse of the Radon transform, leads to star artifacts

laminogram µb — the original object µ blurred, convolved by 1/|r |
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Central slice theorem
(Projection Theorem, Věta o centrálńım řezu)

Pϕ(r) =
∫
µ(r cosϕ− t sinϕ, r sinϕ+ t cosϕ)dt

Fourier transform of the Radon transform by r :

F {R [µ(x , y)]} = F {Pϕ(r)} = P̂ϕ(ω) =
∫

Pϕ(r)e−2πjωr dr

=
∫∫

µ(r cosϕ− t sinϕ, r sinϕ+ t cosϕ)e−2πjωr drdt

Substitution (r , t)→ (x , y):

P̂ϕ(ω) =
∫
µ(x , y)e−2πjω(x cosϕ+y sinϕ)dxdy
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Central slice theorem

P̂ϕ(ω) =
∫
µ(x , y)e−2πjω(x cosϕ+y sinϕ)dxdy

Denote u = ω cosϕ v = ω sinϕ

P̂(u, v) =
∫
µ(x , y)e−2πj(xu+yv)dxdy

and therefore

P̂(u, v) = F {µ(x , y)}
P̂ϕ(ω) = F {µ(x , y)} (ω cosϕ, ω sinϕ) = µ̂(ω cosϕ, ω sinϕ)
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Central slice theorem

P̂(u, v) = F {µ(x , y)}
P̂ϕ(ω) = F {µ(x , y)} (ω cosϕ, ω sinϕ) = µ̂(ω cosϕ, ω sinϕ)

Slice of the 2D Fourier transform of the image µ at angle ϕ is the 1D
Fourier transform of the projection Pϕ of the same image µ.
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Fourier reconstruction
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Fourier reconstruction (2)

I 1D FT P̂ϕ(ω) of each projection Pϕ(r)
I Interpolate FT from polar to Cartesian grid (to get P̂(u, v))
I Inverse 2D FT P̂(u, v) to get object µ

Cons: computational complexity, interpolation artifacts
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Inverse Radon transform
From the Fourier slice theorem:

P̂(u, v) = F {µ(x , y)}

µ(x , y) = F−1
{

P̂(u, v)
}

=
∞∫
−∞

∞∫
−∞

P̂(u, v)e2πj(xu+yv)dudv

Polar coordinates u = ω cosϕ, v = ω sinϕ:

µ(x , y) =
π∫

0

∞∫
−∞

P̂ϕ(ω)e2πjω(x cosϕ+y sinϕ)|ω|dωdϕ

where |ω| is the Jacobian (determinant) of (ω, φ)→ (u, v)∣∣∣∣∣ ∂u
∂ϕ

∂u
∂ω

∂v
∂ϕ

∂v
∂ω

∣∣∣∣∣ =
∣∣−ω sin2 ϕ− ω cos2 ϕ

∣∣ =
∣∣ω∣∣
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Inverse Radon transform

µ(x , y) =
π∫

0

∞∫
−∞

P̂ϕ(ω)e2πjω(x cosϕ+y sinϕ)|ω|dωdϕ

can be written as

µ(x , y) =
π∫

0

Qϕ(x cosϕ+ y sinϕ︸ ︷︷ ︸
r

)dϕ

Qϕ(r) =
∞∫
−∞

P̂ϕ(ω)e2πjωr |ω|dω

where Qϕ(r) is a modified projection
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Inverse Radon transform

µ(x , y) =
π∫

0

Qϕ(r)dϕ

Qϕ(r) =
∞∫
−∞

P̂ϕ(ω)e2πjωr |ω|dω

Qϕ(r) = F−1
{
|ω|P̂ϕ(ω)

}
= F−1 {|ω|} ∗ Pϕ(r)

defining the exact inverse Radon transform

Pϕ(r) = R
[
µ(x , y)

]
µ(x , y) = R−1[Pϕ(r)

]
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Filtered backprojection
Filtrovaná zpětná projekce

I Filter all projections Pϕ(r) for all ϕ, get modified projections
Qϕ(r)

I Backproject modified projections and sum

µ(x , y) =
π∫

0

Qϕ(r)dϕ

Qϕ(r) = h(t) ∗ Pϕ(r) = F−1 {H(ω)} ∗ Pϕ(r)
H(ω) = |ω|

I No Fourier transform involved.

11 / 49



Practical implementation of filtered backprojection
I Problem: Ideal filter H(ω) = |ω| amplifies noise
I Solution: Make P̂ϕ(ω) frequency limited.

Ramakrishnan-Lakshiminaryanan −→ Ram-Lak filter:

H(ω) =
{
|ω| if |ω| ≤ Ω
0 otherwise

I Ram-Lak filter causes artefacts (Gibbs). Many solutions
(Hamming filter, Shepp-Logan filter). Tradeoff between SNR
and resolution.
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Bandlimited ramp filter h
in space domain
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Filtered backprojection example
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Filtered backprojection

original image, 1,3, 4, 16, 32, a 64 projections
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Fan-beam reconstruction

I Rays not parallel, not a Radon transform.
I Rebinning

image courtesy of Gillian Henderson
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Fan-beam reconstruction

I Rays not parallel, not a Radon transform.
I Rebinning

image courtesy of Jonathan Mamou and Yao Wang
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Fan-beam reconstruction (2)

I Rays not parallel, not a Radon transform.
I Exact algorithms:

I Rebinning
I filtered backprojection (Katsevich) — computational

complexity, increased dose.
I Approximate algorithms: Modified filtered backprojection

(quadratic cosine correction, cos θ). Feldkamp-Davis-Kress

I Algebraic reconstruction. Best quality but slow.
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Analytical methods

Algebraic reconstruction

3D CT

Radiation dose

18 / 49



Algebraic reconstruction

I Setup and solve a (large) system of equations describing the
measurements.

I Mostly (but not necessarily) linear

Advantages over FBP
I Better modeling of the physics — attenuation, scattering,

limited resolution, beam geometry, sensor noise, beam
hardening. . .

I Flexible, better handling of limited acquisition — restricted
region, restricted angles, few measurements required

I Can use a statistical image model (regularization)
I Higher quality, less apparent artifacts

Disadvantage — speed
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FBP versus ART
few projections

Courtesy of Technical University of Denmark
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FBP versus ART
missing angles

Courtesy of Technical University of Denmark
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Linear reconstruction

I Discretize continuous µ(x) to pixels µi

µ(x) =
M∑

i=1
µiψi (x)

I Basis functions (piecewise constant, P0)

ψi (x) =
{

1, if x in pixel i
0, otherwise

I Radon transform

Pϕ(r) = R
[
µ
]
(ϕ, r) =

M∑
i=1

µiR
[
ψi
]
(ϕ, r)

22 / 49



Linear reconstruction

I Discretize continuous µ(x) to pixels µi

µ(x) =
M∑

i=1
µiψi (x)

I Basis functions (piecewise constant, P0)

ψi (x) =
{

1, if x in pixel i
0, otherwise

I Radon transform

Pϕ(r) = R
[
µ
]
(ϕ, r) =

M∑
i=1

µiR
[
ψi
]
(ϕ, r)

22 / 49



Linear reconstruction

I Discretize continuous µ(x) to pixels µi

µ(x) =
M∑

i=1
µiψi (x)

I Basis functions (piecewise constant, P0)

ψi (x) =
{

1, if x in pixel i
0, otherwise

I Radon transform

Pϕ(r) = R
[
µ
]
(ϕ, r) =

M∑
i=1

µiR
[
ψi
]
(ϕ, r)

22 / 49



Linear reconstruction (2)
I For all projections pj = Pϕj (rj), j = 1, . . . ,N

pj = Pϕj (rj) =
M∑

i=1
µi R

[
ψi
]
(ϕj , rj)︸ ︷︷ ︸

wij

pj =
M∑

i=1
wijµi

p = Wµ

where µi are pixel values, pj are the projections.
Knowing p, solve for µ.

I Linear equation system
I is big (104 ∼ 106 unknowns and measurements)
I can be overdetermined
I can be underdetermined
I is sparse
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Weight coefficients

For line rays — intersection length

wij =
∫

x∈L(rj ,ϕj )

ψi (x)dl
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Weight coefficients

For line rays — intersection length

wij =
∫

x∈L(rj ,ϕj )

ψi (x)dl

For thick rays — intersection area

wij =
∫

x∈L′(rj ,ϕj )

ψi (x)dx
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Weight coefficients

For line rays — intersection length

wij =
∫

x∈L(rj ,ϕj )

ψi (x)dl

Binary approximation

wij =
{

1, if ray L(rj , ϕj) intersects pixel ψi

0, otherwise
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Least squares solution
for overdetermined systems

Minimize the reconstruction error e

µ∗ = arg min
µ
‖Wµ− p︸ ︷︷ ︸

e

‖2
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Least squares solution
for overdetermined systems

Minimize the reconstruction error e

µ∗ = arg min
µ
‖Wµ− p︸ ︷︷ ︸

e

‖2

The reconstruction error e must be perpendicular to range of W.

0 = WT e = WT (Wµ∗ − p
)

Normal equations

WT p = WT Wµ∗

Pseudoinverse solution

µ∗ =
(
WT W

)−1WT p

suitable for smaller problems
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Minimum-norm solution
for underdetermined systems or noisy data

Add regularization D

µ∗ = arg min
µ
‖Wµ− p︸ ︷︷ ︸

e

‖2 + λ‖Dµ‖2

Normal equations

WT p =
(
WT W + λDT D

)
µ∗

Pseudoinverse solution

µ∗ =
(
WT W + λDT D

)−1WT p
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Iterative methods

Principles
I Start from an initial guess of µ

I Compare measured projections and simulations
I Correct pixel values to decrease the difference
I Iterate until convergence

Properties
I Take advantage of the sparseness (complexity O(N) per

iteration)
I Low memory complexity (O(M))
I −→ Suitable for large systems of equations
I Early stopping
I Slower for small problems (compared to direct methods)
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Projection method
Kaczmarz’s method

pj =
M∑

i=1
wijµi , j = 1, 2, . . . ,N

pj =
〈
wj ,µ

〉
= wT

j µ

I Affine solution space of equation j

Sj =
{
µ ∈ RM ; pj = 〈wj ,µ〉

}
Normal vector wj

∀µ ∈ Sj ,µ
′ ∈ Sj ; 〈wj ,µ− µ′〉 = 0

28 / 49



Projection method
Kaczmarz’s method

pj =
M∑

i=1
wijµi , j = 1, 2, . . . ,N

pj =
〈
wj ,µ

〉
= wT

j µ

I Affine solution space of equation j

Sj =
{
µ ∈ RM ; pj = 〈wj ,µ〉

}
Normal vector wj

∀µ ∈ Sj ,µ
′ ∈ Sj ; 〈wj ,µ− µ′〉 = 0

28 / 49



Projection to an affine space

Projection onto Sj

g∗ = PSj

(
h) = arg min

g∈Sj
‖g − h‖
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Projection to an affine space
Projection onto Sj

g∗ = PSj

(
h) = arg min

g∈Sj
‖g − h‖

Moving in the normal direction (minimum change) until hitting Sj

g∗ = h− λwj

pj = 〈wj ,h〉

Solution

λ = 〈wj ,h〉 − pj
〈wj ,wj〉

normalized residual

g∗ = h− 〈wj ,h〉 − pj
〈wj ,wj〉

wj
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Projection method
the algorithm

I Initial solution µ(0) (e.g. random)
I Project sequentially to constraints 1, 2, . . . ,N, 1, 2, . . .

µ(1) = PS1µ
(0)

µ(2) = PS2µ
(1)

µ(3) = PS3µ
(3)

. . .

I Repeat until convergence

30 / 49



Interpretation of the update

µ(k+1) = µ(k) − 〈wj ,µ
(k)〉 − pj

〈wj ,wj〉︸ ︷︷ ︸
p̃j

wj

pj =
M∑

i=1
wijµi = 〈wj ,µ〉

Projection p̂j〈wj ,µ
(k)〉 along ray j

Backprojection of the correction p̃j along ray j
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Projection example
N = 2
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Projection method
properties

I Computationally cheap: one projection cost O(M), applying
all constraints O(MN)

I Low-memory complexity: O(M) if wij can be calculated on
the fly.

I If a solution exists, the projection method converges to it.
I Convergence may be slow.
I If no solution exists, the method may oscillate.
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Projection method improvements

I Constraint ordering

I Under/overrelaxation,

µ = µ(0) − α〈wj ,µ〉 − pj
〈wj ,wj〉

wj

0 < α < 2

I Incorporating constraints — positivity (µi ≥ 0), zero
outside,. . .
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Simplified update rules

I Binary additive case (wij ∈ {0, 1})

∀j ; g∗k = hk−

∑
i ,wij =1

hi − pj

Nj
, for wkj = 1, Nj =

∑
i

wij = 1

I Binary multiplicative case (wij ∈ {0, 1})

∀j ; g∗k = hk
pk∑

i ,wij =1
hi
, for wkj = 1
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Projections by integration

pj =
∫
µ(rj cosϕj − t sinϕ, rj sinϕj + t cosϕ)dt

pj =
M∑

i=1
wijµi = 〈wj ,µ〉
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Projections by integration

pj =
∫
µ(rj cosϕj − t sinϕ, rj sinϕj + t cosϕ)dt

pj =
M∑

i=1
wijµi = 〈wj ,µ〉

µ(x) =
M∑

i=1
µiψi (x)

wij =
∫
ψi (rj cosϕj − t sinϕ, rj sinϕj + t cosϕ)dt

pj = ∆s
∑

k
µ(rj cosϕj − t sinϕ, rj sinϕj + t cosϕ),

with t = ∆s k
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Backprojections by integration

Backprojection can be also interpreted by sampling the integration
path.
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Other iterative methods

I simultaneous iterative reconstruction (SIRT), Cimmino’s
method — block update

I simultaneous algebraic reconstruction technique (SART) —
bilinear ψ, projection by integration, Hamming window over
rays

I iterative least-squares technique (ILST)
I multiplicative algebraic reconstruction technique (MART)
I iterative sparse asymptotic minimum variance (SAMV)
I (preconditioned) conjugated gradients (CG) — needs

regularization for ill-posed problems
I . . .
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Example
moving heart

filtered back projection iterative (nonlinear)

Courtesy of Biomedizinische NMR Forschungs GmbH
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Analytical methods

Algebraic reconstruction

3D CT

Radiation dose
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3D computed tomography

I Technical challenges: power, cooling
I Rotation method (slice by slice)
I Spiral/helix method
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Spiral method
I Acceleration: 10 min→ 1 min

I Pitch:
P = ∆l/d

∆l bed shift per rotation, d slice thickness.
Normally 0 < P < 2. Overlap for P < 1. Typically P = 1.5.
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Spiral method (2)

I Interpolation in z axis
I Interpolation wide — 1 turn. Less noise, larger effective slice

thickness.
I Interpolation Slim — 1/2 turn, symmetry. More noise, smaller

effective slice thickness.
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Multislice acquisition

I Acceleration

I Multi-plane reconstruction / multi-slice linear interpolation /
multi-slice filtered interpolation
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CT image quality

I Parameters:
I Resolution (0.5 mm)
I Contrast (δH, about 5− 10 HU.)
I Detection threshold (about 1 mm at ∆H = 200, 5 mm at

∆H = 5).
I Noise (SNR)

I Artifacts
I Scanner defects, malfunctions, operator error
I Metal parts (shadows)
I Motion artifacts
I Partial volume
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Artifact examples
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Analytical methods
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3D CT

Radiation dose

47 / 49



Radiation dose

I Absorbed dose D. 1 Gy (gray) = 1 J/kg Before 1 Gy = 100 rad
I Effective dose equivalent (dávkový ekvivalent)

HE [Sv] (sievert)

HE =
∑

i
wiHi =

∑
i

wiciDi

H = cD. Quality factor c is 1 for X-rays and γ rays, 10 for
neutrons, 20 for α particles.

Coefficient w is organ dependent: male/female glands 0.2,
lungs 0.12, breast 0.1, stomach 0.12, thyroid gland 0.05, skin
0.01.

∑
wi = 1

Before 1 Sv = 100 rem

I Sum the doses
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Radiation dose

I Medical limit (USA) is 50 mSv/year (=limit for a person
working with radiation in CR), corresponding to 1000 chest
X-rays, or 15 head CTs, or 5 whole body CTs (1
CT≈ 10 mSv).

I low-dose CT≈ 2 ∼ 5 mSv, PET≈ 25 mSv
I In CR radioactive background about 3 mSv/year (mainly

radon), similar to USA. In Colorado (altitude 1500 ∼ 4000 m)
about 4.5 mSv/year. Mean dose from medical imaging
0.3 mSv/year, about 3 long flights.

I cancer related death 20 %. 1 CT=10 mSv — relative increase
by 10−3 ∼ 10−4
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Computed tomography, conclusions

I Excellent spatial resolution
I 3D image
I Fast acquisition
I Weak soft tissue contrast (contrast agents available)
I Reconstruction algorithm
I Radiation dose
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