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CT scanner
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CT history

1917 mathematical theory (Radon)
1956 tomography reconstruction in radioastronomy (Bracewell)
1963 CT reconstruction theory (Cormack)
1971 CT principles demonstrated (Hounsfield)
1972 first working CT for humans (EMI, London, Hounsfield)
1973 PET
1974 Ultrasound tomography
1975 whole body scanner (Hounsfield)
1982 SPECT
1985 Helical CT
1998 Multislice CT, 0.5 s/frame

4 / 58



Johann Radon
1887–1956

I born in Děč́ın (Czech Republic), lived in Göttingen, Brno,
Hamburg, Greifswald, Erlangen, Breslau, Innsbruck and
Vienna

I mathematician; Radon transform (1917) — reconstruction of
a function from its integrals on certain manifolds (projections)
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Godfrey Hounsfield
1919–2004

I physicist and engineer (did not attend university)
I worked on radar and on first transistor computers
I created the first CT X-ray scanner
I Nobel prize in Medicine (1979, together with Cormack)
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Allan MacLeod Cormack
1924–1998

I born in South Africa, studied in Cambridge, lived in the US
I particle physicist
I theoretical foundation of CT scanning (independently of

Hounsfield)
I Nobel prize in Medicine (1979, together with Hounsfield)
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CT principles

1. Sequence of parallel sections (tomos)

2. Sequence of projections from multiple directions
3. Reconstruction of the object
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CT example scans

Head and kidneys
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CT example scans

CT angiography, pelvis
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Clinical applications

I Lungs

I Head
I Abdomen
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Tomography modalities

I X-rays — CT
I gamma rays — PET, SPECT
I light — optical tomography
I RF waves — MRI
I DC — electric impedance tomography
I ultrasound — ultrasound tomography
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First scanner
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Scanner geometry — generation 1
1971

I Single source and single detector
I Finely collimated narrow beam
I Alternating translation and rotation
I Very slow (4 min / section), low resolution
I Low cost, good scatter rejection, easy calibration
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Scanner geometry — generation 2
1974

I Narrow fan beam (∼ 10◦), multiple detectors (N)
I N projections acquired in parallel
I Increased rotation increment
I Increased speed (20 s / section)
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Scanner geometry — generation 3
1975

I Wide fan beam (30◦ ∼ 60◦) covering complete field of view
I 100s of detectors
I Only rotation, no translation
I Pulsed or continuous acquisition
I Fast (5 s / section)

16 / 58



Scanner geometry — generation 4
∼ 1977

I Rotating source, stationary detector rings
I More expensive
I Avoids rotating contacts
I Fast
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Scanner geometry — generation 5
Electron beam CT (EBCT, 1983)

I No moving parts
I Directional X-ray source
I Extremely fast (beating heart)
I Lower signal to noise ratio and spatial resolution
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CT X-ray sources

Similar but bigger than radiography X-ray sources

I Challenges: Power leads, cooling, vibration, . . .
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Filtering and collimation (1)
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Filtering and collimation (2)

I Beam shaping (attenuate lateral part of the beam)

I Prepatient and detector collimation — beam(slice) width
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CT detector types

I Xenon ionization chamber
detectors
I Faster but less sensitive

I Scintillation detectors
I More sensitive but slower

(afterglow, scintillator
dependent)
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CT detector types
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Scintillation detector construction
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Scintillation detector construction

Multiple (e.g. 32, 64) slices −→ acceleration
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Electric processing — corrections

I Offset correction (zero signal at rest)
I Normalization correction (x-ray source intensity fluctuation)
I Sensitivity correction (inhomogeneous detectors and

amplifiers)
I Geometric correction
I Beam hardening correction
I Cosine correction (for fan beam geometry)
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Attenuation along a line
Homogeneous material (Beer-
Lambert’s law)

I = I0e−µ∆ξ

Piecewise homogeneous material

I = I0
n∏

i=1
e−µ∆ξ = I0e−∆ξ

∑n
i=1
µi

Continuously varying µ(x), x = i∆ξ

I = I0e− lim∆ξ→0 ∆ξ
∑n

i=1
µi

= I0e−
∫ D

0
µ(x)dx

Line integral for line L

= I0e−
∫

L
µ(x)dx
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Hounsfield units
HU, CT number

CT = 1000µ− µwater
µwater

I Values between −1000 (air) and approximately 1000 (bones)
I Densities in HU are reproducible between devices
I To differentiate soft tissue types, tumor types etc.
I Accurate calibration is needed
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Beam hardening

I Attenuation decreases with E

I −→ low E rays are attenuated more
I −→ mean E increases
I Measured attenuation p = log(I0/I) < theoretically linear
µ∆ξ.

I Beam hardening correction
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Linear forward problem

For N straight lines Lj , measure the attenuation

pj = log I j
0
I j =

∫
Lj
µ(x)dx

Assumptions
I Infinitely thin rays
I Straight lines — no scattering, reflection or refraction
I Monochromatic radiation — no beam hardening

(Assumptions can be relaxed but more complicated dependency.)
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Linear forward problem

For N straight lines Lj , measure the attenuation

pj = log I j
0
I j =

∫
Lj
µ(x)dx

Assumptions
I Infinitely thin rays
I Straight lines — no scattering, reflection or refraction
I Monochromatic radiation — no beam hardening

(Assumptions can be relaxed but more complicated dependency.)
Discretization

µ(x) =
M∑

i=1
ciϕi (x)

−→ linear system of equations Lc = p
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Integration lines in polar coordinates

Describe integration lines by angle ϕ and offset r :

L(ϕ, r) =
{

(x , y) ∈ R2; x cosϕ+ y sinϕ = r
}

=
{

(r cosϕ− t sinϕ, r sinϕ+ t cosϕ); t ∈ R
}
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Integration lines in polar coordinates

Describe integration lines by angle ϕ and offset r :

L(ϕ, r) =
{

(x , y) ∈ R2; x cosϕ+ y sinϕ = r
}

=
{

(r cosϕ− t sinϕ, r sinϕ+ t cosϕ); t ∈ R
}

Implicit line equation, x = (x , y)[
cosϕ, sinϕ

]
x = 0

Parametric line equation[
cosϕ − sinϕ
sinϕ cosϕ

]
︸ ︷︷ ︸
rotation matrix R(ϕ)

[
r
t

]
= x
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Rotating system of coordinates[
ξ
η

]
= R(ϕ)

[
ξ′

η′

]
[
ξ′

η′

]
= RT (ϕ)

[
ξ
η

]
RT (ϕ) = R(−ϕ)

Projection

Pϕ(ξ′) =
∫

L(ϕ,η′)
µ(x)dx

=
∫

o(ξ, η′)dη′

Measurements

Pϕ(ξ′) = log I0
I(ϕ, ξ′)

Change of variables

ξ′ = r , η′ = t, x = ξ, y = η
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Radon transform

Projection in polar coordinates:

Pϕ(ξ′) = R
[
o(ξ, η)

]
Pϕ(ξ′) =

∫
L

o(ξ, η)dl

along the line L defined by ϕ a ξ′:

ξ′ = ξ cosϕ+ η sinϕ

Equivalently

Pϕ(ξ′) =
∫

o(ξ′ cosϕ− η′ sinϕ, ξ′ sinϕ+ η′ cosϕ)dη′
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Radon transform properties

I Linearity:
R
[
αf + βg

]
= αR

[
f
]

+ βR
[
f
]

I Periodicity:

Pϕ(ξ′) = Pϕ±2π(ξ′) = Pϕ±π(−ξ′)

. . . and many others

34 / 58



Radon transform of a point

o(ξ, η) = δ(ξ − ξ0, η − η0)
Pϕ(ξ′) = R

[
o(ξ, η)

]
= δ
(
ξ0 cosϕ+ η0 sinϕ− ξ′

)
. . . is a sinusoid with amplitude

√
ξ2

0 + η2
0 and phase ∠(ξ0, η0).

ξ′ = ξ0 cosϕ+ η0 sinϕ

Radon transform result Pϕ(ξ′) is called a sinogram
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Radon transform
(sinogram)

of a disc
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Radon transform
(sinogram)

of a square (inverted)
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Radon transform
(sinogram)

of an object with inserts (inverted)
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