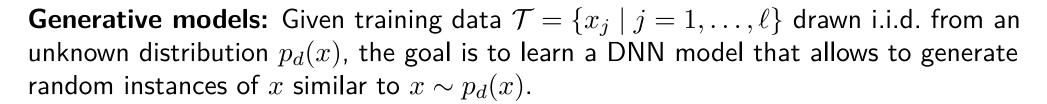
Structured Model Learning Variational Autoencoders

Boris Flach Czech Technical University in Prague

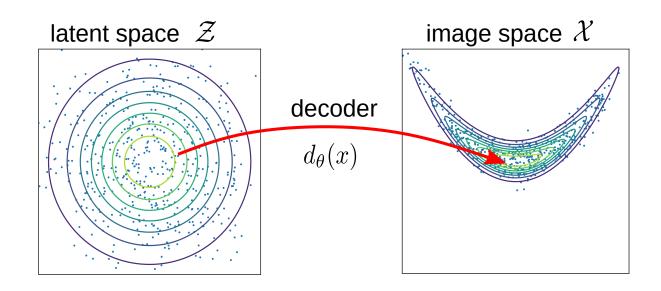
- Variational autoencoders (VAE)
- VAE approximation errors
- Hierarchical VAEs

Generative models

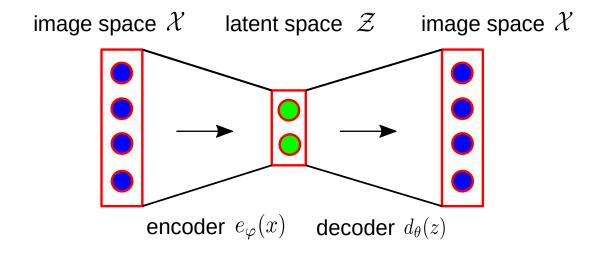


Approach this task by using latent variable models:

- lacktriangle fix a latent noise space $\mathcal Z$ and a distribution p(z) on it,
- lacktriangle design a neural network d_{θ} that maps \mathcal{Z} to the feature space \mathcal{X} ,
- learn its parameters θ so that the resulting distribution $p_{\theta}(x)$ "reproduces" the data distribution.



Classical autoencoder networks



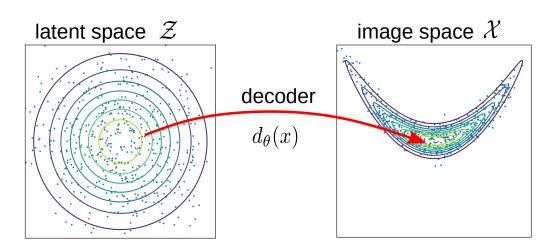
e.g. with learning criterion $\mathbb{E}_{\mathcal{T}} \|x - d_{\theta} \circ e_{\varphi}(x)\|^2$. However,

- the distribution in the latent space is beyond our control,
- lacktriangle the model can not be used for sampling/generating x instances.

- latent space $\mathcal{Z} = \mathbb{R}^m$, prior distribution $p(z) : \mathcal{N}(0, \mathbb{I})$
- image space $\mathcal{X} = \mathbb{R}^n$, conditional distribution $p_{\theta}(x \mid z) \colon \mathcal{N}(\mu_{\theta}(z), \sigma^2 \mathbb{I})$ The mapping $\mathcal{Z} \ni z \mapsto \mu_{\theta} \in \mathcal{X}$ is modelled in terms of a (deep, convolutional) decoder network $d_{\theta} \colon \mathcal{Z} \to \mathcal{X}$.
- Learning goal: maximise data log-likelihood

$$L(\theta; \mathcal{T}) = \mathbb{E}_{\mathcal{T}} \log p_{\theta}(x) = \mathbb{E}_{\mathcal{T}} \log \int_{\mathcal{Z}} dz \ p_{\theta}(x \mid z) p(z)$$

Computing $L(\theta)$ or $\nabla_{\theta}L(\theta)$ is not tractable! It would require to integrate the decoder mapping $d_{\theta}(z)$ over the latent space \mathcal{Z} :



Use ELBO, i.e. a lower bound of the data log-likelihood

$$L(\theta) \geqslant L_B(\theta, q) = \mathbb{E}_{\mathcal{T}} \mathbb{E}_{q(z \mid x)} \left[\log p_{\theta}(x \mid z) - \log \frac{q(z \mid x)}{p(z)} \right]$$

May be we can apply the EM algorithm directly?

EM-algorithm corresponds to block-coordinate ascent of $L_B(\theta,q)$ w.r.t. θ and q

E-step fix
$$\theta_t$$
, set $q_t(z \mid x) = \arg \max_q L(\theta_t, q) \Rightarrow q_t(z \mid x) = p_{\theta_t}(z \mid x)$

M-step fix $q_t(z \mid x)$, maximise $\theta_{t+1} = \arg \max_{\theta} \mathbb{E}_{\mathcal{T}} \mathbb{E}_{q_t(z \mid x)} \log p_{\theta}(x \mid z)$

No, it is not feasible because computing

$$p_{\theta_t}(z \mid x) = \frac{p_{\theta_t}(x \mid z)p(z)}{\int dz' \ p_{\theta_t}(x \mid z')p(z')}$$

would require to integrate the decoder mapping.

$$z \mid x \sim \mathcal{N}(\mu_{\varphi}(x), \operatorname{diag}(\sigma_{\varphi}^{2}(x)))$$

The mapping $x \mapsto \mu_{\varphi}(x), \sigma_{\varphi}(x)$ is modelled in terms of a (deep, convolutional) encoder network $e_{\varphi}(x) = (\mu_{\varphi}(x), \sigma_{\varphi}(x))$.

The ELBO criterion reads now

$$L_B(\theta, \varphi) = \mathbb{E}_{\mathcal{T}} \Big[\mathbb{E}_{q_{\varphi}(z \mid x)} \log p_{\theta}(x \mid z) - D_{KL}(q_{\varphi}(z \mid x) \parallel p(z)) \Big]$$

Can we maximise it by gradient ascent w.r.t. θ and φ ?

- $\mathbb{E}_{\mathcal{T}}$: SGD with mini-batches \checkmark
- $D_{KL}(q_{\varphi}(z \mid x) \parallel p(z))$: both Gaussians factorise and the KL-divergence decomposes into a sum over components $\sum_{i=1}^{m} D_{KL}(q_{\varphi}(z_i \mid x) \parallel p(z_i))$. The KL-divergence of univariate Gaussian distributions can be computed in closed form! \checkmark

$$L_B(\theta, \varphi) = \mathbb{E}_{\mathcal{T}} \Big[\mathbb{E}_{q_{\varphi}(z \mid x)} \log p_{\theta}(x \mid z) - D_{KL}(q_{\varphi}(z \mid x) \parallel p(z)) \Big]$$

- $\nabla_{\theta} \mathbb{E}_{q_{\varphi}(z \mid x)} \log p_{\theta}(x \mid z)$: use SGD by sampling $z \sim q_{\varphi}(z \mid x)$. \checkmark
- $\nabla_{\varphi} \mathbb{E}_{q_{\varphi}(z \mid x)} \log p_{\theta}(x \mid z)$: this gradient is *critical*. We can not replace $\mathbb{E}_{q_{\varphi}(z \mid x)}$ by a sample $z \sim q_{\varphi}(z \mid x)$, because it will depend on $\varphi!$

Re-parametrisation trick: Simple solution for Gaussians:

$$z \sim \mathcal{N}(\mu, \sigma^2) \iff \epsilon \sim \mathcal{N}(0, 1) \text{ and } z = \sigma \epsilon + \mu$$

Now, if μ and σ depend on φ :

$$\nabla_{\varphi} \mathbb{E}_{z \sim \mathcal{N}(\mu_{\varphi}, \sigma_{\varphi}^{2})}[f(z)] = \mathbb{E}_{z \epsilon \sim \mathcal{N}(0, 1)} \left[\nabla_{\varphi} f(\sigma_{\varphi} \epsilon + \mu_{\varphi}) \right]$$

Overall, the learning step for a (Gaussian) VAE is pretty simple:

Fetch a mini-batch x from training data

- 1. apply the encoder network $e_{\varphi}(x) \mapsto \mu_{\varphi}(x), \sigma_{\varphi}(x)$ and compute $q_{\varphi}(z \mid x)$
- 2. compute the KL-divergence $D_{KL}(q_{\varphi}(z \mid x) \parallel p(z))$
- 3. sample a batch $z \sim q_{\varphi}(z \mid x)$ with reparametrisation
- 4. apply the decoder network $d_{\theta}(z) \mapsto \mu_{\theta}(z)$ and compute $\log p_{\theta}(x \mid z)$
- 5. combine the ELBO terms and let PyTorch compute the derivatives and make an SGD step.

Strengths and weaknesses of VAEs

- lacktriangle concise model, simple objective (ELBO), can be optimised by SGD \checkmark
- local optima, posterior collapse: some latent components collapse to $q_{\varphi}(z_i \mid x) = p(z_i)$, i.e. they carry no information. X
- lacktriangle amortized inference models $q_{\varphi}(z\,|\,x)$ may have not enough expressive power to close the gap between $L(\theta)$ and $L_B(\theta,\varphi)$. $m{X}$

9/13

VAE approximation errors

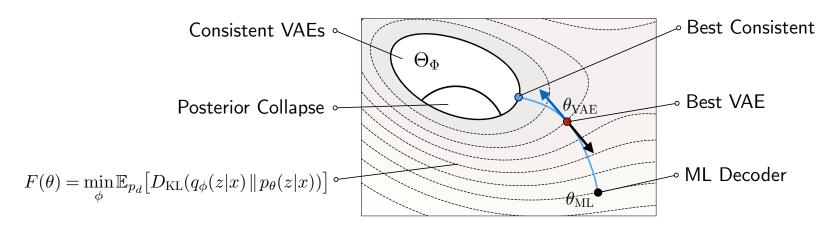
The ELBO objective can be written in two equivalent forms

$$L_B(\theta, \varphi) = \mathbb{E}_{p_d} \big[\mathbb{E}_{q_{\varphi}} \log p_{\theta}(x \mid z) - D_{KL}(q_{\varphi}(z \mid x) \parallel p(z)) \big]$$
$$= L(\theta) - \mathbb{E}_{p_d} \big[D_{KL}(q_{\varphi}(z \mid x) \parallel p_{\theta}(z \mid x)) \big].$$

The second one shows that the lower bound is tight if and only if $q_{\varphi}(z \mid x) \equiv p_{\theta}(z \mid x)$. Define the *consistent set* $\Theta_{\Phi} \subseteq \Theta$ as the subset of distributions $p_{\theta}(x, z)$ whose posteriors are in \mathcal{Q}_{Φ} , i.e.,

$$\Theta_{\Phi} = \{ \theta \in \Theta \mid \exists \varphi \in \Phi : q_{\varphi}(z \mid x) \equiv p_{\theta}(z \mid x) \}.$$
 (1)

The KL-divergence in the ELBO objective can vanish only if $\theta \in \Theta_{\Phi}$. If the likelihood maximizer θ_{ML} is not contained in Θ_{Φ} , then this KL-divergence pulls the optimizer towards Θ_{Φ} and away from θ_{ML} .



VAE approximation errors

10/13

Let us assume that the encoder and the decoder are exponential families

$$p_{\theta}(x \mid z) = h(x) \exp[\langle \nu(x), d_{\theta}(z) \rangle - A(d_{\theta}(z))]$$
$$q_{\varphi}(z \mid x) = h'(z) \exp[\langle \psi(z), e_{\varphi}(x) \rangle - A(e_{\varphi}(x))],$$

where $\nu(x)$, $\psi(z)$ are the corresponding sufficient statistics.

Theorem 1. The consistent set Θ_{Φ} of an exponential family VAE is given by decoders (and encoders) of the form

$$p(x \mid z) = h(x) \exp[\langle \nu(x), W \psi(z) \rangle + \langle \nu(x), u \rangle - A(z)],$$

$$q(z \mid x) = h'(z) \exp[\langle \psi(z), W^T \nu(x) \rangle + \langle \psi(z), v \rangle - B(x)],$$

where W is a $n \times m$ matrix and $u \in \mathbb{R}^n$, $v \in \mathbb{R}^m$ are vectors.

The corresponding joint probability distribution p(x,z) takes the form of an EF Harmonium:

$$p(x,z) \propto h(x)h'(z) \exp(\langle \nu(x), W\psi(z) \rangle + \langle \nu(x), u \rangle + \langle \psi(z), v \rangle).$$

The subset Θ_{Φ} of consistent models can not be enlarged by considering more complex encoder networks g(x), provided that the affine family $W^{\mathsf{T}}\nu(x)$ can already be represented.

Hierarchical VAEs

Hierarchical decoder (Sønderby et al., 2016)

$$p_{\theta}(z) = p(z_0) \prod_{i=1}^{m} p_{\theta}(z_i | z_{i-1}) \text{ and } p_{\theta}(x | z_m)$$

HMM + **EM** algorithm view: Compute pairwise marginals of $p(z \mid x)$ for each $x \in \mathcal{T}^{\ell}$ in the E-step. Here instead, sample from it (notice that $p(z \mid x)$ is a Markov model). We have

$$p(z_i | z_{i-1}, x) \propto p(z_i | z_{i-1}) p(x | z_i).$$

In HMMs with small finite state spaces, the probabilities $p(x \mid z_i)$ are computed by the backward algorithm with iteration

$$p(x | z_{i-1}) = \sum_{z_i} p(z_i | z_{i-1}) p(x | z_i).$$

This is however not possible for hierarchical VAEs, because their latent variables z_i are usually high dimensional vectors. The computation of the $p(x \mid z_i)$ is therefore approximated by the encoder $q(z \mid x)$.

We assume for simplicity binary valued latent vectors $z_i \in \mathcal{B}^{n_i}$. To approximate the values $p(x \mid z_i)$, the encoder uses a deterministic deep network which (in the simplest case) computes

$$a_i = W_i f(a_{i+1})$$

starting from $a_m = W_m x$. Notice that we denote the non-linear activation function of this network by f. Finally, the log-probabilities $\log p(x \mid z_i)$ are approximated by a_i . This gives

$$p(z_i \mid z_{i-1}, x) \propto \exp\langle z_i, d_i(z_{i-1}) + a_i(x) \rangle,$$

where $d_i(z_{i-1})$ is the natural parameter vector of the distribution $p(z_i | z_{i-1})$.

ELBO learning for such models requires

- lacktriangle Computing KL-divergence between $p(z_i \,|\, z_{i-1}, x)$ and $p(z_i \,|\, z_{i-1})$ \checkmark
- Differentiating a sample w.r.t. parameters of the distribution that generates it. Gaussian case: re-parmaterisation, Bernoulli case: e.g. straight through gradient estimator.

Hierarchical Variational Autoencoders

13/13

Advanced VAEs with strong encoders can generate very good images. A. Vahdat et al., NeurIPS 2020: A Deep Hierarchical VAE trained on CelebA data.

