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¢ Variational autoencoders (VAE)

¢ VAE approximation errors

® Hierarchical VAEs
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Generative models: Given training data 7 = {z; | j = 1,...,¢} drawn i.i.d. from an

unknown distribution pg(x), the goal is to learn a DNN model that allows to generate
random instances of x similar to x ~ py(x).

Approach this task by using latent variable models:
¢ fix a latent noise space Z and a distribution p(z) on it,
¢ design a neural network dy that maps Z to the feature space X,

¢ learn its parameters 6 so that the resulting distribution py(x) “reproduces” the data
distribution.
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Classical autoencoder networks
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encoder e,(x) decoder dy(z)

e.g. with learning criterion E7||z — dg o e,(x)]|?. However,
¢ the distribution in the latent space is beyond our control,

¢ the model can not be used for sampling/generating x instances.
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(Gaussian) Variational Autoencoders

¢ latent space Z = R™, prior distribution p(z): N(0,1)

¢ image space X = R", conditional distribution pg(z | 2): N (ue(z), o1

@

The mapping Z > z — ug € X is modelled in terms of a (deep, convolutional)

decoder network dg: Z2 — X.

¢ Learning goal: maximise data log-likelihood

L(0:T) = Er log po(z) = E log / dz po(z | 2)p(2)

Z

Computing L(60) or VyL(6) is not tractable! It would require to integrate the

decoder mapping dy(z) over the latent space Z:

latent space Z image space X
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Use ELBO, i.e. a lower bound of the data log-likelihood

q(z|x
May be we can apply the EM algorithm directly?

EM-algorithm corresponds to block-coordinate ascent of Lg(6,q) w.r.t. 6 and g
E-step fix 0y, set q4(z |x) = argmax, L(0y,q) = q:(2|x) = ps,(2 | x)

M-step fix g;(2|x), maximise 0;; = argmax,E7E, .|, logps(z| 2)

No, it is not feasible because computing

B Po, (ZC | Z)p(z)
pe,(z|x) = f dz' pe,(x | 2")p(2')

would require to integrate the decoder mapping.
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Way out: choose a class of amortized inference models ¢, (z | x)

z|@ ~ N (pp(z), diag(o) (z))

The mapping = — p,(x),0,(x) is modelled in terms of a (deep, convolutional)
encoder network e, () = (py(z), ou(2)).

The ELBO criterion reads now

Lp(0,p) =Er |:qu0(z|ac) logpe(x|2) — Drr(q.(2|z) || p(2))

Can we maximise it by gradient ascent w.r.t. 8 and ?

¢ E+: SGD with mini-batches v/

® Dir(qu(z|x) || p(2)): both Gaussians factorise and the KL-divergence decomposes

into a sum over components > " D r(qu(zi | x) || p(2i)). The KL-divergence of
univariate Gaussian distributions can be computed in closed form! v
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Lp(0,9) = Br |Eq( |y l0gpo(z| 2) = Dicr(ap(2|2) || p(2))

¢ VoEq (2 |2)logpe(z|2): use SGD by sampling 2z ~ q,(2|z). v/

¢ VoE,, (2 |2)logpg(z]2): this gradient is critical

We can not replace E, (. |,) by a sample 2 ~ q,(z | x), because it will depend on ¢!

Re-parametrisation trick: Simple solution for Gaussians:
z~N(u,0°) < e~N(0,1) and z = oe +

Now, if i and o depend on ¢:

VSOEZNN(MQO,J%) [f(Z)] — EZGNN(O,l) [Vgof(O'SOE + :ugo)}
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Overall, the learning step for a (Gaussian) VAE is pretty simple:
Fetch a mini-batch x from training data
1. apply the encoder network e, (z) — p,(x),0,(x) and compute g, (z | x)
compute the KL-divergence Dxr1(q,(z|x) || p(2))
sample a batch z ~ ¢, (2| z) with reparametrisation

apply the decoder network dg(z) — pg(z) and compute log pg(x | 2)

A S

combine the ELBO terms and let PyTorch compute the derivatives and make an SGD
step.
Strengths and weaknesses of VAEs

¢ concise model, simple objective (ELBO), can be optimised by SGD v/

¢ local optima, posterior collapse: some latent components collapse to ¢, (z; | x) = p(zi),
i.e. they carry no information. X

¢ amortized inference models g, (% | x) may have not enough expressive power to close the
gap between L(0) and Lg(0,¢). X
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The ELBO objective can be written in two equivalent forms

Ly (0, ¢) = Ep, [Eq, logps(z | 2) — Drr(gp(2 | 2) || p(2))]
= L(0) — E,, | Dx1(qp(2 | 2) || Po(2 | 2))].
The second one shows that the lower bound is tight if and only if g,(z | x) = pe(2 | ).

Define the consistent set O C O as the subset of distributions py(z, z) whose posteriors are
In Qq), i.e.,

@q):{eé@|E|g0€(biqso(Z‘$)Ep9(Z‘$)}. (1)

The KL-divergence in the ELBO objective can vanish only if 8 € Og. If the likelihood
maximizer 6y, is not contained in ©g, then this KL-divergence pulls the optimizer towards
O4 and away from 6Oy,

Consistent VAEs o~ | /" _~ Best Consistent

Posterior Collapse o—t=>< - Best VAE

o ML Decoder

F(6) = miny, [ D a212) [ poe1)]
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Let us assume that the encoder and the decoder are exponential families

po(x | z) = h(z) exp[{v(x), do(2)) — A(do(2))]
dp(z|x) = W (2) exp[(1(2), ep(x)) — Aley(2))],

where v(x), 1(z) are the corresponding sufficient statistsics.
Theorem 1. The consistent set O of an exponential family VAE is given by decoders (and
encoders) of the form

p(z|z) = h(z)exp[(v(z), Wi (2)) + (v(z), u) — A(2)],
q(z |z) = h'(2) exp[(¢(2), W v (@)) + (d(2),v) — B(z)],

where W is an X m matrix and u € R™, v € R™ are vectors.

The corresponding joint probability distribution p(x, z) takes the form of an EF Harmonium:

p(z,2) oc h(z)h'(2) exp({v(z), Wi (2)) + (v(2),u) + ((2),v)).

The subset ©4 of consistent models can not be enlarged by considering more complex
encoder networks g(x), provided that the affine family W'y (x) can already be represented.
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Hierarchical decoder (Sgnderby et al., 2016)

m

pg(z) — p(ZO) Hpe(zz' ! Zq;—1) and pe(ﬂf ! Zm)

HMM + EM algorithm view: Compute pairwise marginals of p(z |z) for each x € T in
the E-step. Here instead, sample from it (notice that p(z | z) is a Markov model). We have

p(zi | zi—1,®) o< p(2i | zi—1)p( | 2:).

In HMMs with small finite state spaces, the probabilities p(x | z;) are computed by the
backward algorithm with iteration

33|Zzl szz‘zzl $|ZZ)

This is however not possible for hierarchical VAEs, because their latent variables z; are
usually high dimensional vectors. The computation of the p(x | 2;) is therefore approximated
by the encoder ¢(z | x).
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We assume for simplicity binary valued latent vectors z; € B™i. To approximate the values

p(x | z;), the encoder uses a deterministic deep network which (in the simplest case)
computes

a; = Wif(ai+1)
starting from a,, = W,,z. Notice that we denote the non-linear activation function of this
network by f. Finally, the log-probabilities log p(x | z;) are approximated by a;. This gives

P(Zz' | Zi—15 f) X eXP<Zi, di(zi—l) + CLz'(ZU)%

where d;(z;_1) is the natural parameter vector of the distribution p(z; | z;_1).

ELBO learning for such models requires
Computing KL-divergence between p(z; | z;—1,x) and p(2; | zi—1) v

Differentiating a sample w.r.t. parameters of the distribution that generates it. Gaussian
case: re-parmaterisation, Bernoulli case: e.g. straight through gradient estimator.
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Hierarchical Variational Autoencoders

Advanced VAEs with strong encoders can generate very good images. A. Vahdat et al.,
NeurlPS 2020: A Deep Hierarchical VAE trained on CelebA data.
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