Question 1.

Let X contain all real numbers from $[0 ; 1]$ which can be represented using 256 bits. Let $\mathcal{H}=X$, and let the decision be given by an $H \in \mathcal{H}$ as

$$
h(x)=1 \text { iff } x>H
$$

Determine an m such that with probability at least $0.9, \operatorname{err}(h)<0.1$, where h is an arbitrary hypothesis from \mathcal{H} consistent with m i.i.d. examples from X. Estimate it

1. without using any upper bounds seen in the lecture
2. using the upper bound with $\ln |\mathcal{H}|$
3. using the upper bound with $\operatorname{VC}(\mathcal{H})$

Answer:

We have

$$
\begin{aligned}
\epsilon & =0.1 \\
\delta & =1-0.9=0.1 \\
|\mathcal{H}| & =2^{256}
\end{aligned}
$$

1. For a fixed h, the probability that it is " $\operatorname{bad} "(\operatorname{err}(h)>\epsilon)$ and still consistent with m i.i.d. observations is at most $(1-\epsilon)^{m}=0.9^{m}$.

For an arbitrary $h \in \mathcal{H}$, we can bound the probability of at least one of them being "bad" by

$$
\sum_{h \in \mathcal{H}}(1-\epsilon)^{m}=|\mathcal{H}|(1-\epsilon)^{m}=2^{256} 0.9^{m}
$$

We want this probability to be smaller than δ :

$$
\begin{aligned}
|\mathcal{H}|(1-\epsilon)^{m} & <\delta \\
m & \geq \log _{1-\epsilon} \frac{\delta}{|\mathcal{H}|}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
m>\log _{0.9} \frac{0.1}{2^{256}} \approx 1707 \text { examples }(\text { smallest such } m) \tag{1}
\end{equation*}
$$

2.

$$
\begin{aligned}
m & >\frac{1}{\epsilon} \ln \frac{|\mathcal{H}|}{\delta} \\
m & \left.>\frac{1}{0.1} \ln \frac{2^{256}}{0.1} \approx 1798 \text { examples (smallest such } m\right)
\end{aligned}
$$

which is slightly greater than (11) because the upper bound $(1-\epsilon)^{m}<e^{-\epsilon m}(\epsilon>0)$ is used in the derivation of the formula.
3. $\mathrm{VC}(\mathcal{H})=1$ because a single number from X can evidently be shattered (classified positively or negatively by hypotheses from \mathcal{H}) but two different numbers from X cannot be shattered: the smaller cannot be made positive while the larger is negative.

$$
m>\frac{8}{\epsilon}\left(\mathrm{VC}(\mathcal{H}) \cdot \ln \frac{16}{\epsilon}+\ln \frac{2}{\delta}\right) \approx 646 \text { examples }
$$

