Peaking Power Plants
March 8, 2022

1 The Peaking Power-Plants

1.1 Motivation

You are the boss of an electricity distribution company. Based on the contracts with the end-users,
you know the demand on the amount of the electrical energy between hour ¢ and (¢ 4+ 1) next day;
i.e., you have vector d = (do,ds, ..., dss) of demands.

Your company owns several power-plants and wants to cover the demands by switching these plants
on and off. There are two types of power-plants: base and peak plants (there are ny,se and npeqr
of these plants).

» Base power-plants (zdroje zékladniho zatizeni) are cheap, but it takes a long time to start
them and turn them off; therefore, they need to be either turned on or turned off the whole
day. These plants produce ep,s. €nergy every hour and their running cost is cpgse €very hour.

o Peak power-plants (3pickové zdroje) are fast, and can be turned on/off every hour, but
typically the price is high. These plants produce e,cqi energy every hour and their running
cost Cpeqi (every hour).

The surplus energy is being stored in the batteries (storage) and can be used later. However, there
is a loss modeled by parameter v € [0, 1]. If k£ units of energy leave the storage, only ~ - k units can
be used to cover demands (the rest, i.e., (1 —~) -k, is lost).

The capacity of the storage is limited to s,,q, units, and due to technological restrictions, it is
impossible to take the energy from the storage and store it inside simultaneously. The produced
energy needs to cover the demands or be stored in the batteries (energy cannot just vanish). The
storage is empty at the beginning.

You want to minimize to total cost (turning the power-plants on/off) while covering all the demands.

1.2 Input
You are given the following:

o d = (do,di,...,das) — vector of demands

* Npase, Npeak — NUmMber of the respective power-plants

* Chase; Cpeak — COst needed for the running of the respective type of the plant (per hour)
* €pases Cpeak — amount of energy generated by the respective type (per hour)

e Smar — Storage capacity

o (1—7) — energy loss of the storage (only 7 - k energy units can be used out of & units)

For the testing purposes, you can experiment with the following instance:

(1]: 4 = [5, 5, 5, 5, 5, 10, 10, 15, 20, 20, 30, 30, 40, 50, 60, 60, 60, 50, 40, 30,
-30, 20, 10, 5]

n_base g
e_base = 7
c_base = 2.0 / 24.0

n_peak = 40
e_peak = 2

c_peak = 12
s_max = 100
gamma = 0.75
1.3 Owutput

Your goal is to find the number of base power-plants that should be active throughout the whole
day, as well as the number of peak power-plants that should be active every hour such that the
cost is minimized.

The optimal solution for the given instance is:

e 2 active base power-plants
- (0,0,0,0,0,0,0,1,0,0,5,8,13,7,23,23,23,18,13,8,8,3,0,0) active peak power-plants (every
hour)

The corresponding cost is 1840.

1.4 Exercise
Implement the ILP modelfor the peaking power-plants problem, solve it and examine the solution.
[2]: | import gurobipy as gb

MODEL
m = gb.Model()

H*

- ADD VARIABLES
TODO

*

*

- ADD CONSTRAINTS
TODO

H*

H*

- SET OBJECTIVE
TODO

H*

[4]:

m.optimize ()

Academic license - for non-commercial use only
Optimize a model with O rows, O columns and O nonzeros
Coefficient statistics:

Matrix range [0e+00, 0e+00]
Objective range [0e+00, 0e+00]
Bounds range [0e+00, 0e+00]
RHS range [0e+00, 0e+00]

Presolve time: 0.01s

Presolve: All rows and columns removed

Iteration Objective Primal Inf. Dual Inf. Time
0 0.0000000e+00 0.000000e+00 0.000000e+00 Os

Solved in O iterations and 0.01 seconds
Optimal objective 0.000000000e+00

1.5 Solution visualization

import matplotlib.pyplot as plt
import numpy as np

def plot_demands(n_base, n_peak_every_hour, storage_take_every_hour,
—storage_state_every_hour):

nimnn

n_base: number of active base power-plants

n_peak_every_hour: a list containing the number of active peak power-plants,

< (every hour)

storage_take_every_hour: a list containing the amount of emergy, which is,

—taken from the storage (every hour)

storage_state_every_ hour: a list containing the amount of enerqgy, which is,

—stored in the storage (every hour)
Demand plot
T =24
margin = 0.2
width = 0.3
plt.figure(figsize=(10, 4))
plt.bar([t + margin for t in range(T)], d, width=width, color='yellow')

- base power-plants
bottom = np.zeros(T)
g_base = np.array([e_base * n_base for t in range(T)])
plt.bar([t + margin + width for t in range(T)],
g_base,
width=width,
bottom=bottom,

color='red')
bottom += g_base

- peak power-plants
g_peak = np.array([e_peak * n_peak_every_hour[t] for t in range(T)])
plt.bar([t + margin + width for t in range(T)],
g_peak,
width=width,
bottom=bottom,
color='green')
bottom += g_peak

- storage
g_a_take = np.array([gamma * storage_take_every_hour[t] for t in range(T)])
plt.bar([t + margin + width for t in range(T)],
g_a_take,
width=width,
bottom=bottom,
color="'blue')
bottom += g_a_take

plt.xlabel ("hour")

plt.ylabel("energy")

plt.legend(['demand', 'base', 'peak', 'storage'], ncol=1, loc=2)
plt.x1im(0, 24)

plt.xticks(range(24), [i % 24 for i in range(24)])

plt.gridQ

Storage plot.

plt.figure(figsize=(10, 4))

plt.x1im(0, 24)

plt.xticks(range(24), [i % 24 for i in range(24)])

plt.xlabel ("hour")

plt.ylabel("stored energy")

plt.bar([t + margin for t in range(T)], [storage_state_every_hour[t] for t,
—in range(T)], width=width, color='purple')

plt.grid()

plt.show()

The optimal solution

n_base_opt = 2

n_peak_opt = [0, O, O, O, O, O, O, 1, O, O, 5, 8, 13, 7, 23, 23, 23, 18, 13, 8,
-8, 3, 0, 0]

storage_take_opt = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.0,
—999999999999973, 0.0, 0.0, 29.333333333333275, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0]

8.0, 7.
0.0, O

b

storage_state_opt = [0.0, 9.0, 17.999999999999773, 26.99999999999942, 35.
999999999999, 44.99999999999851, 48.999999999997975, 52.99999999999757, 53.
999999999997, 45.999999999997, 37.999999999997, 29.99999999999703, 29.

—999999999997026, 29.999999999997026, 0.6666666666637511, 0.6666666666637511,,

—0.6666666666637511, 0.6666666666637511, 0.6666666666637511, O.
—~6666666666637511, 0.6666666666637511, 0.6666666666637511, O.
—6666666666637511, 4.666666666663695]

TODO: wvisualize your solution
Call thtis function with

- the number of base power-plants to be activated,

- list containing the amount of power taken from the storage (every hour),

HOH O R R R

- list containing the amount of energy in the storage (every hour)
plot_demands(n_base_opt, n_peak_opt, storage_take_opt, storage_state_opt)

- list of the numbers of the peak power-plants to be activated (every hour),

ED
demand
EEl base
07 peak
B storage
40.
5
o 30
]
20 1
10 4
u.
o1 2 3 4 5 6 7 8 9% 10 11 12 13 14 15 16 17 18 19 20 21 22 23
hour
50-
40-

stored energy
] (=]

=

01 2 3 4 5 6 7 8 9% 1011 12 13 14 15 16 17 18 19 20 21 22 23
hour

[1:

	The Peaking Power-Plants
	Motivation
	Input
	Output
	Exercise
	Solution visualization

