
Graph Coloring Problem via SAT

February 23, 2022

1 Graph Coloring Problem via SAT
Antonin Novak (antonin.novak@cvut.cz), Combinatorial Algorithms, 2022

In this notebook, we demonstrate how to reduce the problem of Graph k-coloring into SAT. The
problem is to find, whether the given undirected graph G = (V,E) can be colored with k colors.
The valid coloring is an assigments of numbers (colors) {1, . . . , k} to the verticies V , such that no
two verticies connected by an edge have the same color.

1.1 Reduction
We will construct the instance of SAT problem as follows. We will introduce a propositional
variablee vi,k with the meaning that the vertex i ∈ V is colored with color k. We need to ensure
the following: - each vertex has exactly one color assigned - for each edge (i, j) ∈ E, the vertices i
and j cannot share the same color

We will construct clauses as follows: - ∀i ∈ V : (vi,1 ∨ vi,2 ∨ . . . ∨ vi,k) = “each vertex has at least
one color assigned” - ∀i ∈ V, ∀1 ≤ r < q ≤ k : (¬vi,r ∨ ¬vi,q) = “each vertex has at most one
color assigned” - ∀k ∈ {1, . . . , k}, ∀(i, j) ∈ E : (¬vi,k ∨ ¬vj,k) = “same color cannot be assigned to
connected verticies (i, j)”

1.2 SAT solver
Finally, we see that our clauses are already in CNF form, thus it can be fed into CNF-SAT solver,
e.g., Kissat: https://github.com/arminbiere/kissat

[63]: # parses graphs in DIMACS format
def parse_graph(filename):

n = 0 # vertices
m = 0 # edges
E = []

for line in open(filename, 'r').readlines():
line = line.strip()
if line.startswith('p'):

line = line.split()
n = int(line[2])
m = int(line[3])
continue

if line.startswith('e'):

1

https://github.com/arminbiere/kissat

line = line.split()
E += [(int(line[1])-1, int(line[2])-1)]

return n, m, E

[73]: # reduction of k-coloring to SAT
def generate_kcoloring_sat_formula(n, m, E, k):

clauses = []
sat_vars = {}
c = 1
for i in range(n):

for kdx in range(k):
sat_vars[i, kdx] = c
c += 1

at least one color for each vertex
for i in range(n):

clauses += [[sat_vars[i, kdx] for kdx in range(k)]]
at most one color for each vertex
for i in range(n):

for r in range(k):
for q in range(r+1, k):

clauses += [[-sat_vars[i, q], -sat_vars[i, r]]]

connected nodes cannot have the same color
for e in E:

for kdx in range(k):
clauses += [[-sat_vars[e[0], kdx], -sat_vars[e[1], kdx]]]

return len(sat_vars.keys()), len(clauses), clauses

[74]: # translates clauses into DIMACS SAT format
def export_dimacs(n, m, clauses, filename='sat_input.txt'):

f = open(filename, 'w+')
print('p cnf {} {}'.format(n, m), file=f)
for mdx in range(m):

print(' '.join([str(var) for var in clauses[mdx] + [0]]), file=f)
f.close()

[87]: # uses instances from https://mat.tepper.cmu.edu/COLOR/instances.html

filename = 'myciel3.col' # k=4
#filename = 'queen8_8.col' # k=9
#filename = 'myciel6.col' # k=7

n, m, E = parse_graph(filename)
k = 4
sat_n, sat_m, sat_clauses = generate_kcoloring_sat_formula(n, m, E, k=k)

2

export_dimacs(sat_n, sat_m, sat_clauses, filename='sat_input_k{}.txt'.format(k))

After compiling Kissat solver, you can run it with: cat sat_input.txt | ./kissat

3

	Graph Coloring Problem via SAT
	Reduction
	SAT solver

