
Masterclass

May 4, 2022

1 Masterclass on Combinatorial Optimization
Combinatorial Optimization course, FEE CTU in Prague. Created by Industrial Informatics De-
partment.

In the first part of today’s lab, we will explore vast possibilities offered by Gurobi solver, showing
it is much more than an ILP solver. The second part will revisit some of the previously studied
problems that we formalized using MILP. This time, we will apply Constraint Programming (CP)
and evaluate which method is better for which type of the problem.

[1]: # pip install -i https: // pypi.gurobi.com gurobipy
import gurobipy as g
import matplotlib.pyplot as plt
import numpy as np
import networkx as nx
import itertools as iter
import math
from collections import namedtuple

2 1) GUROBI Automated model tuning
Gurobi solver provides a wide variety of model parameters that can be tweaked to improve the
solver’s performance. While you can tinker with these yourself manually or by writing some sort of
grid search, the Gurobi solver provides a way to tweak these parameters much more effortlessly. To
demonstrate this, we will revisit the ILP model for Game of Fivers, which, as you might remember,
took considerable time to solve for larger board sizes. We will use the auto-tuning tool to improve
the solver’s execution time (more information about it in video here). Let’s start by the building
of the model and executing it for some test instance:

[2]: def game_of_fivers(n, params=None):
m = g.Model()

# "x" represent if the stone was selected to flip (we add extra border rows␣
↪→and columns to avoid indexation problems when building constraint)

x = m.addVars(n + 2, n + 2, vtype=g.GRB.BINARY, obj=1)
# "k" is to help enforce oddness of the number of flips in the neighborhood␣

↪→of each stone -> thus ensuring that it is flipped to black side at the end
k = m.addVars(range(1, n + 1), range(1, n + 1), vtype=g.GRB.INTEGER)

1

https://iid.ciirc.cvut.cz/
https://iid.ciirc.cvut.cz/
https://www.gurobi.com/products/gurobi-optimizer/
https://www.gurobi.com/documentation/9.5/refman/parameters.html
https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://cw.fel.cvut.cz/wiki/_media/courses/ko/06_ilp.pdf
https://www.gurobi.com/documentation/9.5/quickstart_mac/parameter_tuning_tool.html
https://www.youtube.com/watch?v=Y-v5cF96bx4


# Ensure that every stone (except the ones in border rows and columns which␣
↪→were artificially added) was flipped odd number of times, so it ends up␣
↪→flipped to black

for i in range(1, n + 1):
for j in range(1, n + 1):

m.addConstr(x[i, j] + x[i + 1, j] + x[i - 1, j] + x[i, j + 1] +␣
↪→x[i, j - 1] == 2 * k[i, j] + 1)

# Stones in bordering rows and columns can't be the ones being flipped
m.addConstr(x.sum(0, "*") + x.sum(n + 1, "*") + x.sum("*", 0) + x.sum("*",␣

↪→n + 1) == 0)

# We save the model for the current problem instance
m.write('fivers_data/fivers_n{}.lp'.format(n))

# If we have parameters, set them to the model
if params is not None:

for param, value in params.items():
m.setParam(param, value)

m.params.outputflag = 0 # disable the standard output of the solver

m.optimize()

X = [[int(round(x[i, j].X)) for j in range(1, n + 1)] for i in range(1, n +␣
↪→1)]

return m.runtime

[3]: # Run with default parameters
def_time = game_of_fivers(21) # Save the execution time, so we can later␣
↪→compare it with the tuned version

print('Time with default settings: {}s'.format(def_time))

Academic license - for non-commercial use only - expires 2022-09-01
Using license file /Users/novakan9/gurobi.lic
Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (mac64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 442 rows, 970 columns and 2734 nonzeros
Model fingerprint: 0xaa07108c
Variable types: 0 continuous, 970 integer (529 binary)
Coefficient statistics:

Matrix range [1e+00, 2e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]

Presolve removed 1 rows and 96 columns
Presolve time: 0.01s

2



Presolved: 441 rows, 874 columns, 2533 nonzeros
Variable types: 0 continuous, 874 integer (518 binary)

Root relaxation: objective 9.585736e+01, 1238 iterations, 0.07 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 95.85736 0 440 - 95.85736 - - 0s
0 0 96.94696 0 468 - 96.94696 - - 0s
0 0 96.99182 0 469 - 96.99182 - - 0s
0 0 96.99375 0 470 - 96.99375 - - 0s
0 0 96.99408 0 470 - 96.99408 - - 0s
0 0 97.86566 0 477 - 97.86566 - - 0s
0 0 97.87560 0 475 - 97.87560 - - 0s
0 0 97.88237 0 478 - 97.88237 - - 0s
0 0 97.88258 0 477 - 97.88258 - - 0s
0 0 98.82660 0 490 - 98.82660 - - 0s
0 0 98.95163 0 494 - 98.95163 - - 0s
0 0 99.00039 0 498 - 99.00039 - - 0s
0 0 99.01761 0 499 - 99.01761 - - 0s
0 0 99.01909 0 504 - 99.01909 - - 0s
0 0 99.81988 0 501 - 99.81988 - - 0s
0 0 99.91494 0 506 - 99.91494 - - 0s
0 0 99.93230 0 509 - 99.93230 - - 0s
0 0 99.93331 0 510 - 99.93331 - - 0s
0 0 100.86086 0 512 - 100.86086 - - 0s
0 0 101.28866 0 523 - 101.28866 - - 0s
0 0 102.27016 0 521 - 102.27016 - - 0s
0 0 103.32723 0 521 - 103.32723 - - 0s
0 0 103.88010 0 544 - 103.88010 - - 1s
0 0 104.34467 0 539 - 104.34467 - - 1s
0 0 104.66254 0 554 - 104.66254 - - 1s
0 0 104.88282 0 549 - 104.88282 - - 1s

H 0 0 245.0000000 104.88282 57.2% - 1s
0 0 104.88282 0 548 245.00000 104.88282 57.2% - 1s
0 2 104.89753 0 548 245.00000 104.89753 57.2% - 1s

1294 867 109.37345 17 432 245.00000 105.90159 56.8% 116 5s
1341 899 118.42853 30 658 245.00000 118.42853 51.7% 112 10s
1378 923 122.15446 53 695 245.00000 122.15446 50.1% 109 15s

Cutting planes:
Cover: 5
MIR: 166
Flow cover: 22
Zero half: 183
RLT: 3

3



Explored 1393 nodes (171387 simplex iterations) in 16.80 seconds
Thread count was 12 (of 12 available processors)

Solution count 1: 245

Optimal solution found (tolerance 1.00e-04)
Best objective 2.450000000000e+02, best bound 2.450000000000e+02, gap 0.0000%
Time with default settings: 16.80030608177185s

Now, let’s try to tune parameters based on the saved model representing the instance from the
previous execution.

[ ]: # First, we load the model for the problem instance
model = g.read('fivers_data/fivers_n21.lp')

model.params.tuneResults = 1 # How many sets of parameters we want to return␣
↪→by the auto tuner

model.params.TuneTimeLimit = 30 # How much time to invest into the tuning

model.tune() # Run the tuning
if model.tuneResultCount > 0:

model.getTuneResult(0) # Get the best (first) configuration
model.write('fivers_data/fivers_tuned_params.prm') # Save it into the file

In the output above, you can see information about the tuning process, which parameters were
tested, if some parameter improved solver’s results, etc. Note that the tuning process tries different
seeds for the solver to be more robust against randomness in the solving process. When the tuning
is done, let us run the same problem instance with the best parameter set found in the tuning
process. (Note that we hardcode found parameters based on a longer tuning search since it is
possible that in a short time, you will not be able to find any better parameter settings):

[4]: print('Time before tuning: {}s'.format(def_time))
print('Time after tuning: {}s'.format(game_of_fivers(21, {'CutPasses': 10,␣
↪→'PreDual': 1, "Presolve": 2})))

Time before tuning: 16.80030608177185s
Changed value of parameter CutPasses to 10

Prev: -1 Min: -1 Max: 2000000000 Default: -1
Changed value of parameter PreDual to 1

Prev: -1 Min: -1 Max: 2 Default: -1
Changed value of parameter Presolve to 2

Prev: -1 Min: -1 Max: 2 Default: -1
Time after tuning: 10.88615107536316s

We can see that we cut down the execution time roughly to half by using the tuned parameters.
However, the parameters were tweaked for one particular instance of the problem, so if we wanted
to achieve a general improvement to the model, it would be wise to try multiple instances and
choose what would work generally.

4



3 2) GUROBI Nonlinear (general) constraints
So far, we have focused on modelling problems where constraints over variables always represented
one fixed linear relation regardless of the variable’s value (x <= 10 or y <= x + 10). But imagine
a case where we would need to change the function depending on the value of x. Of course, this
could be achieved by using the big M trick, but it is not such a convenient and clean solution.
Thus, let us consider the concept of the Piece-wise linear (PWL) function. As the name suggests,
PWL allows us to change the form of the function/constraint depending on the value of variable
x. Consider a simple problem where we are choosing how many products we will manufacture, but
the price of the product is different based on how many of them we manufacture (wages, overtime,
material discounts etc.):

[5]: # We define lists containing steps (intervals) for number of products (x) and␣
↪→their respective price sum (y)

price_x = [0, 10, 20, 30, 40] # Minimum is 0 (thousands), maximum is 40␣
↪→(thousands)

price_y = [0, 60, 100, 120, 150] # Making 10 (thousands) products cost 60␣
↪→(thousands) units, 20 products 100 units and so on, each interval is␣
↪→linearly interpolated

# Let's plot the function to see how it looks
plt.plot(price_x, price_y)

[5]: [<matplotlib.lines.Line2D at 0x1242b6e50>]

Imagine that when we produce too little, the non-scalable costs like rent payments for the factory
space will make bigger portion of the overall cost making each product more expensive. On the

5

https://www.gurobi.com/documentation/9.5/refman/py_model_agc_pwl.html


other hand, if we produce too much, we will have to pay overtime, making products also more
costly. So the production cost function’s overall shape changes depending on the produced volume,
which is illustrated by the graph above.

[6]: # Now let's build model maximizing the profit (while adding constraint for␣
↪→buying extra machines for increased volume)

m = g.Model()

x = m.addVar(vtype=g.GRB.CONTINUOUS, lb=0, ub=40) # Number of products
y = m.addVar(vtype=g.GRB.CONTINUOUS, lb=0, ub=150) # Cumulative price sum for␣
↪→production

# The PWL constraint is defined by giving it the related variables and list of␣
↪→intervals

m.addGenConstrPWL(x, y, price_x, price_y, "cost_constraint")

#For each 7 (thousand) products we need to buy extra machine to be able to␣
↪→handle the manufacture process

machine_count = m.addVar(vtype=g.GRB.INTEGER)
m.addConstr(machine_count * 7 >= x)

# The selling price for each product is 10
m.setObjective(x * 10 - y - machine_count * 40, sense=g.GRB.MAXIMIZE)

m.optimize()

print(x.x, y.x)

Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (mac64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 1 rows, 3 columns and 2 nonzeros
Model fingerprint: 0x88382a9a
Model has 1 general constraint
Variable types: 2 continuous, 1 integer (0 binary)
Coefficient statistics:

Matrix range [1e+00, 7e+00]
Objective range [1e+00, 4e+01]
Bounds range [4e+01, 2e+02]
RHS range [0e+00, 0e+00]

Found heuristic solution: objective -0.0000000
Presolve added 3 rows and 5 columns
Presolve time: 0.00s
Presolved: 4 rows, 8 columns, 17 nonzeros
Presolved model has 1 SOS constraint(s)
Variable types: 7 continuous, 1 integer (0 binary)

Root relaxation: objective 2.142857e+01, 1 iterations, 0.00 seconds

6



Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 21.42857 0 1 -0.00000 21.42857 - - 0s
H 0 0 10.0000000 21.42857 114% - 0s
* 0 0 0 15.0000000 15.00000 0.00% - 0s

Cutting planes:
MIR: 1

Explored 1 nodes (3 simplex iterations) in 0.02 seconds
Thread count was 12 (of 12 available processors)

Solution count 3: 15 10 -0

Optimal solution found (tolerance 1.00e-04)
Best objective 1.500000000000e+01, best bound 1.500000000000e+01, gap 0.0000%
35.000000000000014 135.00000000000006

We already know that Gurobi can handle more than just linear constraints (for example, quadratic
constraints), but what if we want to formulate even more obscure-looking functions? Gurobi has
us covered. Let us illustrate an example where the function is some combination of sine and cosine
plus some linear element:

[7]: n = 200
t = np.linspace(0, 20, n)
y = 3 * np.sin(t) + np.cos(6 * t) + 0.5 * t + 3

# Plot the final function
plt.plot(t, y)

[7]: [<matplotlib.lines.Line2D at 0x1243f4250>]

7



[8]: m = g.Model()

u = m.addVar(vtype=g.GRB.CONTINUOUS)
v = m.addVar(vtype=g.GRB.CONTINUOUS)
m.addGenConstrPWL(u, v, t, y) # Note that the intervals are sampled points in␣
↪→"t" and "y"

m.setObjective(v, sense=g.GRB.MINIMIZE)

m.optimize()

plt.plot(t, y)
plt.plot(u.x, v.x, marker='o', markersize=8, color="red")

Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (mac64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 0 rows, 2 columns and 0 nonzeros
Model fingerprint: 0x2d9d1a21
Model has 1 general constraint
Variable types: 2 continuous, 0 integer (0 binary)
Coefficient statistics:

Matrix range [0e+00, 0e+00]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [0e+00, 0e+00]

Presolve added 1 rows and 197 columns

8



Presolve time: 0.00s
Presolved: 1 rows, 199 columns, 199 nonzeros
Presolved model has 1 SOS constraint(s)
Variable types: 199 continuous, 0 integer (0 binary)

Root relaxation: objective 1.364267e+00, 0 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

* 0 0 0 1.3642670 1.36427 0.00% - 0s

Explored 0 nodes (0 simplex iterations) in 0.01 seconds
Thread count was 12 (of 12 available processors)

Solution count 1: 1.36427

Optimal solution found (tolerance 1.00e-04)
Best objective 1.364266996602e+00, best bound 1.364266996602e+00, gap 0.0000%

[8]: [<matplotlib.lines.Line2D at 0x12446e6d0>]

In fact there is a huge amount of non-linear functions you can optimize (denoted by “Gen” as
general) and the full list can be found here. More general information about constraints is available
here.

9

https://www.gurobi.com/documentation/9.5/refman/py_model.html
https://www.gurobi.com/documentation/9.5/refman/constraints.html


4 3) GUROBI Solution pool
When tackling a real-world problem, generally, we only care about finding a solution, in some
cases requiring an optimal one regarding some objective. However, we usually don’t care about
suboptimal or other alternatives as long as the problem is solved. But what if you need to get
alternative solutions to your problem because there are other preferences that cannot be easily
embedded into the model, so you want to have the possibility to choose? Or what if the best
solution can fail in real-life execution or become unavailable because of unforeseen events, so you
want to have backup alternatives? We can use the Gurobi solution pool to get more solutions to the
problem. We will demonstrate it on the shortest path problem using flows-like logic formulation
since finding multiple best alternatives for the shortest path problem is something which is not
implicitly provided by the shortest path algorithms we discussed.

[9]: # Create random k-out-regular multidigraph representing some network of one-way␣
↪→roads

dg = nx.DiGraph()
dg = nx.random_k_out_graph(40, 5, 0.4, seed=22) # 40 vertices

# Draw graph
pos = nx.spring_layout(dg)
nx.draw(dg, pos, node_color='k', node_size=3, edge_color='grey',␣
↪→with_labels=True)

10

https://www.gurobi.com/documentation/9.5/refman/solution_pool.html


[10]: s = 28 # start
t = 4 # target

# Get edges and vertices
E = dg.edges()
E = dict.fromkeys(E)
V = dg.nodes()

np.random.seed(69)
w = np.random.randint(0, 50, len(E)) # weight for edges

m = g.Model()
x = m.addVars(E.keys(), vtype=g.GRB.BINARY, ub=1, obj=w) # Variables␣
↪→representing the edges with their weight given by "w" array adding into␣
↪→objective

m.addConstr(g.quicksum([x[s, j] for k, j in E if k == s]) == 1) # Exactly one␣
↪→edge going from start must be selected.

m.addConstr(g.quicksum([x[i, t] for i, k in E if k == t]) == 1) # Exactly one␣
↪→edge going into target must be selected.

# For every vertex except start and target we want the number of selected␣
↪→outgoing edges to be equal to incoming edges

for i in V:
if i not in [s, t]:

m.addConstr(g.quicksum([x[i, j] for k, j in E if k == i]) == g.
↪→quicksum([x[j, i] for j, k in E if k == i]))

m.setParam(g.GRB.Param.PoolSolutions, 3) # How many (best) solutions we want␣
↪→to find

m.setParam(g.GRB.Param.PoolSearchMode, 2) # This says that when optimum is␣
↪→found in the search tree, we will still keep looking for k-best solutions

m.optimize()

sols = [0] * m.solcount
colorlist = ['r', 'g', 'b']

print('Found {} solutions.'.format(m.solcount))
for sol_idx in range(m.solcount):

print('Sol no. {}'.format(sol_idx + 1))
sols[sol_idx] = []
m.setParam(g.GRB.Param.SolutionNumber, sol_idx)
for i, j in E:

if x[i, j].xn > 0.5:
print(i, j)
sols[sol_idx] += [(i, j)]

11



# Draw graph and shortest paths
nx.draw(dg, pos, node_color='k', node_size=3, edge_color='grey',␣
↪→with_labels=True)

for k in range(m.solcount):
nx.draw_networkx_edges(dg, pos, edgelist=sols[k], edge_color=colorlist[k],␣

↪→width=3)

Changed value of parameter PoolSolutions to 3
Prev: 10 Min: 1 Max: 2000000000 Default: 10

Changed value of parameter PoolSearchMode to 2
Prev: 0 Min: 0 Max: 2 Default: 0

Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (mac64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 40 rows, 174 columns and 331 nonzeros
Model fingerprint: 0x0bb97d12
Variable types: 0 continuous, 174 integer (174 binary)
Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [1e+00, 5e+01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]

Found heuristic solution: objective 314.0000000
Presolve removed 17 rows and 73 columns
Presolve time: 0.00s
Presolved: 23 rows, 101 columns, 185 nonzeros
Variable types: 0 continuous, 101 integer (101 binary)
Found heuristic solution: objective 43.0000000

Root relaxation: objective 4.100000e+01, 13 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

* 0 0 0 41.0000000 41.00000 0.00% - 0s

Optimal solution found at node 0 - now completing solution pool…

Nodes | Current Node | Pool Obj. Bounds | Work
| | Worst |

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 - 0 43.00000 41.00000 4.65% - 0s
0 0 - 0 43.00000 41.00000 4.65% - 0s
0 2 - 0 43.00000 41.00000 4.65% - 0s

Explored 80 nodes (76 simplex iterations) in 0.03 seconds
Thread count was 12 (of 12 available processors)

12



Solution count 3: 41 42 42
No other solutions better than 42

Optimal solution found (tolerance 1.00e-04)
Best objective 4.100000000000e+01, best bound 4.100000000000e+01, gap 0.0000%
Found 3 solutions.
Sol no. 1
19 26
25 4
26 32
28 19
32 25
Sol no. 2
9 32
19 9
25 4
28 19
32 25
Sol no. 3
9 20
19 9
20 32
25 4
28 19
32 25

13



5 THEORETICAL INTERMEZZO - Introducing Constraint Pro-
gramming

The CP is one of the alternatives to ILP in the sense that it provides a framework for solving NP
problems. While the CP model excels at some problems (typically problems involving Cmax like
objectives), it does perform poorly on more complex objectives like sums. Thus, it is usually a good
idea to first consider the type of the problem before rushing into its formulation, and if scalability
and speed are a goal, formulating the problem in multiple ways might also be a good idea.

For our purposes we will use CP Optimizer by IBM which is also free for academic purposes
accessible here.

6 4) 1|r, đ|Cmax revisited - Different approaches to the same
problem

When we started the semester, we formalized problem 1|r, đ|Cmax (minimizing time of one ma-
chine executing tasks with release and deadline times) using MILP programming. We called it
“Catering problem”. However, we noticed that the scalability of the approach is not so good. Thus,
recently you were asked to program Bratley’s algorithm solving the same, dramatically improving
the scalability but in exchange forcing you to write one purpose piece of code. But what happens
when we apply CP? First let’s initiate the problem:

[11]: # Visualization
def plot_solution(s, p):

"""
s: solution vector
p: processing times
"""
fig = plt.figure(figsize=(10, 2))
ax = plt.gca()
ax.set_xlabel('time')
ax.grid(True)
ax.set_yticks([2.5])
ax.set_yticklabels(["oven"])
eps = 0.25 # just to show spaces between the dishes
ax.broken_barh([(s[i], p[i] - eps) for i in range(len(s))], (0, 5),

facecolors=('tab:orange', 'tab:green', 'tab:red', 'tab:
↪→blue', 'tab:gray'))

[12]: # You can either load one of the provided instances
path = "./bratley_data/instances/test.txt"

with open(path, "r") as f_in:
lines = f_in.readlines()

14

https://www.ibm.com/cz-en/analytics/cplex-cp-optimizer
https://www.ibm.com/academic/topic/data-science


n = int(lines[0].strip())
r, d, p = [], [], []

for i in range(n):
(pi, ri, di) = list(map(int, lines[1 + i].split()))
r.append(ri)
p.append(pi)
d.append(di)

print("r", r, "d", d, "p", p, sep="\n")

r
[0, 16, 82, 85, 99, 102, 120, 128, 146, 171, 181, 203, 227, 239, 251, 262, 274,
276, 277, 279, 306, 307, 323, 326, 327, 350, 364, 448, 457, 462, 488, 498, 532,
568, 581, 588, 589, 600, 602, 632]
d
[2892, 3397, 5375, 2624, 4367, 8087, 2947, 10234, 1373, 737, 330, 11679, 4897,
1400, 3918, 11945, 9839, 918, 2004, 1923, 4202, 6561, 2203, 4694, 3710, 11943,
1474, 472, 855, 3012, 3656, 4438, 10359, 1681, 3114, 12961, 2734, 720, 11207,
5065]
p
[73, 13, 6, 1, 29, 28, 72, 76, 86, 48, 94, 18, 32, 24, 33, 63, 11, 16, 69, 40,
38, 20, 45, 78, 61, 30, 80, 16, 57, 50, 2, 32, 97, 86, 27, 35, 76, 51, 66, 54]

[ ]: # Or you can also use this data generator for more experimenting
if True:

from numpy import random as rnd
import numpy as np

rnd.seed(15)

n = 500
p = [rnd.randint(1, 100) for i in range(n)]

r = [0 for i in range(n)]
for i in range(1, n):

r[i] = int(round(r[i - 1] + rnd.exponential(0.5 * sum(p) / len(p))))

d = [int(round(r[i] + p[i] + rnd.exponential(100 * sum(p) / len(p)))) for i␣
↪→in range(n)]

print("r", r, "d", d, "p", p, sep="\n")

6.1 ILP model
Let’s start with the ILP model. The model should be nothing new for you since you programmed
it at the start of the semester. We will execute the model on the loaded instance and see how well
it will do.

15



[ ]: m = g.Model()

# - add variables
s = m.addVars(n, vtype=g.GRB.CONTINUOUS, lb=0)
x = {}
for i in range(n):

for j in range(i + 1, n):
x[i, j] = m.addVar(vtype=g.GRB.BINARY)

Cmax = m.addVar(vtype=g.GRB.CONTINUOUS, obj=1)

# - add constraints
for i in range(n):

m.addConstr(s[i] + p[i] <= Cmax)
m.addConstr(s[i] >= r[i])
m.addConstr(s[i] + p[i] <= d[i])

M = max(d)
for i in range(n):

for j in range(i + 1, n):
m.addConstr(s[i] + p[i] <= s[j] + M * (1 - x[i, j]))
m.addConstr(s[j] + p[j] <= s[i] + M * x[i, j])

m.params.TimeLimit = 15

# call the solver -----------------------------------------------
m.optimize()

print()
if m.SolCount > 0:

starts = [s[i].X for i in range(n)]
else:

print("No solution was found.")

print("Done")

[ ]: plot_solution(starts, p)

6.2 CP model
Now let’s take a look at CP model. As we said above, in CP, we don’t use only mathematical
constraints. We also have a collection of expressions and constraints which we can use. In fact,
using CP Optimizer, we could program our own constraints and expressions and use them as well,
but this is far beyond the scope of this demonstration. Let’s take a look at what we will use today:
- Interval variable: An interval variable represents some task/activity spanning in the final solution.
Its size is given by the instance description, while its start (and thus also end) in the solution is
found by the CP solver. - Start_of predicate: This predicate points us to the point in the solution
where the interval variable starts. Thus, using this predicate, we can, for example, enforce the

16

https://ibmdecisionoptimization.github.io/docplex-doc/cp/docplex.cp.expression.py.html?highlight=interval_var#docplex.cp.expression.interval_var
https://ibmdecisionoptimization.github.io/docplex-doc/cp/docplex.cp.modeler.py.html?highlight=start_of#docplex.cp.modeler.start_of


release time of the activity by setting the Start_of larger or equal to the given release time of the
activity. - End_of predicate: Same as the predicate above but for the end of the activity in the
solution. - Min/Max/Pow/Log…: In CP, often used mathematical functions are directly accessible,
and we do not need to think about how to encode them in a different way. - Sequence_var: We
can think of Sequence_var as a wrapper for interval variables saying that they are part of the same
sequence of activities. Then we can apply constraints working with this wrapper. - No_overlap:
If applied on Sequence_var, we enforce that all the tasks in the sequence must not overlap. Thus,
we can think of it as creating a chain of activities on one machine.

[13]: import docplex.cp.model as cp
from docplex.cp.model import CpoModel

# Create model
m = CpoModel()

# - add variables
tasks = [m.interval_var(name="task{:d}".format(i), optional=False, size=p[i])␣
↪→for i in range(n)]

seq = m.sequence_var(tasks, name='seq')

# - set objective
m.add(m.minimize(m.max([m.end_of(tasks[i]) for i in range(n)]))) # minimize␣
↪→C_max

# - add constraints
for i in range(n):

m.add(m.start_of(tasks[i]) >= r[i]) # release time
m.add(m.end_of(tasks[i]) <= d[i]) # deadline

m.add(m.no_overlap(seq)) # one task executed at one time

# Solve the model
msol = m.solve(TimeLimit=10, LogVerbosity="Normal", LogPeriod=1, Workers=1)

# Print the solution
print()
if msol.is_solution():

starts = [msol.get_value(tasks[i])[0] for i in range(n)]
print(*starts, sep="\n")

else:
print("No solution found.")

print("Done")

! --------------------------------------------------- CP Optimizer 22.1.0.0 --
! Minimization problem - 41 variables, 81 constraints
! TimeLimit = 10
! Workers = 1

17

https://ibmdecisionoptimization.github.io/docplex-doc/cp/docplex.cp.modeler.py.html?highlight=end_of#docplex.cp.modeler.end_of
https://ibmdecisionoptimization.github.io/docplex-doc/cp/docplex.cp.modeler.py.html?highlight=min#core-cp-modeling-functions
https://ibmdecisionoptimization.github.io/docplex-doc/cp/docplex.cp.expression.py.html?highlight=sequence%20variable#docplex.cp.expression.CpoSequenceVar
https://ibmdecisionoptimization.github.io/docplex-doc/cp/docplex.cp.modeler.py.html?highlight=overlap#docplex.cp.modeler.no_overlap


! LogPeriod = 1
! Initial process time : 0.02s (0.02s extraction + 0.00s propagation)
! . Log search space : 210.7 (before), 210.7 (after)
! . Memory usage : 478.8 kB (before), 478.8 kB (after)
! Using sequential search.
! ----------------------------------------------------------------------------
! Best Branches Non-fixed Branch decision

0 41 -
+ New bound is 686

1 41 -
81 41 1787 = startOf(task39)

1841 81 41 -
* 1841 81 0.03s (gap is 62.74%)

1841 99 29 F 398 = startOf(task9)
1841 157 10 F 1752 = startOf(task31)
1841 173 31 F 398 = startOf(task9)
1841 179 34 F 275 = startOf(task16)
1841 205 24 F 1323 = startOf(task24)
1841 231 23 F 880 = startOf(task20)
1841 257 23 F 542 = startOf(task12)
1841 263 34 F 275 = startOf(task16)
1841 275 34 F 181 = startOf(task10)
1841 276 41 -
1841 277 40 0 = startOf(task0)
1841 278 39 73 = startOf(task1)
1841 279 38 86 = startOf(task2)
1841 280 37 92 = startOf(task3)
1841 281 36 99 = startOf(task4)

! Time = 0.03s, Average fail depth = 3, Memory usage = 962.5 kB
! Current bound is 686 (gap is 62.74%)
! Best Branches Non-fixed Branch decision

1841 282 35 128 = startOf(task6)
1841 283 34 200 = startOf(task10)
1841 284 33 294 = startOf(task9)
1841 285 32 342 = startOf(task17)
1841 286 31 358 = startOf(task8)
1841 287 30 444 = startOf(task16)
1841 288 29 455 = startOf(task27)
1841 289 28 471 = startOf(task28)
1841 290 27 528 = startOf(task13)
1841 291 26 552 = startOf(task26)
1841 292 25 632 = startOf(task37)
1841 293 24 683 = startOf(task33)
1841 294 23 769 = startOf(task39)
1841 295 22 823 = startOf(task29)
1841 296 21 873 = startOf(task32)
1841 297 20 970 = startOf(task19)
1841 298 19 1010 = startOf(task35)

18



1841 299 18 1045 = startOf(task34)
1841 300 17 1072 = startOf(task38)
1841 301 16 1138 = startOf(task23)

! Time = 0.03s, Average fail depth = 3, Memory usage = 994.5 kB
! Current bound is 686 (gap is 62.74%)
! Best Branches Non-fixed Branch decision

1841 302 15 1216 = startOf(task7)
1841 303 14 1292 = startOf(task30)
1841 304 13 1294 = startOf(task12)
1841 305 12 1326 = startOf(task20)
1841 306 11 1364 = startOf(task24)
1841 307 10 1425 = startOf(task15)
1841 308 9 1488 = startOf(task18)
1841 309 8 1557 = startOf(task25)
1841 310 7 1587 = startOf(task14)
1841 311 6 1620 = startOf(task21)
1841 312 5 1640 = startOf(task5)
1841 313 4 1668 = startOf(task11)
1841 314 3 1686 = startOf(task31)
1841 315 1 1718 = startOf(task22)
1841 316 41 F 1763 = startOf(task36)
1841 317 1 F -
1839 317 41 -

* 1839 317 0.03s (gap is 62.70%)
1839 318 40 0 = startOf(task0)
1839 319 39 73 = startOf(task1)

! Time = 0.03s, Average fail depth = 5, Memory usage = 1.0 MB
! Current bound is 686 (gap is 62.70%)
! Best Branches Non-fixed Branch decision

1839 320 38 F 86 = startOf(task2)
1839 321 39 F -
1839 322 40 0 = startOf(task0)
1839 323 39 73 = startOf(task1)
1839 324 38 181 = startOf(task10)
1839 325 37 448 = startOf(task27)
1839 326 36 600 = startOf(task37)
1839 327 35 275 = startOf(task9)
1839 328 34 464 = startOf(task28)
1839 329 33 323 = startOf(task17)
1839 330 32 339 = startOf(task8)
1839 331 31 521 = startOf(task13)
1839 332 30 651 = startOf(task26)
1839 333 29 731 = startOf(task33)
1839 334 28 817 = startOf(task32)
1839 335 27 914 = startOf(task23)
1839 336 26 992 = startOf(task7)
1839 337 25 1068 = startOf(task36)
1839 338 24 1144 = startOf(task6)

19



1839 339 23 1216 = startOf(task18)
! Time = 0.03s, Average fail depth = 5, Memory usage = 1.0 MB
! Current bound is 686 (gap is 62.70%)
! Best Branches Non-fixed Branch decision

1839 340 22 1285 = startOf(task38)
1839 341 21 1351 = startOf(task15)
1839 342 20 1414 = startOf(task24)
1839 343 19 1475 = startOf(task39)
1839 344 18 545 = startOf(task29)
1839 345 17 1529 = startOf(task22)
1839 346 16 1574 = startOf(task19)
1839 347 15 1614 = startOf(task20)
1839 348 14 1652 = startOf(task35)
1839 349 13 1687 = startOf(task14)
1839 350 12 1720 = startOf(task31)
1839 351 10 F 1752 = startOf(task12)
1839 352 12 F -
1839 353 40 0 = startOf(task0)
1839 354 39 73 = startOf(task1)
1839 355 38 F 86 = startOf(task2)
1839 356 39 F -
1839 357 40 0 = startOf(task0)
1839 358 39 73 = startOf(task1)
1839 359 38 F 86 = startOf(task2)

! Time = 0.03s, Average fail depth = 5, Memory usage = 1.0 MB
! Current bound is 686 (gap is 62.70%)
! Best Branches Non-fixed Branch decision

1839 360 39 F -
1839 361 40 0 = startOf(task0)
1839 362 39 73 = startOf(task1)
1839 363 38 F 86 = startOf(task2)
1839 364 39 86 != startOf(task2)
1839 365 38 F 86 = startOf(task3)
1839 366 39 F !presenceOf(task2)
1839 367 40 F !presenceOf(task1)
1839 368 41 F !presenceOf(task0)
1839 368 41 F -

+ New bound is 1839 (gap is 0.00%)
1839 369 41 F -

! ----------------------------------------------------------------------------
! Search completed, 2 solutions found.
! Best objective : 1839 (optimal - effective tol. is 0)
! Best bound : 1839
! ----------------------------------------------------------------------------
! Number of branches : 369
! Number of fails : 20
! Total memory usage : 1.1 MB (1.0 MB CP Optimizer + 0.1 MB Concert)
! Time spent in solve : 0.03s (0.01s engine + 0.02s extraction)

20



! Search speed (br. / s) : 36900.0
! ----------------------------------------------------------------------------

0
73
86
92
99
1640
128
1216
358
294
200
1668
1294
528
1587
1425
444
342
1488
970
1326
1620
1718
1138
1364
1557
552
455
471
823
1292
1686
873
683
1045
1010
1763
632
1072
769
Done

[14]: plot_solution(starts, p)

21



7 5) Travelling Salesman Problem revisited - Different approaches
to the same problem 2

We showed that CP scales incredibly well in 1|r, đ|Cmax problem, but it is a perfect problem for it.
We can try to solve a problem that might be less suitable for it. We pick the Travelling Salesman
Problem (TSP) as it was discussed in-depth in lectures. First let us build initial structure for the
problem:

[18]: Point = namedtuple("Point", ['x', 'y'])

def length(point1, point2):
return int(round(math.sqrt((point1.x - point2.x) ** 2 + (point1.y - point2.

↪→y) ** 2))) # CP works with int only

class TSP:
def __init__(self):

D = None # distance matrix
points = None # vertices

def load_instance(self, path):
input_data_file = open(path, 'r')
input_data = ''.join(input_data_file.readlines())

# parse the input
lines = input_data.split('\n')
nodeCount = int(lines[0])

points = []
for i in range(1, nodeCount + 1):

parts = lines[i].split()
points.append(Point(float(parts[0]), float(parts[1])))

# distance matrix

22



D = [[0 for _ in range(nodeCount + 1)] for _ in range(nodeCount + 1)] ␣
↪→# Add dummy vertex last

for i in range(nodeCount):
for j in range(nodeCount):

D[i][j] = length(points[i], points[j])

# the last vertex is the same as the first one
for i in range(nodeCount):

D[i][-1] = D[i][0]
D[-1][i] = D[0][i]

self.D = D
self.points = points

return self

[19]: instances = [
{"inst": TSP().load_instance("./tsp_data/tsp_5_1"),
"init": [0, 1, 2, 4, 3]},
{"inst": TSP().load_instance("./tsp_data/tsp_51_1"),
"init": [0, 5, 2, 28, 10, 9, 45, 3, 46, 8, 4, 35, 13, 7, 19, 40, 18, 11,␣

↪→42, 37, 20, 25, 1, 31, 22, 48, 32, 17, 49,
39, 50, 38, 15, 44, 14, 16, 29, 43, 21, 30, 12, 23, 34, 24, 41,␣

↪→27, 36, 6, 26, 47, 33]},
{"inst": TSP().load_instance("./tsp_data/tsp_70_1"),
"init": [0, 35, 50, 11, 57, 2, 56, 27, 21, 49, 58, 53, 41, 36, 38, 52, 6,␣

↪→5, 7, 51, 55, 68, 46, 67, 24, 16, 44, 39,
22, 1, 14, 15, 20, 29, 28, 45, 12, 31, 18, 26, 3, 59, 9, 25, 4,␣

↪→10, 61, 43, 32, 8, 64, 54, 48, 62, 13, 19,
60, 42, 37, 66, 40, 17, 30, 23, 69, 33, 65, 34, 47, 63]},

{"inst": TSP().load_instance("./tsp_data/tsp_100_1"),
"init": [0, 6, 69, 61, 76, 35, 84, 11, 9, 26, 72, 47, 40, 94, 81, 60, 64,␣

↪→66, 8, 23, 70, 59, 33, 67, 43, 37, 65,
71, 19, 15, 75, 14, 53, 46, 5, 29, 80, 38, 91, 57, 41, 50, 12,␣

↪→55, 98, 39, 24, 68, 2, 28, 73, 87, 48, 85,
21, 96, 42, 77, 16, 7, 10, 74, 30, 18, 17, 34, 22, 99, 93, 51, 3,␣

↪→89, 13, 31, 44, 62, 25, 82, 86, 54, 1,
27, 45, 88, 79, 97, 49, 90, 20, 63, 52, 92, 95, 78, 83, 32, 4,␣

↪→56, 58, 36]},
{"inst": TSP().load_instance("./tsp_data/tsp_200_1"),
"init": [0, 103, 62, 192, 5, 48, 89, 148, 117, 9, 128, 83, 136, 23, 37,␣

↪→108, 177, 181, 98, 106, 35, 160, 125, 131,
123, 58, 73, 20, 145, 71, 111, 46, 97, 22, 114, 112, 178, 59, 61,␣

↪→163, 119, 154, 141, 34, 85, 26, 11, 19,
146, 130, 166, 76, 164, 179, 60, 24, 80, 101, 134, 68, 167, 129,␣

↪→188, 158, 102, 172, 88, 168, 41, 30, 79,

23



55, 199, 132, 144, 96, 180, 196, 3, 64, 65, 195, 25, 186, 151,␣
↪→110, 183, 147, 69, 21, 15, 87, 143, 162,

93, 150, 115, 17, 78, 52, 165, 18, 191, 198, 118, 109, 74, 135,␣
↪→156, 173, 7, 113, 91, 159, 57, 176, 50,

86, 56, 6, 8, 105, 153, 174, 82, 54, 107, 121, 33, 28, 45, 116,␣
↪→124, 133, 189, 42, 2, 13, 197, 157, 40,

70, 99, 187, 47, 127, 138, 137, 170, 29, 171, 182, 161, 84, 67,␣
↪→72, 122, 49, 43, 169, 175, 190, 193, 194,

149, 38, 185, 95, 155, 51, 77, 104, 4, 142, 36, 32, 75, 12, 94,␣
↪→81, 1, 63, 39, 120, 53, 140, 66, 27, 92,

126, 90, 44, 184, 31, 100, 152, 14, 16, 10, 139]}
]

[20]: inst_id = 4 # Which instance to pick
inst = instances[inst_id]["inst"]
init_order = instances[inst_id]["init"]

[21]: INITIALIZE = False # If we want to provide the "init" warm start to the Gurobi␣
↪→solver

7.1 ILP model
This ILP formulation was discussed in the lectures, so it should not be completely new to you.

[22]: nodeCount = len(inst.points)
points = inst.points

# Create model
m = g.Model("tsp")

# - add variables
x = m.addVars(nodeCount, nodeCount, vtype=g.GRB.BINARY, name="x")
u = m.addVars(nodeCount, vtype=g.GRB.INTEGER, lb=0, name="u")

# - set objective
obj = g.quicksum(g.quicksum(inst.D[i][j] * x[i, j] for j in range(nodeCount))␣
↪→for i in range(nodeCount))

m.setObjective(obj, g.GRB.MINIMIZE)

# - add constraints
m.addConstrs((1 == g.quicksum(x[i, j] for j in range(nodeCount)) for i in␣
↪→range(nodeCount)))

m.addConstrs((1 == g.quicksum(x[j, i] for j in range(nodeCount)) for i in␣
↪→range(nodeCount)))

for i in range(1, nodeCount):
for j in range(1, nodeCount):

24



m.addConstr(u[i] - u[j] + 1 <= nodeCount * (1 - x[i, j]))

# Initialization
if INITIALIZE:

for i, order in enumerate(init_order):
u[order].start = i

m.Params.TimeLimit = 10
m.optimize()

# Print the solution
print()
if m.SolCount > 0:

obj = m.objVal
print("Objective {}".format(obj))

order = [u[i].X for i in range(nodeCount)]
indices = range(nodeCount)
s = sorted(zip(order, indices), key=lambda x: x[0])
print([x[1] for x in s])

else:
print("No solution was found.")

print("Done")

Changed value of parameter TimeLimit to 10.0
Prev: inf Min: 0.0 Max: inf Default: inf

Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (mac64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 40001 rows, 40200 columns and 198405 nonzeros
Model fingerprint: 0xceefc9da
Variable types: 0 continuous, 40200 integer (40000 binary)
Coefficient statistics:

Matrix range [1e+00, 2e+02]
Objective range [1e+01, 4e+03]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 2e+02]

Presolve removed 199 rows and 200 columns
Presolve time: 0.31s
Presolved: 39802 rows, 40000 columns, 197808 nonzeros
Variable types: 0 continuous, 40000 integer (39801 binary)

Deterministic concurrent LP optimizer: primal and dual simplex
Showing first log only…

Concurrent spin time: 0.00s

Solved with dual simplex

25



Root relaxation: objective 2.312896e+04, 677 iterations, 0.18 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 23128.9600 0 411 - 23128.9600 - - 2s

Explored 1 nodes (772 simplex iterations) in 10.92 seconds
Thread count was 12 (of 12 available processors)

Solution count 0

Time limit reached
Best objective -, best bound 2.312900000000e+04, gap -

No solution was found.
Done

7.2 CP model
We already explained most of the CP concepts used in the previous example. There are only two
new constraints used, First and Last. These constraints ensure, that for a given sequence and
interval_var, interval_var will be either the first one or the last one in the sequence. We use this
to ensure that the travelling salesman starts and ends in the same city.

[23]: import docplex.cp.model as cp
from docplex.cp.model import CpoModel

node_count = len(inst.points)
points = inst.points

# Create model
m = CpoModel()

# - add variables
cities = [m.interval_var(name="city{:d}".format(i), optional=False, size=1) for␣
↪→i in range(node_count + 1)]

seq = m.sequence_var(cities, name='seq', types=([i for i in range(node_count)]␣
↪→+ [0]))

# - set objective
m.add(m.minimize(m.max([m.end_of(cities[i]) for i in range(len(cities))]) -␣
↪→len(cities)))

# - add constraints
m.add(m.first(seq, cities[0])) # start from city 0
m.add(m.last(seq, cities[-1])) # repeat the same city last

26

https://ibmdecisionoptimization.github.io/docplex-doc/cp/docplex.cp.modeler.py.html?highlight=first#docplex.cp.modeler.first
https://ibmdecisionoptimization.github.io/docplex-doc/cp/docplex.cp.modeler.py.html?highlight=last#docplex.cp.modeler.last


m.add(m.no_overlap(seq, inst.D, True))

# Solve the model
msol = m.solve(TimeLimit=10, LogVerbosity="Terse", LogPeriod=1000, Workers=1)

# Print the solution
print()
if msol.is_solution():

ovals = msol.get_objective_values()
print("Objective {}".format(ovals[0]))

starts = [msol.get_value(cities[i])[0] for i in range(len(cities) - 1)]
indices = range(len(cities) - 1)
s = sorted(zip(starts, indices), key=lambda x: x[0])

print([x[1] for x in s])
else:

print("No solution found.")

print("Done")

! --------------------------------------------------- CP Optimizer 22.1.0.0 --
! Minimization problem - 202 variables, 3 constraints
! TimeLimit = 10
! Workers = 1
! LogVerbosity = Terse
! Initial process time : 0.03s (0.03s extraction + 0.00s propagation)
! . Log search space : 1537.9 (before), 1537.9 (after)
! . Memory usage : 1.5 MB (before), 1.5 MB (after)
! Using sequential search.
! ----------------------------------------------------------------------------
! Best Branches Non-fixed Branch decision

0 202 -
+ New bound is 19347
* 230214 403 0.05s (gap is 91.60%)
* 228128 1341 0.07s (gap is 91.52%)
* 36858 2516 0.10s (gap is 47.51%)
* 36759 3349 0.13s (gap is 47.37%)

36759 9314 6 F -
+ New bound is 19451 (gap is 47.09%)
* 36648 20328 0.33s (gap is 46.92%)
* 36630 21012 0.36s (gap is 46.90%)
* 36478 21729 0.39s (gap is 46.68%)
* 36436 22456 0.42s (gap is 46.62%)
* 36403 26838 0.54s (gap is 46.57%)
* 36401 29239 0.58s (gap is 46.56%)
* 36296 30086 0.60s (gap is 46.41%)

27



* 36243 34528 0.82s (gap is 46.33%)
* 36169 38446 0.93s (gap is 46.22%)
* 36128 40406 1.00s (gap is 46.16%)
* 36093 40779 1.02s (gap is 46.11%)
* 36038 42294 1.12s (gap is 46.03%)
* 35989 46657 1.21s (gap is 45.95%)
* 35976 46883 1.21s (gap is 45.93%)
! Time = 1.21s, Average fail depth = 140, Memory usage = 3.8 MB
! Current bound is 19451 (gap is 45.93%)
! Best Branches Non-fixed Branch decision
* 35753 47734 1.24s (gap is 45.60%)
* 35686 49696 1.28s (gap is 45.49%)
* 35660 52046 1.33s (gap is 45.45%)
* 35575 54489 1.41s (gap is 45.32%)
* 35413 55232 1.42s (gap is 45.07%)
* 35367 56032 1.45s (gap is 45.00%)
* 35334 59987 1.55s (gap is 44.95%)
* 35148 63571 1.62s (gap is 44.66%)
* 34982 66568 1.72s (gap is 44.40%)
* 34975 67903 1.79s (gap is 44.39%)
* 34953 75883 2.09s (gap is 44.35%)
* 34832 76662 2.11s (gap is 44.16%)
* 34488 78594 2.18s (gap is 43.60%)
* 34480 81746 2.27s (gap is 43.59%)
* 34358 83524 2.34s (gap is 43.39%)
* 34326 85762 2.41s (gap is 43.33%)
* 34283 86776 2.50s (gap is 43.26%)
* 34150 91104 2.62s (gap is 43.04%)
* 34090 93490 2.72s (gap is 42.94%)
* 34035 93737 2.74s (gap is 42.85%)
! Time = 2.74s, Average fail depth = 124, Memory usage = 3.8 MB
! Current bound is 19451 (gap is 42.85%)
! Best Branches Non-fixed Branch decision
* 33981 95188 2.79s (gap is 42.76%)
* 33976 95434 2.80s (gap is 42.75%)
* 33921 120k 3.03s (gap is 42.66%)
* 33898 121k 3.06s (gap is 42.62%)
* 33506 122k 3.09s (gap is 41.95%)
* 33457 123k 3.13s (gap is 41.86%)
* 33280 123k 3.14s (gap is 41.55%)
* 33147 124k 3.21s (gap is 41.32%)
* 33130 133k 3.66s (gap is 41.29%)
* 33104 136k 3.75s (gap is 41.24%)
* 33028 139k 3.84s (gap is 41.11%)
* 32885 141k 3.90s (gap is 40.85%)
* 32850 141k 3.91s (gap is 40.79%)
* 32830 144k 4.03s (gap is 40.75%)
* 32772 198k 4.46s (gap is 40.65%)

28



* 32746 205k 4.75s (gap is 40.60%)
* 32733 215k 5.26s (gap is 40.58%)
* 32727 219k 5.36s (gap is 40.57%)
* 32680 224k 5.50s (gap is 40.48%)
* 32678 233k 5.81s (gap is 40.48%)
! Time = 5.81s, Average fail depth = 139, Memory usage = 3.9 MB
! Current bound is 19451 (gap is 40.48%)
! Best Branches Non-fixed Branch decision
* 32645 234k 5.82s (gap is 40.42%)
* 32633 235k 5.88s (gap is 40.39%)
* 32506 239k 6.12s (gap is 40.16%)
* 32480 250k 6.39s (gap is 40.11%)
* 32349 268k 7.04s (gap is 39.87%)
* 32341 268k 7.07s (gap is 39.86%)
* 32257 272k 7.24s (gap is 39.70%)
* 32233 272k 7.25s (gap is 39.66%)
* 32219 273k 7.29s (gap is 39.63%)
* 32109 275k 7.37s (gap is 39.42%)
* 32012 275k 7.39s (gap is 39.24%)
* 31932 276k 7.41s (gap is 39.09%)
* 31907 277k 7.49s (gap is 39.04%)
* 31889 277k 7.51s (gap is 39.00%)
* 31877 281k 7.67s (gap is 38.98%)
* 31705 284k 7.82s (gap is 38.65%)
* 31702 285k 7.84s (gap is 38.64%)
* 31672 286k 7.90s (gap is 38.59%)
* 31577 287k 7.92s (gap is 38.40%)
* 31501 299k 8.43s (gap is 38.25%)
! Time = 8.43s, Average fail depth = 132, Memory usage = 3.9 MB
! Current bound is 19451 (gap is 38.25%)
! Best Branches Non-fixed Branch decision
* 31497 304k 8.56s (gap is 38.24%)
* 31470 309k 8.74s (gap is 38.19%)
* 31467 311k 8.85s (gap is 38.19%)
* 31448 312k 8.89s (gap is 38.15%)
* 31407 313k 8.95s (gap is 38.07%)
* 31380 316k 9.08s (gap is 38.01%)
* 31363 316k 9.08s (gap is 37.98%)
* 31348 319k 9.18s (gap is 37.95%)
! ----------------------------------------------------------------------------
! Search terminated by limit, 86 solutions found.
! Best objective : 31348 (gap is 37.95%)
! Best bound : 19451
! ----------------------------------------------------------------------------
! Number of branches : 436836
! Number of fails : 177795
! Total memory usage : 4.0 MB (3.9 MB CP Optimizer + 0.1 MB Concert)
! Time spent in solve : 10.00s (9.98s engine + 0.03s extraction)

29



! Search speed (br. / s) : 43815.0
! ----------------------------------------------------------------------------

Objective 31348
[0, 103, 62, 192, 5, 48, 89, 148, 117, 9, 128, 83, 136, 23, 37, 108, 177, 181,
106, 98, 125, 160, 35, 131, 123, 58, 73, 20, 145, 71, 111, 31, 184, 44, 97, 22,
114, 112, 178, 59, 61, 163, 119, 154, 141, 34, 85, 26, 11, 19, 146, 130, 166,
76, 164, 179, 60, 24, 80, 101, 134, 68, 167, 129, 158, 102, 172, 88, 168, 41,
30, 79, 55, 199, 132, 144, 96, 180, 196, 3, 64, 65, 195, 25, 186, 151, 110, 183,
147, 69, 21, 15, 87, 143, 162, 93, 150, 115, 17, 78, 52, 165, 18, 118, 198, 191,
109, 74, 135, 156, 173, 7, 113, 91, 159, 57, 176, 50, 86, 56, 6, 8, 105, 153,
174, 82, 54, 107, 121, 33, 28, 45, 2, 42, 116, 124, 189, 133, 157, 70, 40, 99,
197, 13, 187, 47, 127, 138, 137, 170, 29, 171, 182, 161, 84, 67, 72, 122, 43,
49, 190, 193, 194, 149, 38, 185, 95, 77, 155, 51, 104, 4, 142, 36, 32, 75, 12,
94, 81, 175, 169, 1, 63, 39, 120, 53, 188, 140, 66, 27, 92, 126, 90, 100, 152,
14, 16, 10, 139, 46]
Done

7.3 Comparison
Best objective found by ILP and CP model under 10s timelimit. (without initialization)

instance ILP CP
5 3 3
50 496 441
70 994 710
100 - 22247
200 - 31962

Interesting result. So isn’t CP actually just superior to ILP? Well, no. In this case, even though
TSP is technically a sum of the path travelled by the salesman, we managed to reformulate it as
a Cmax problem. Also, the representation of the problem constraints is very natural in this case.
However, remember that ILP has one more trick in its sleeve, lazy callbacks. If you ran the lazy
constraints model instead, it would beat CP in this case.

8 6) CP Sudoku
Lastly, let’s revisit the practical test assignment. While the MILP model was not so hard to
formulate, it becomes a trivial problem to formulate using CP.

[24]: def load_data(file_name):
AB, numbers = {"A": [], "B": []}, {}
for id_row, line in enumerate(open(file_name).readlines()):

for id_column, char in enumerate(line):
if char == "A" or char == "B":

AB[char].append((id_row, id_column))

30



elif char.isdigit():
numbers[(id_row, id_column)] = int(char)

return AB, numbers

variant = "A"
size, rect_c = 9, 3
AB, numbers = load_data("sudoku_data/input_" + variant + ".txt")

# MODEL AND VARIABLES
model = cp.CpoModel()
cells = cp.integer_var_dict([(i, j) for i, j in iter.product(range(size),␣
↪→repeat=2)], min=0, max=size - 1)

# BASE SUDOKU CONSTRAINTS
model.add([cp.all_diff([cells[i, j] for j in range(size)]) for i in␣
↪→range(size)]) # Rows

model.add([cp.all_diff([cells[j, i] for j in range(size)]) for i in␣
↪→range(size)]) # Columns

model.add([cp.all_diff([cells[r_r * rect_c + i, r_c * rect_c + j] for i, j in␣
↪→iter.product(range(rect_c), repeat=2)])

for r_r, r_c in iter.product(range(rect_c), repeat=2)]) # Rectangles
model.add([cells[pos] == val for pos, val in numbers.items()]) # Fixed numbers

# CONDITIONS A/B
for pos in AB["A"]: # Cond A - The sum of elements in 4-neighborhood of each␣
↪→(i,j) from A is an integer multiple of 3

neighborhood = [e for e in [(pos[0] - 1, pos[1]), (pos[0] + 1, pos[1]),␣
↪→(pos[0], pos[1] - 1), (pos[0], pos[1] + 1)]

if 0 <= e[0] < size and 0 <= e[1] < size]
model.add(cp.sum([cells[neigh] for neigh in neighborhood]) % 3 == 0)

for pos in AB["B"]: # Cond B - The number in (i,j) <= to the min of numbers in␣
↪→its north, west and north-west positions

neighborhood = [e for e in [(pos[0] - 1, pos[1]), (pos[0], pos[1] - 1),␣
↪→(pos[0] - 1, pos[1] - 1)]

if 0 <= e[0] < size and 0 <= e[1] < size]
model.add(cells[pos] <= cp.min([cells[neigh] for neigh in neighborhood]))

# OBJECTIVES
if variant == "A":

model.add(cp.minimize(cp.sum(cells[i, i] for i in range(size))))
elif variant == "B":

model.add(cp.maximize(cp.sum([cells[0, 0], cells[0, size - 1], cells[size -␣
↪→1, 0], cells[size - 1, size - 1],

cells[int((size - 1) / 2), int((size - 1) /␣
↪→2)]])))

31



# OUTPUT
sol = model.solve().get_solution()
if sol is None:

print("-1")
else:

print(sol.objective_values[0])
for row, column in iter.product(range(size), repeat=2):

print(sol.get_var_solution(cells[row, column]).value, end="")
print("", end="") if column != 8 else print("")

! --------------------------------------------------- CP Optimizer 22.1.0.0 --
! Minimization problem - 81 variables, 32 constraints
! Initial process time : 0.01s (0.01s extraction + 0.00s propagation)
! . Log search space : 243.2 (before), 243.2 (after)
! . Memory usage : 336.1 kB (before), 336.1 kB (after)
! Using parallel search with 12 workers.
! ----------------------------------------------------------------------------
! Best Branches Non-fixed W Branch decision

0 81 -
+ New bound is 8

0 79 1 -
+ New bound is 9

2 79 1 F 0 != _INT_51
+ New bound is 10
* 33 52 0.04s 1 (gap is 69.70%)
* 26 122 0.04s 1 (gap is 61.54%)
* 25 913 0.04s 1 (gap is 60.00%)

25 1000 4 1 6 = _INT_53
25 1000 4 2 7 = _INT_5

* 23 766 0.04s 3 (gap is 56.52%)
* 22 987 0.04s 3 (gap is 54.55%)

22 1000 4 3 0 = _INT_10
22 1000 4 4 5 != _INT_34
22 1000 4 5 -
22 1000 8 6 F 5 = _INT_46
22 1000 6 7 F 5 != _INT_54
22 1000 4 8 -
22 1000 6 9 1 = _INT_28
22 1000 4 10 2 != _INT_72
22 1000 6 11 F 2 != _INT_73
22 1000 8 12 F 1 != _INT_11

! Time = 0.04s, Average fail depth = 31, Memory usage = 8.6 MB
! Current bound is 10 (gap is 54.55%)
! Best Branches Non-fixed W Branch decision
* 21 1689 0.05s 1 (gap is 52.38%)
* 19 1842 0.05s 1 (gap is 47.37%)

19 2000 4 1 1 != _INT_63
* 18 1466 0.05s 3 (gap is 44.44%)

32



* 15 1573 0.05s 3 (gap is 33.33%)
15 2000 4 3 1 != _INT_23
15 2000 4 4 F 8 = _INT_4
15 2000 4 5 F 0 = _INT_16
15 2000 19 6 -
15 2000 17 7 6 != _INT_34
15 2000 16 8 F 6 = _INT_30
15 2000 6 9 7 = _INT_37
15 2000 7 2 1 = _INT_24
15 2000 4 11 3 != _INT_33
15 2000 4 12 F 2 != _INT_69
15 2736 4 1 -

+ New bound is 15 (gap is 0.00%)
! ----------------------------------------------------------------------------
! Search completed, 9 solutions found.
! Best objective : 15 (optimal - effective tol. is 0)
! Best bound : 15
! ----------------------------------------------------------------------------
! Number of branches : 32509
! Number of fails : 13641
! Total memory usage : 8.7 MB (8.7 MB CP Optimizer + 0.0 MB Concert)
! Time spent in solve : 0.06s (0.05s engine + 0.01s extraction)
! Search speed (br. / s) : 650180.6
! ----------------------------------------------------------------------------
15
135240687
607851243
482763015
253084761
874615320
061372854
528407136
746138502
310526478

[ ]:

33


	Masterclass on Combinatorial Optimization
	1) GUROBI Automated model tuning
	2) GUROBI Nonlinear (general) constraints
	3) GUROBI Solution pool
	THEORETICAL INTERMEZZO - Introducing Constraint Programming
	4) 1|r, đ|Cmax revisited - Different approaches to the same problem
	ILP model
	CP model

	5) Travelling Salesman Problem revisited - Different approaches to the same problem 2
	ILP model
	CP model
	Comparison

	6) CP Sudoku

