
Combinatorial Optimization
Lab 07: Shortest paths

Industrial Informatics Department
industrialinformatics.fel.cvut.cz

March 28, 2022

Abstract

In this handout, you will revise your knowledge about the shortest path problem, its algorithms
and complexity. Next, we will take a look on the application concerning function approximation.

Part 1: Shortest paths
• What is the problem of the shortest paths?

For graph G = (V,E) (either oriented or not) and a pair of vertices (vs, vt), we want to find path
P = (vs, . . . , vt) such that its cost is minimized. Path is a sequence of vertices (v1, v2, . . . , vn), such
that vi and vi+1 are adjacent vertices (there exists an edge between them). Cost of the path is
defined as the sum of the costs of its edges.

• What is the difference between path (cesta) and walk (sled)?
Walk – vertices and edges can repeat. Path – vertices cannot repeat. (Note: trail (tah) is walk,
where no edges repeat)

• Which algorithms can be used to solve the shortest path problem? What are their (dis)advantages?

– Dijkstra (one-to-all) – only non-negative weights; O(n2) or O(m + n log(n)) – depending on
the implementation

– A* (one-to-one) – Djisktra with heuristic (reduce the size of the search space)
– Bellman–Ford (one-to-all) – edge weights may be negative, but no negative cycles; can detect

negative cycles; complexity O(m · n).
– Floyd-Warshall (all-to-all) – no negative cycles; complexity O(n3)

All of these algorithms are polynomial – i.e., they solve only some subset of all shortest-paths
problems. Specifically, only the problems without negative cycles can be solved like that (the
algorithms do not distinguish between paths and walks (edge progressions)). Note that if there
are negative cycles, the shortest edge progression does not need to exist! Shortest path problem is
NP-hard in general.

• Polynomial reduction of the Hamiltonian path (HP) to the shortest paths.
Just transform the graph by adding new source and target connected to all of the original vertices
by edges with zero cost, and set the costs of the original edges to (−1), see Figure 1 (b). Now
we try to find the minimal cost path from s′ to t′. If the cost is −(|V | − 1) , then the HP in the
original graph exists, otherwise it does not exist. Note that Hamiltonian path problem for acyclic
graph is solvable in polynomial time (do the topological sort and check if there is an edge between
each two adjacent nodes).

1

www.industrialinformatics.fel.cvut.cz

12

34

s

t

−3

−6

−3

2−4

1

−1
2

s′

t′

Original graph G
all weights set to -1

−1−1

−1

−1−1−1 −1

−1
0

0
0

0

0
0

0 0

0

00

0

(a) (b)

Figure 1: Example of graph with negative cycles (a); reduction of HP to the shortest path problem (b)

Part 2: Approximation of a function
Let us have a set of data points S = {(xi, f(xi)) | i ∈ {1, 2, . . . n}} representing values of function f . We
assume that n is large. To represent function f , we want to select subset S′ ⊆ S, which will approximate
the original function. The approximation is done by linear segments (between each two adjacent selected
data points). Of course that there will be some approximation error, which should be minimized.

0 2 4 6 8
0

1

2

3

4
original function
sampled data
approximation

(xi, f(i))

(xi+1, f(i+ 1)) (xi+2, f(i+ 2))

(xi+3, f(i+ 3))

ϵi+1

ϵi+2

f ′
(xi,xj)

(x)

(a) (b)

Figure 2: Original function and approximation (a); approximation error between two selected points (b)

2

1

2

3

4

c1,2

c1,3

c1,4

c2,3

c2,4

c3,4

s

t

Figure 3: Example of graph G for 4 data points

The error (cost) of approximation between selected points xi and xj can be written as

ci,j =

j−1∑
k=i+1

ϵ2k =

j−1∑
k=i+1

[f(xk)− f ′
(xi,xj)

(xk)]
2,

where function f ′
(xi,xj)

(x) represents the line segment between points (xi, f(i)) and (xj , f(j)).

And now the funny part: Approximation of function f can be in fact transformed to a shortest path
problem. We can create graph G = (V,E), where V = {1, 2, . . . , n} and E = {(i, j) | i < j ∧ i, j ∈ V }.
Vertices correspond to the individual data points, and the oriented edges link each pair of different data
points. Cost of the edge ci,j corresponds to the approximation error, i.e., if vertices i and j are on the
shortest path in the graph from vertex 1 to vertex n, then part of the approximation is the line segment
between points (xi, f(i)) and (xj , f(j)) and the corresponding cost is the approximation error between
these two points.

What is the problem? Now, what would happen if we started the algorithm? What would be the
optimal solution?

The optimal solution would be 0. Why? Because we do not penalize the number of selected points!
Therefore we could choose every point – giving zero error. Therefore we need to modify the costs. One
possible modification is the following one:

ci,j = α+ β ·
j−1∑

k=i+1

ϵ2k,

where α and β are parameters. By modifying these parameters we penalize the number of edges versus
the approximation error. We have already seen that if α was zero, the shortest path would contain all of
the edges. On the other hand, if α >> β, then there would only be one edge (from the first data point
to the last one).

Interesting application: Same ideas can be used in the field of vector images. However, the error
should be modified. What is some reasonable error function for 2D vector images?

We can just use (perpendicular) distance of the point from the line segment. The formula is written
in the handout.

Now, see the Czech republic example. You can implement the approximation of the Czech
republic. An example of two-dimensional approximation, where the frontiers of the Czech Republic are
input data, is depicted in Figure 4.

3

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

Figure 4: Entered points (blue) and selected points (red).

4

