
YARP
Yet Another Robot Platform

Summary

• What is YARP?

• YARP Ports

• YARP Devices

• YARP Tools

• Other YARP features

2

What is YARP?

3

Let’s start from the end – Why?

4

Why do we need a framework?

• Various scenarios and platforms

• Hardware changes in time

• Lots of different sensors

• Lack of standards

• Distributed processing

• Real-time friendly

• Algorithms/libraries/code changes in time

• Inherent complexity

• Distributed development

• Short life span of projects

HARDWARE

SOFTWARE

MAINTAINCE

5

YARP is a middleware aimed to ease the development of high level
application for robots with a strong focus on modularity, code re-
usage, flexibility and hw/sw abstraction.

What is YARP?

6

Homogeneous set of libraries,
GUIs, tools,

debug and run facilities

YARP is a middleware aimed to ease the development of high level
application for robots with a strong focus on modularity, code re-
usage, flexibility and hw/sw abstraction.

What is YARP?

YARP has been designed to support building robot control systems
as collection of executables communicating in a peer-to-peer way,
with an extensible types of connections (tcp, udp, multicast, local,
MPI, mjpeg, XML/RPC, tcpros, ...).

YARP has been historically a C++ library targeting C++ users, but it
has also bindings for high-level languages such as Python.

The strategic goal of this kind of design is to increase the longevity of
robot software projects.

7

Real robot

Simulator

Typical application

: Process

: Machine

8

Who uses YARP

9

YARP Ports

10

YARP Ports: How YARP communicates

Control

module

Port

YARP

modu

le

Vision

algoritmhsPort

Robot

Port

Port Image

viewerPort

Port

Port

• YARP ports are the
communication entry point.

• A port is a bi-directional
communication entity.

• Many clients can connect to a
port.

• Each connection can use
different protocols or custom
carrier to manipulate data on
the fly.

11

YARP Ports: How YARP communicates

YARP server acts as a DNS,
resolving yarp port names
into system sockets

YARP

modul

e

vision

algorithms
/vision:i

Camera
/image:o

image

viewer/view:i

udp

yarp
server

yarp connect <source> <receiver> <carrier>(tcp)

/rpc /command
tcp

$ yarp name list

/image:o 192.168.1.1:10001

/vision:i 192.168.1.2:10002

/view:i 192.168.1.3:10003

/command 192.168.1.2:10004

/rpc 192.168.1.3:10005

$ yarp connect /command /rpc

$ yarp connect /image:o /vision:i udp

$ yarp connect /image:o /view:i mjpeg
12

Data types

Data in YARP are Portable
classes with read and write
capabilities. This kind of
classes can travel through
the YARP network.

class MyData : public yarp::os::Portable

{

// Portable interface toward YARP

read(…);

write(…);

// Custom user methods for data handling

fill_me();

getData();

// Usually for readability

toString();

}

13

yarp::os::Property
Property prop;

prop.clear();

prop.put(“myInt”, 5);

prop.put(“myString”, “Hello World”);

prop.put(“myPi”, 3.14);

Property &myGroup = prop.addGroup(“group1”);

group1.put(“g1”, 2.5);

group1.put(“g2”, “We have cookies”);

prop.check(“myInt”);

Value myInt = prop.find(“myInt”);

double myPi = prop.find(“myPi”).asFloat64();

Bottle &group = prop.findGroup(“myGroup”)

Entry can be grouped together, with
a key

Works in pair <key, data>, where

- Key is a string

- Data is a yarp::os::Value

Entry and group can be searched by
the key

Dictionary type of data

14

yarp::os::Bottle

Bottle bot;

void clear();

bot.addInt32(5);

bot.addString("hello");

Bottle& b1 = addList();

b1.addFloat64(10.2);

Property &prop = bot.addDict();

prop.put(“pib”, “Help me”);

Value &v0 = bot.get(0);

Value &v1 = bot.get(1);

Can hold variable number of Value.

Most flexible (but inefficient) type of data.

Bottle can be appended or nested one
into another.

A Property can be an element of a Bottle

Bottle can be accessed using indexes.
Size is the number of element you can get()

15

yarp::sig::ImageOf<PixelType>

Container for image type

Template working with many different pixel types

Full documentation here:
http://www.yarp.it/classyarp_1_1sig_1_1ImageOf.html

ImageOf<PixelRgb> yarpImage;

yarpImage.resize(300,200);

PixelRgb rgb;

rgb = yarpImage.pixel(10, 20);

16

http://www.yarp.it/classyarp_1_1sig_1_1ImageOf.html

yarp::sig::PointCloud<DataType>

Container for point cloud type.

Template working with many different point types.

Moreover, it has been implemented to be compatible with
Point Cloud Library (PCL) and with an interoperability
between different point types.

Full documentation here:
http://www.yarp.it/yarp_pointcloud.html

PointCloud<DataXYZRGBA> yarpPointCloud;

yarpPointCloud.resize(300,200);

DataXYZRGBA point;

point = yarpPointCloud(10, 20);

17

Working with Ports – Client/Server

Ports are identified by their name.

Constraints:

- Names must be unique

- Names must start with ‘/’ character

- No ‘@’ character allowed

Ideal for client/server pattern

yarp::os::Port myPort;

myPort.open(“/port”);

Bottle b;

port.read(b);

int n = b.get(0).asInt32();

n++;

b.clear();

b.addInt32(n);

myPort.write(b);

myPort.close();

18

Working with Ports -- Streaming

In case of continuously broadcasted data (e.g.
video streaming), a yarp::os::BufferedPort<T>
can be used.

Main differences:

- Data type is fixed for port lifetime

- Memory creation/destruction is handled by
the port

- Buffering policy can be set (default latest
message is kept)

- A dedicated thread handles the read/write
operations optimizing user thread cycle

BufferedPort<Bottle> port;

port.open("/out");

// Get memory to write into.

Bottle& b = port.prepare();

b.clear();

b.addString(“Hello world”);

port.write();

port.close();

19

YARP Devices

20

YARP Devices: Hardware abstraction

21

• YARP devices are dynamically loaded C++ classes, that expose their functionalities

• They are used to model functionalities under common interfaces, such as sensors (cameras,
IMUs, Force-Torques), low-level joint motor control, even if the under the hood the
implementation is different

• When you launch a robot like iCub, you launch a program yarprobotinterface that
creates and run several YARP devices to communicate with the low-level aspects of the
robot.

YARP Devices: Hardware abstraction

Client & Server on the same machine

YARP
ports

user
application

In
te

rf
ac

e

In
te

rf
ac

e

Server
Network
Wrapper

Client
Network
Wrapper

iCub
motor controller

Simulator
motor controller

R1
motor controller

22

YARP Devices: Hardware abstraction

user
application

In
te

rf
ac

e

Client & Server on the same machine

iCub
motor controller

Simulator
motor controller

R1
motor controller

23

Interfaces

A class with pure virtual methods.

Servers provide functionalities by
implementing required methods.

Clients use the functionalities by calling
provided methods.

IPositionControl::getAxes() = 0;

IPositionControl::positionMove(…) = 0;

IPositionControl::relativeMove(…) = 0;

IPositionControl::checkMotionDone(…) = 0;

IPositionControl::setRefSpeed(…) = 0;

IPositionControl::setRefAcceleration(…) = 0;

IPositionControl::getRefSpeed(…) = 0;

IPositionControl::getRefAcceleration(…) = 0;

IPositionControl::getTargetPosition(…) = 0;

IPositionControl::stop(…) = 0;

24

Opening a device

Devices are opened by mean of a special class
called “PolyDriver”.

PolyDriver is a polymorphic class which can turn
into any device.

Keyword “device” tell YARP which device we
really want to open.

All other parameters will be propagated to the
specified device.

PolyDriver mystica;

Property config;

config.put(“device”, “device_type”);

config.put(“deviceParam1”, paramValue1);

config.put(“deviceParam2”, paramValue2);

...

mystica.open(config);

25

Remote Control Board

Device devoted to provide remote access to the
robot motor control is the
“remote_controlboard”

Required parameter to configure it are:

- Remote port prefix: remote

- Local port name: local

PolyDriver poly;

Property config;

config.put(“device”, “remote_controlboard”);

config.put(“remote”, “/icub/head”);

config.put(“local”, “/<myApplication>”);

...

poly.open(config);

26CONTINUE

Once opened, we need to specify which
interface we want to work with.

To get a specific view of the device:

- create a pointer to the interface we want to
use

- fill it by calling the .view(…) function

In case the device does not implement that
interface, the pointer will be nullptr!

A device can implement more than one
interface.

IPositionControl *posControl = nullptr;

poly.view(posControl);

if(!posControl) // handle error

...

posControl->getAxes(…);

posControl->positionMove(…);

IVelocityControl *velControl = nullptr;

poly.view(velControl);

velControl->velocityMove(…);

Remote Control Board

27

IPositionControl

Give access to main position control commands.

Used to send high level targets, with a velocity & acceleration
profile.

For getters, memory must be allocated by user.

Units in YARP are SI compliant, except angles for controlboard,
which are in degrees, degrees/s

28

IPositionControl

int joints;

posControl->getAxes(&joints); // Get number of joints

posControl->setRefSpeed(0, 5); // set a speed of 5 degrees/s for joint 0

posControl->positionMove(0, 30); // move the joint 0 to +30 degrees

bool done = false;

do

{

checkMotionDone(&done); // this function checks the movement completion

}

while(!done);

posControl->positionMove(0, 0); // reset joint position to 0

29

YARP Command Line and GUI tools

30

YARP Command Line tools

- yarpserver: Launch the name server used to register YARP port names

- yarp: command-line utility "yarp" performs a set of useful operations for a YARP network.

- yarp name list: list all known YARP ports.

- yarp connect <src> <dst>: Connect the two specified YARP ports.

- yarp detect: Searches for an activate yarpserver in the network.

- See https://www.yarp.it/latest/yarp.html for all the available functionalities of yarp command

- yarprobotinterface: Launch a group of devices as a single process, tipically used when
you launch a robot

- yarpdatadumper: Dump the data connected to a port on a file.

- See https://www.yarp.it/latest/#yarp_command_line_tools for a the complete list of tools

31

https://www.yarp.it/latest/yarp.html
https://www.yarp.it/latest/#yarp_command_line_tools

YARP GUI: YARP manager

32

yarpmanager is a tool for running and managing multiple
programs on a set of machines.

- The programs/executables that can be launched are called
“modules” and are grouped in “applications”, that are
specified by XML files.

- Specific demonstration on the iCub are launched via
appropriate yarpmanager applications

- The programs launched by yarpmanager do not need to use
YARP to be used via yarpamanager, you can launch YARP
independent programs, Bash scripts or Python commands.

- https://www.yarp.it/latest/yarpmanager.html

https://www.yarp.it/latest/yarpmanager.html

YARP GUI: YARP view

33

yarpview is a graphical interface for viewing images
transmitted on the YARP network.

- A typical use of yarpview is to spawn two of them via
yarpmanager to visualize the two eyes cameras of iCub.

- http://www.yarp.it/latest/yarpview.html

https://www.yarp.it/latest/yarpmanager.html

Other YARP features
- ResourceFinder

- Infrastructure that specifies where configuration and data files are installed and searched, to
permit to easily have different configuration files for different experiments or robots.

- http://www.yarp.it/git-master/yarp_resource_finder_tutorials.html

- https://github.com/vvv-school/tutorial_RFModule-simple

- Carriers:

- Communicate across ports via mjpeg, h264, unix socket, portmonitor, shared memory, ROS

- Bindings:

- Support via SWIG for Python, Lua, Ruby, C#, MATLAB/Octave.

- http://www.yarp.it/latest/yarp_swig.html

34

http://www.yarp.it/git-master/yarp_resource_finder_tutorials.html
https://github.com/vvv-school/tutorial_RFModule-simple
http://www.yarp.it/latest/yarp_swig.html

Other middleware

Cool!

“But what about ROS?”

35

Ports can be typed or not

Multi-platform (also mobile)

Run-time reconfiguration of connections

Different carriers, user custom

QoS, channel prioritization

Smaller community

Rich set of libraries and tools

Binary packages for all supported distributions

Both topic and service are strongly typed

Mainly Ubuntu (ROS2 Linux, macOS and Windows)

Connections from a topic use the same protocol

No concept of carrier (DDS on ROS2)

QoS on ROS2

Huge and very active community

Much more rich set of libraries and tools

Distribution-like facilities

36

YARP - ROS compatibility

YARP ask roscore to establish a

new connection

YARP loads a specific carrier to

convert data into ROS-like type

on the fly

No need to have ROS installed

https://www.yarp.it/latest/yarp_w

ith_ros.html

YAR

P

mod

ule

ROS

node
YARP

module

yarp
server

/topic@/yarpNode

/port
/topic

roscore

37

https://www.yarp.it/latest/yarp_with_ros.html

THANKS FOR THE
ATTENTION!

