B3M33HRO HW5 Grasping

1 Introduction

You are provided with point clouds from real depth cameras. Your task is to combine them to get a full view of a scene and use it to get grasp from two pipelines: GraspIt! and GPD. Examples of grasps can be seen in Figure 1.

(a) Example grasp from GraspIt!

2 Assignment

- Download assignment from the course website.
- Get the pipelines working:
 - Use Docker images with tags *full* or *graspit*. The instructions can be found in the Docker tutorial,
 - or install them manually.
- Open Jupyter notebook and the code template provided.
 - In the docker image, run jupyter-notebook in the terminal and open http://localhost:8888 in browser (in Docker or in your machine).
- Set limits in z-axis for the bounding box of workspace.
 - Try something and update it based on visualizations.
 - Different minimal values may be needed for GraspIt! and for GPD.
- Combine the provided point clouds in one. You can process them as you want and as needed—downsample, outliers removal, bounding box crop.
 - Decide whether to use the processing on the final point cloud, or on individual samples.
 - See Open3D Point Cloud Class and Open3D Point Cloud Tutorial.

- Create a mesh from the point cloud, translate it to position (0,0,0), and save it to file.
 - Select the appropriate method that will work in GraspIt!
 - * Note: the mesh should be watertight, *i.e.*, it should be complete, without holes.
 - See Surface Reconstruction Tutorial and Open3D Triangle Mesh Class.
- Open the GraspIt interface and:
 - Clear the World;
 - Import fetch_gripper as a robot;
 - Import your mesh as a graspable body;
 - See GraspIt! commander API.
 - Note: if you see only black/grey after you load the robot and the body, zoom-out in the GraspIt GUI.
- Run the Eigengrasp planner and sort the grasp by $\epsilon\text{-quality.}$
 - $-\epsilon$ -quality: the closer to 1, the better. **Note:** if you close the GraspIt interface, you will probably need to restart the kernel in the notebook before you run it again.
- Check if the grasp looks like you would assume and take a picture of it.
- Prepare point cloud for GPD.
 - This point cloud should have "a table" under the object.
- Run the GPD and take a picture of the output. Make it run as fast as possible.
 - Right processing of the point cloud can help you to reduce time, or you can play with the values in eigen_params.cfg (in Docker located in /gpd/cfg/eigen_params.cfg.