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Data collection illustration
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A custom inverse kinematic task has been designed to solve the problem
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http://www.youtube.com/watch?v=zP3c7Eq8yVk
http://www.youtube.com/watch?v=tT24kyERDjo
http://www.youtube.com/watch?v=CCa2OPDq-BY
http://www.youtube.com/watch?v=LMwINqA1t9w
http://www.youtube.com/watch?v=ZZHztHF6eNs

Why is calibration important?

e Parameters can change over time
o wear and tear
o encoder errors
o accidents
e New parts can be added after manufacturing
o replacements
O  New Sensors
e New cheaper and lightweight robots are less accurate
o however, provide rich set of sensors useful for self-contained calibration
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Calibration approaches

Planar constraints

Self-touch
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https://docs.google.com/file/d/1--CCzp7sovo9XU6QvqHGVMaGuW5h6iCz/preview
https://docs.google.com/file/d/1FR4qSb3IOlxUCOE9dcSaf2lW2mlCKSqy/preview
https://docs.google.com/file/d/1CVMVXUFtTUnaCBFYKX6km1J41tpyJliy/preview
https://docs.google.com/file/d/1zL9rmej6DJZBxBtAru5qQ4RsH7X0uBxC/preview
https://docs.google.com/file/d/1XCEW3RcambcaKoCGvuBrydLs2Wrmyxva/preview

Parameters of the links

e Estimation of parameter vector ¢ = {¢, }rex
o where k are individual links expressed as:
m Denavit-Hartenberg (DH) notation @, = {[ak, dk, o, 0]}
® a;,dy, oy are the first three DH parameters and oy, is the offset of the encoders
m or, translation and rotation vector ¢, = {[t&, Tx]}
e t;.is three-dimensional vector of translation and 7« three-dimensional vector
composed from unit axis of rotation = T—:H and rotation angle o, = ||r«|

||
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Datasets

Each dataset point p, from dataset Dis defined as D; = [pn;, 8, cp,, rp;, ¢
o where pniis a pose number, @, are current joint angles, ¢p;are the contact points, 7p; are the
reference points and C; are indexes of used cameras

Each calibration approach has a unique dataset and the datasets are united
to one thole i {DSt,Dpl,DSO,Ded}

o where st stands for self-touch, pl for plane contact, so for self-observation and ed for external
devices

Usually two points z4, 5 from sets of points x4, x 7
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Parameters optimization

e Optimization of objective function as ¢" = argmin £(¢, D, ¢)

o where f(¢,D,¢) = g(¢,D,¢)|* = Zg ¢.D;,¢)’
m ¢ is defined for each approach, M is number of configurations (poses) and ¢ are other
parameters (fixed transformation, camera calibration, etc.)

e [ndividual functions 9 can be united into the overall function
9(¢. D, ¢) = [k* © g°'(¢, D**,¢), kP © gF(¢, D”, ¢),
k*° © g*°(¢, D**,¢), k" @ g*d(¢, D, ¢)]

o  where ® marks the Hadamard product (e.g., (k** © g*%); = kit - g5%), kJ (j € {st,p, s0,ed}) are the
scale factors allowing combination of approaches
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Self-touch

e Chains A, B
o Parameters ¢ = {¢*, p7}
o minimization of the distance between two points a:A, T
m tactile sensors, fingers, tool, etc.
e Function g*(#,D*.¢) = [c(é, D1,¢) — 4(C); -, c(¢p, D, €) — q(C)]
o where c(¢,D;,¢) = || X (¢*, Dy, ¢) - XP(¢",D;,¢)||is a distance
between wA, xB and Q(C) is the contact offset (e.g., thickness
of the skin)

B

contact
chain A offset chain B
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Plane constraints

e Chain A and plane p
o parameters ¢p = {qu, n, d}
m n = (a, b, ¢) is a normal vector from plane equation ax + by + cz +d =0
o minimization of the distance between end-effector z4 and a plane

e Function ¢7(¢,D".¢) = [e(¢™, D™, ¢) — q(C), -, e(¢"", D™, ) — q(¢)]
o where ¢(¢Pi, DY ¢) = ||[nPipli (¢P*) + dPi || is the distance for plane
jand ¢(¢)is the contact offset

n chain A

' xAe” '
X
/ : Contact offset q(§) y Z ' E?ssfe coordinate

Plane coordinate system
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Self-observation

e Chain A (observed) and chain B (camera)
© parameters ¢ — {¢A, ¢B}
o minimization of projection of point ,4into the camera plane and point ;B
in the camera image
e Function g*(¢,D**,¢) = [p(¢, D1,¢) — 2(D1), ..., p(¢, Darr, ) — (D)
o where p(¢, D;,¢) is the projection and z(D,)is the actual observed
point in the camera image
m the observed point in the image is found using ArUco markers
m the projection is done by using pinhole camera model

Camera image
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External devices

e ChainA
o parameters ¢ = {¢*, R,t}
m R, t are the rotation matrix and translation vector of the
external device w.r.t. The robot base frame
e R, tcan be found with SVD (Arun et al. 1987)
o  Minimization of the distance between z*, z*¢ - =

m retroreflector on the robot

o Function ged(y ped ¢) = [p(¢, D1,¢), ..., p(¢h, Das,C)]

o
|
S |

i : —3
o where ;4 D, ¢) =X - x4 is the distance between ;4 ed
o pedis usually acquired with laser measuring device :
xed o devi >
chain A ... EX ernal device

-
-
A

Base coord.system
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Minimization

Non-linear least squares
o sines and cosines
o solved by numerical methods
m  Gauss-Newton, Levenberg-Marquardt, Trust Region Reflective

Gauss-Newton
og(x)=0 9:R"—=R™
m m equations and n variables, no solution ,
m criterion function f(z) = |lg(@)|* = g(z)"g(z) = ) _ gi(x)”
i=1

/7 /

(@) glwn) = mi — (9 (@079 (21)) g () glmn)

O XTpy1 =xk—g (Tk)

Levenberg-Marquardt »
° mip =@ — (9 (@) g @) +md) g (@) ga)
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Things to avoid

Wrong dataset
o bad distribution of training examples
m check joint distribution plots
m check identifiability of parameters
e computed from identification matrix
e the closer the values to zero, the worse identifiability -> the parameter cannot be

calibrated
m (Optional) observability may be checked as well
Compensation

o if the problem is badly scaled, individual links may compensate
m two link are shifted for few centimeters, but the calibration will move only one for the sum
of the errors
m can be solved by using bounds
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https://github.com/ctu-vras/multirobot-calibration/blob/master/Visualisation/plotJointDistribution.m
https://github.com/ctu-vras/multirobot-calibration/blob/master/Visualisation/plotJacobian.m
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® Liyt1 = T — (g

Levenberg-Marquardt

(@)7g @) + i) g (@) gla)

o prl can be seen as regularization
o prshould get smaller when criterion decreases and higher otherwise
m  with multiples of 10 usually

Exercise: Compute one iteration of LM algorithm
o System of equations % =1

)
Yy =29
1. Define the cost function
2. Write matrix g and its derivative
3. Computexiand M1for o =(0,0) and tp = 10

’
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Levenberg-Marquardt

Exercise: Compute one iteration of LM algorithm
o System of equations 2

!
7=
Yy=29

1. Define the cost function

f(z,y) =g(z,y)" g(z,v)

B3M33HRO
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Levenberg-Marquardt

Exercise: Compute one iteration of LM algorithm
o System of equations 2 — 1

)
y =95
2. Write matrix g and its derivative

(22— 1] ] (22 0]
= | 3= g=11 0
y—5 0 1

B3M33HRO
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Levenberg-Marquardt

e Exercise: Compute one iteration of LM algorithm

o System of equations 2 =1
P ="
y=>5

3. Compute xyand pifor z, = (0,0) and pg = 10
e = 2 — (9 (@0)7d (@) + ) g (@) g(a)
z1 = (0.1818, 0.4545)
f(zo,y0) = f(0,0) = 30 — eg, pu =1
Fz1, 1) = £(0.1818,0.4545) = 24.9019
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T — 2
Y= |
2z 0]
1 0
_O 1_
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Pinhole camera model

Exercise: Derive the pinhole camera model
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Pinhole camera model

Exercise: Derive the pinhole camera model

Pz f Pz

tg(a) = 2= = =% — u, = f2 p I ‘
X i -
uxi
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Pinhole camera model

Exercise: Derive the pinhole camera model

e

Uy — " )\ux:fpa:
o —f& —> Ay = fpy
. Pz A:pz
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Pinhole camera model

Exercise: Derive the pinhole camera model

p
Uy = — = fpa:
Pz
Dy —> )\uy Iy
Uy = N
Pz — Pz
-ua:- -f 0 0] -pa:-
Auy| =10 f 0] [py
L 0 0 1] [p:]
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Pinhole camera model

Exercise: Derive the pinhole camera model

uchO:c"FSa:f&

Pz

p
Uy = 0y + sy f—

Dz
Uy Sz f 0 Ox
AMuy| =1 0  s,f oy
1 0 0 1
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Pz

Pz
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