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it is a function of the joint configuration g

contains all of the partial derivatives of f, relating every joint angle to every velocity

tells us how small changes in joint space will affect the end-effector’s position in Cartesian space
columns: how each component of velocity changes when the configuration (i.e., angle) of a particular
joint changes

e rows: how movement in each joint affects a particular component of velocity

3.3.1in Nikolaus Correll, Bradley Hayes, Christoffer Heckman and Alessandro Roncone. Introduction to Autonomous Robots: Mechanisms, Sensors, Actuators, and Algorithms, MIT Press, 2022 (forthcoming).
https://qgithub.com/Introduction-to-Autonomous-Robots/Introduction-to-Autonomous-Robots 2


https://github.com/Introduction-to-Autonomous-Robots/Introduction-to-Autonomous-Robots

Analytical Jacobian

d/dt
x=f(q) = x=J(q)q
[ of, of,

oq, T &g,

Slide source: https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf. Courtesy Ugo Pattacini. 3
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Planar arm with 2 rotational joints - forward
Kinematics (position only)

r1 = Ljcos@ + Lo cos(61 + 62)
To = Lysin@; + Lo Sin(01 + 02)

Ch.5 Velocity kinematics and statics in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
(see also https://youtu.be/6tj8QLFE90K)



https://youtu.be/6tj8QLF69Ok

Planar arm with 2 rotational joints - forward differential
kinematics (position only)

J1(6) + JZ(G): basis for the
linear velocities of the end

xy = Lycosfy + Lycos(fy + 6-) effector (with coefficients
2o = Lisin6; + Losin(6; + 6). equal to joint velocities)
»
Differentiating both sides with respect to time yields Y %
T = —Llél sinf; — Lz(él + 92) sin(91 + 92) J (é\)
iy = L16;cos ) + Ly(0y + 02) cos(6; + 65), end effector velocity when / 1 |
) joint 1 rotates at unit speed *
which can be rearranged into an equation of the form = = .J(6)6: (joint 2 is still)
I _ —Lqysinf — Lo Sin(01 + 92) —Lo sin(91 + 92) 91 (5 1) J2 (0)
i’z o Ll COS 91 + L2 COS(91 + 92) L2 COS(91 < 92) éZ ' ’
Writing the two columns of J(6) as Ji(#) and J2(f), and the tip velocity & as . —JQ (9)
vtip, Equation (5.1) becomes P

Viip = J1(0)01 + Jo(0)62. (5.2) _@;
—J1(0)

Ch.5 Velocity kinematics and statics in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
(see also https://youtu.be/6tj8QLFE90K) 5
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Straightforward generalization to 3D

FIGURE 2.3 End-link spatial velocity J; = [(e; x T eiT]T is obtained with joint rate 6; = 1 rad/s. Vector ¢;
signifies the joint axis of rotation. The position r; of the characteristic point on the end link is determined w.r.t.
reference frame {Tx}, obtained by translating the common root frame for the arms, {T'}, to a suitably chosen point on
the joint axis, e.g. according to the Denavit and Hartenberg notation [26].

Section 2.4 in Nenchev, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots:
Modeling and control. Butterworth-Heinemann. 6




Planar arm with 2 rotational joints - singularities
(position only) .

Differentiating both sides with respect to time yields

Ly cos 6y + Ly cos(0; + 02)
Ly sinfy + Losin(0; + 6s). 1

—Llél sinf; — Lz(él + 02) sin(91 + 62)
L16; cos by + Lz(él + 92) cos(fy + 602),
J.(6

Y

To

which can be rearranged into an equation of the form z = J(6)6: )

Iil _ —L1 sin 01 - L2 Sin(91 + 02) —L2 sin(91 + 02) é] (5 1)
o | | Licosy + Lacos(fy +62)  Lacos(y + 62) 6y |° :

Writing the two columns of J(#) as Ji(6) and J2(6), and the tip velocity & as
Vtip, Equation (5.1) becomes

08, =0°(or 180°) vip = J1(6)01 + J2(6)6.
J,(6) and J,(6) aligned
e impossible to generate any
end effector velocity except
along this line
e dimension of the column
space of the Jacobian drops
from its maximum value

(5.2)

Ch.5 Velocity kinematics and statics in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
(see also https://youtu.be/6tj8QLFE90K)
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Manipulability ellipsoid not isotropic %

i

e Unitcircle of joint velocities %1

maps through the Jacobian 6

to an ellipse in the space of -

tip velocities - the /

manipulability ellipsoid. 5
e Asthe manipulator = - J(0)

configuration approaches a o \

singularity, the ellipse

collapses to a line segment, -

since the ability of the tip £Qunit circle of joint velocities in the 8, -6, -plane. '

move in one direction is lost. ® “iso-effort” contour in the joint velocity space,

’ where total actuator effort is considered to
be the sum of squares of the joint velocities
isotropic v/

Ch.5 Velocity kinematics and statics in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press. o

(see also https://youtu.be/6tj8QLF690kK)
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2.6 MANIPULABILITY ELLIPSOID

Manipulability

From the differential kinematics relation (2.11), it is apparent that the ability of the end link
to move instantaneously along a given spatial (rigid-body motion) direction will depend on
the current limb configuration. In particular, as already clarified, at a singular configuration
the ability to move along the singular directions becomes zero, and hence, mobility is lost in
these directions. To facilitate instantaneous motion analysis and control, it is quite desirable
to quantify the mobility in a given direction, at any given configuration. This can be done via
Singular-Value Decomposition (SVD) [42,147,90] of the Jacobian matrix. For the general case of
an n-DoF kinematically redundant limb, we have

J@O)=U®ZO)V®), (2.26)
where U (6) € :9%¢ and V (8) € R"**" are orthonormal matrices and
2(0) = [diag{o1(8), 02(8), ..., 06(8)) | 0]eRE*". (2.27)

Here o1 = 03 >, ..., > 06 = 0 are the singular values of the Jacobian. The columns of matrix
U@®),u;, i =1,...,6, provide a basis for the instantaneous motion space of the end link at the
given limb configuration. At a nonsingular limb configuration, all singular values are posi-
tive. At a singular configuration of corank 6 — p (p =rankJ), 6 — p of the singular values
become zeros, i.e. 01 > 03 >, ...,> 0, > 0, 0541 = ... = 06 = 0. The singular value o; quanti-
fies the instantaneous mobility of the end link along the instantaneous motion direction u;.
Assuming that the magnitude of the joint rate vector is limited at each limb configuration as
[8]] < 1, the highest mobility is along the direction corresponding to the maximum singular
value. At a singular configuration of corank 1, omin = 0 and the respective direction umin be-
comes a singular direction. Vectors o;u; constitute the principal axis of an ellipsoid—a useful
graphic tool for visualizing the instantaneous mobility along each possible motion direction.

Section 2.6 in Nenchev, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 9



Manipulability ellipsoid

FIGURE 2.8 Manipulability ellipsoid for translational motion. The right arm is in a nonsingular configuration and
the respective ellipsoid is 3D, with principal axes oy u, 02u3, and o3u3. The left arm is at a singular configuration: the
downward translational mobility has been lost, and therefore, the manipulability ellipsoid is only 2D. The principal
axes are ojuy and opuj.

The dimension of the ellipsoid is determined by the rank of the Jacobian. Fig. 2.8 shows a
robot configuration wherein the right arm is at a nonsingular configuration, whereas the left
one is at the elbow singularity. The two ellipsoids at the end links visualize the instantaneous
translational motion abilities. The ellipsoid for the right arm is 3D (full translational mobil-
ity), while that for the left arm is flat (an ellipse). The ellipse lies in a plane parallel to the floor
since translational mobility in the vertical direction is nil at the singularity. The ellipsoid-
based instantaneous mobility analysis has been introduced in [166]; the ellipsoid is referred
to as the manipulability ellipsoid.

Section 2.6 in Nenchev, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 10
S
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See also:

° Vahrenkamp, N., Asfour, T., Metta, G., Sandini, G., & Dillmann, R. (2012, November). Manipulability analysis. In 2012 12th
IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012) (pp. 568-573). IEEE.
e  https://github.com/robotology/community/discussions/559#:~:text=lpopt%20doesn%27t%20deal.Jacobian%20per%20se

11
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The Jacobian and statics

The Jacobian can also be used to related forces and moments at the end effector to
joint torques!

12



Terminology - kinematics, statics, dynamics,
twists, wrenches...

Kinematics - describes the motion of points, bodies (objects)... without

considering the forces that cause them to move.
o variables studied: position, velocity, acceleration (and their angular analogs)
o ~'"geometry of motion"
o twist: v=|)

Statics - concerned with the analysis of (force and torque, or "moment") acting
on physical systems that do not experience an acceleration (a=0), but rather, are

in static equilibrium with their environment.

o Wrench: F = m (or [):]
Dynamics (~ kinetics) - describes relationship between motion and its causes,
specifically, forces and torques.

All of the above are branches of classical mechanics.

13



Statics of open chains

e conservation of power:

power at the joints = (power to move the robot) + (power at the end-effector)
e iftherobotisin static equilibrium (no power used to move the robot):
power at the joints = power at the end-effector

e Power (P)

o W=Fd; (W=Fdcos0) (displacement parallel to the force)
o P=W/t=Fd/t=Fv; inrotational terms,P=1w

e Poweratthejoints= 71§
e Total P at the end effector =wrench - twist =[F 1]" [vw] = F" v

1 =F'y and v=J(0)0 - J(H)T]:-
: : T T AT
70 = FTJ(0)§ and (AB)" = B"A
e Ifexternalwrench-F is applied at the tip, we can obtain the joint torques opposing it - force control.

5.2 in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press / https://youtu.be/6tj8QLF690k?t=266

14
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Velocity and force manipulability are orthogonal!

This is known as force/velocity duality

* You can apply the largest forces in the same
directions that your max velocity is smallest

* Your max velocity is greatest in the directions where
you can only apply the smallest forces

Slide 40 https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability.
See slides 38-39 for details how this is derived. 15
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Differential kinematics at singular
configurations

e Singularities can be also useful though! When?
e Resisting external forces with minimal load in the joints.

Section 2.5 in Nenchey, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 16
S



Inverse differential kinematic relations

e Giventhejoint angles and the end-link spatial velocity, find the motion rates in the joints.
e Inordertofind asolution in a straightforward manner, the following two conditions have to
be satisfied:

a. theJacobian matrix at branch configuration 6 should be of full rank;
b. the number of joints of the branch should be equal to the DoF of the end link.

e These conditions imply that the inverse of the Jacobian matrix exists.
e When the conditions are satisfied, solving V, = J(6)8 the joint rates yields the following
solution to the inverse kinematics problem:

i —1
0=J@O) 'V
e A branch configuration yielding a full-rank Jacobian is called a nonsingular configuration.

e Abranch with a number of joints that conforms to the second condition is called a
kinematically nonredundant branch.

Section 2.4.3 in Nenchey, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 17




Using ] for Cartesian control

3

d | jointctir ‘

joint position
sensor

18




Underactuation, full actuation, and over-actuation

Fig.8.6in Corke, P. 1.
(2013). Robotics, vision
and control: fundamental
algorithms in MATLAB
Berlin: Springer.

uncontrollable d.o.f. Locked
N<6 N=6 N>6 joints
Under-actuated Fully-actuated Over-actuated
i —1
0=J@) 'V

What if J(q) is not square (and full rank) hence the inverse does not exist?

Section 8.2 in Corke, P. 1. (2013). Robotics, vision and control: fundamental algorithms in MATLAB Berlin: Springer. 19



Underactuation

Fig.8.6in Corke, P. 1.

(2013). Robotics, vision

uncontrollable d.o.f. Locked
N <6 N=6 N>6 joints
Under-actuated Fully-actuated Over-actuated

e WhatifJ

e Underactuated case: ¥

0=J@O) 'V

(q) is not square (and full rank) hence the inverse does not exist?

and control: fundamental
algorithms in MATLAB
Berlin: Springer.

n=5,m=6(xy,z,¢,06,y)

ShoulderPitch

/ /ShoulderRoll

ElbowYaw
ElbowRoll

Cannot be solved (unless we are lucky) because the system of AR i N

equations is overdetermined. f

o WristYaw

\/,rl/ Hand

“Quidck hack”’: The syﬁtem can be ScluarecgI up by deletingdsome rows of

vand J - accepting that some Cartesian degrees of freedom are not &)

controllable given the low number of joints. w\\ ﬁ @
S T

Section 8.2 in Corke, P. 1. (2013). Robotics, vision and control: fundamental algorithms in MATLAB Berlin: Springer.

20




OveraCtuaﬁOH Fig.8.6in Corke, P. 1. (2013). Robotics, vision and control:

fundamental algorithms in MATLAB Berlin: Springer.

n=7 (or 10), m = 6 (x,y,z, 9, 6, )

uncontrollable d.o.f. Locked
N <6 N=6 N >6 joints
Under-actuated Fully-actuated Over-actuated

6=J@O) "'V

e Whatif J(q) is not square (and full rank) hence the inverse does not exist?
e Overractuated case:

m  Thesystem of equations is underdetermined. Multiple solutions exist
and we can find a least squares solution (later).

m  “Quick hack”: Alternatively we can square up the Jacobian to make it
invertible by deleting some columns - effectively locking the
corresponding axes.

m  What do we do with these extra axes?

21
S

Section 8.2 in Corke, P. 1. (2013). Robotics, vision and control: fundamental algorithms in MATLAB Berlin: Springer.



Self-motion

2.7.1 Self-Motion ‘
In contrast to a nonredundant limb, a kinematically redundant limb can move even when
its end link is immobilized (V = 0). Such motion is shown in Fig. 2.9 for the arm; the hand
remains fixed w.r.t. the arm root frame while the elbow rotates around the line connecting the
shoulder and wrist joints. Such type of motion is known as self-motion, internal motion, or null
motion.
Self-motion is generated by the joint velocity obtained from the following homogeneous
differential relation:

{1}

(B}

R

Usage: -

Avoid singularities "
Avoid joint limits J ~
Avoid obstacles
FIGURE 2.9 The self-motion of the arm is shown as a rotation of the arm plane, determined by the upper/lower

M | nimize tO rques arm links, around the line connecting the shoulder and wrist joints. The rotation angle @ can be associated with
parameter by in (2.35).

J@®)$6 =0, 6+0. (2.28)

Since n > 6, the Jacobian is nonsquare (6 x n) and the above equation is characterized as an
underdetermined linear system. Hence, there is an infinite set of solutions, each nontrivial

Section 2.7.1 in Nenchey, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 29




Inverse diflferential Kinematic relations - challenges

e Whenever any of the above two conditions cannot be met, the inverse problem
needs to be handled with care.

e Special branch configurations where the Jacobian loses rank. Such configurations
are called singular.
o The branch can attain a singular configuration irrespective of the number of its joints.
e Further on, when the branch comprises more joints than the DoF of its end link (n > 6), then
V, = J(0)6 is underdetermined. This implies the existence of an infinite set of inverse

kinematics solutions for the joint rates. In this case, the branch is referred to as a kinematically
redundant branch.

Section 2.4.3 in Nenchey, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 23



Generalized inverse

e Wearelooking for a matrix J¥suchthat: @ = J#u

e Two cases: .
o Underactuated manipulator (~ overdetermined system of equations): Find 0

suchthat J@ — jgminimized.
o Redundant manipulator (~ underdetermined system of equations): Find 9

solving 1/ = J@ optimizing some additional property.

24



Using differential kinematics for IK

They are numerical, iterative methods.

o Jacobian transpose
o Jacobian pseudoinverse
o Damped least squares

More details in

Buss, S. R. (2004). Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least
squares methods. IEEE Journal of Robotics and Automation, 17(1-19), 16.

2.7.2-2.7.5in Nenchev et al. (2018)

Jacobian transpose - duality of kinematics and statics - 8.4 in Corke, P. I. (2013). Robotics, vision and control:
fundamental algorithms in MATLAB Berlin: Springer.
https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf

Howie Choset: https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability

25
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Jacobian transpose

We aim to minimize the Cartesian error: g = %”e”2 =%”xd —f (q)"2
i 1 1
Compute the gradient: V.9 =§Vq <(Xd —-f),(x, _f)> _ E.(_2<qu,(xd _f)>) _

Gradient descent method
for system of nonlinear
equations:

g) _ JKe we only employ

1=K :(-V
1 ( direct kinematics functions!

q

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini

26
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Jacobian transpose from statics

desired pose

{E"}

2 special
spring

g

{E}

current pose

Fig. 8.7.

Schematic of the numerical
inverse kinematic approach,
showing the current &; and the
desired &; manipulator pose

8.4 in Corke, P. 1. (2013). Robotics, vision and control: fundamental algorithms in MATLAB Berlin: Springer. .



Jacobian pseudoinverse

Recruit Lagrangian multipliers:

redundant chainn > m 1
q =arg min (Equq + A" (X—Jq))
q,

Reformulate the problem as a
linear constrained optimization

q =W (IWJ’ )'1 X

. ¥ . ]- o T .
q =argmin| —q Wq —
q \ 2 wW=I
. . T T\ . e
s.t. x=1Jq IT=JT(IT) = q=U"%
J'=1
https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini 08
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Psuedoinverse definition: (underconstrained)

Given a desired twist, x,, find a vector of
joint velocities, ¢ , that satisfies x, = Jg
while minimizing £(g)=¢" ¢

/

Minimize joint velocities

Minimize f (z)subjectto g(z) =0 :

Use lagrange multiplier method: V_f(z) =AV_g(z)

/

This condition must be met when f (2) is at a minimum
subjectto g(z)=0

Howie Choset; https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability

29
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V. f(2)=4V _g(2)
f(@=14"g <+—— Minimize

g(g)=Jg—x=0 <+ Subject to

qu(Q) = qT

ng(q.) =J

q-T — ATy

Gg=J"2

Howie Choset: https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability = 3o
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g=J"2
Jg ="M

= -
A= (JJT) Jq <+— | won't say why, but if jis full rank, then
JJ" is invertible

A=) %
=04

. 2Ty Y So, the pseudoinverse calculates the
q=J (‘IJ ) = vector of joint velocities that

# T y¢7 ¥ satisfies x, =Jg while
™=y (JJ ) minimizing the squared magnitude

g=J'x < of joint velocity ( g ¢ ).

« Therefore, the pseudoinverse
calculates the least-squares
solution.

Howie Choset: https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability 31
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Calculating the pseudoinverse

The pseudoinverse can be calculated using two different
equations depending upon the number of rows and columns:

g

JP=J% (JJT)_l Underconstrained case (if there are more
< columns than rows (m<n))

J* = (J o )—' JT Overconstrained case (if there are more rows
than columns (n<m))
JT = If there are an equal number of rows and columns (n=m)

N

These equations can only be used if the Jacobian is full rank;
otherwise, use singular value decomposition (SVD):

Howie Choset; https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability 32
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Calculating the pseudoinverse using SVD

Singular value decomposition decomposes a matrix as follows:

J=UzVv"

S W Y .

A BN

mxm mXn nxn

J# = VZ_]UT

2 is a diagonal matrix of singular values:

o, 0 0 0 0 00
0 o, 0 0 0 O
J=U/0 0 o, 0 0 0 OV
0O 0 0 . 0 00
0 0 0 0 o, 00
L 0 0 0 0]
0L 0 0 0
00 L 0 0
J*=vlo 0 0o . o’
00 0 0 &
00 0 0 0
0 0 0 0 0]

~ manipulability (velocity) ellipsoid
Velocity and force manipulability are orthogonal!

B
5
7oy inaqi
("7 /T Force ellipsoid
N Y

:

\

,
\

Velocity ellipsoid

This is known as force/velocity duality

- - >

« You can apply the largest forces in the same
directions that your max velocity is smallest

« Your max velocity is greatest in the directions where
you can only apply the smallest forces

~ force ellipsoid

Howie Choset; https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability
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Properties of the pseudoinverse

Moore-Penrose conditions:

(VAN A
&t =J

B W N
a. (st7f =0ty

Generalized inverse: satisfies condition 1
Reflexive generalized inverse: satisfies conditions 1 and 2

Pseudoinverse: satisfies all four conditions

Other useful properties of the pseudoinverse: (J ¥ )# =J

Howie Choset: https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability 34
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Secondary task

redundant chainn > m

Reformulate the problem as a
linear constrained optimization

q =argngn@(q—qo)f (q—qo)j

st. x=Jq
\ 4

q=J"%+(I,-77)q,
q=q,+J'(x-Jq,)

+ Null-space projection operator

(1,-3'9) . .

" allows for internal motions

7
ow

How to pick up qo: q, :ko( (q)J

q
Improve

w(q) = det (J(q)I" (q))

manipulability

Joint limits
avoidance

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini
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Using J* for Cartesian control

A o g
P Orientation
e & if \ %] jointcur
= = 3 & joint position r 7
ix ey | R ’6 M’ J# oq i qi- joint ctir
d
=Y
Position u [y-_
R(. FK ( ﬂ) q joint position
‘711 joint ctir
joint position . ar¢9!/l
Remember that in general: J_ # oy
q

Use analytical Jacobian or axis-angle representation and
Rodrigues formula. (mechanical vs. representational

Procedure for controlling position: singularities...)
1. Calculate position error: x, . .
. il See slides 16-20in
2. MUltlp'y by a scaling factor: élrm = (Xxﬂr https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulabilit

3. Multiply by the velocity Jacobian pseudoinverse: = jv*axm

Howie Choset: https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability
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Jacobian transpose vs. pseudoinverse

* Which is more direct? Jacobian pseudoinverse or
transpose?

g=J"¢& or g=J%

They do different things:

+ Transpose: move toward a reference pose as quickly as
possible

« One dimensional goal (squared distance meteric)

+ Pseudoinverse: move along a least squares reference twist
trajectory

« Six dimensional goal (or whatever the dimension of the
relevant twist is)

Howie Choset: https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability 37
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Jacobian transpose vs. pseudoinverse

The pseudoinverse moves the end effector in 3
a straight line path toward the goal pose /
using the least squared joint velocities. )

/

+ The goal is specified in terms of the s

reference twist - X

* Manipulator follows a straight line path in
Cartesian space

The transpose moves the end effector toward /
the goal position 2
* In general, not a straight line path in :’
Cartesian space 4
X

d

* Instead, the transpose follows the gradient
in joint space

Howie Choset: https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability 38
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Damped Least Squares

To deal with kinematic singularities

*

§ :argmin(%()k—J(j)T (X—Jq)+%k2qTq)
q

* T T 2. Y
Levenberg-Marquardt method J =J (JJ +k I,,)
for system of nonlinear equations q=J'x

k establishes a synergy between:
* Jacobian (Pseudo-)inverse: k = 0
 Jacobian Transpose: k > max{|d;|}

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini
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Using differential kinematics for IK

Iterative Methods _
https://github.com/vvv-school/vvv18
. 7 blob/master/material/kinematics/ki
i =J Ke, e=x,—x : ini
Jacobian Tra nspose q ’ d e nematics.pdf, courtesy Ugo Pattacini
. : -1
Jacobian Pseudoinverse q=JTKe+(I—JTJ)q0, J=J (JJT)
£ ¥ _1
Damped Least Squares G=JKe, J =J" (JJT % kzl)

e Moredetailsin
Buss, S. R. (2004). Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped

least squares methods. IEEE Journal of Robotics and Automation, 17(1-19), 16.
o 2.7.2-2.7.5inNenchev et al. (2018); Redundancy resolution 2.7.4-2.7.5
Jacobian transpose - duality of kinematics and statics - 8.4 in Corke, P. I. (2013). Robotics, vision and control:

fundamental algorithms in MATLAB Berlin: Springer.

o  https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf

o  Howie Choset: https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability

o
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(%,y,z,9,0,p)

> Solver Controller
module module
qq =arg (;Iel]}& (”ad - Kq (Q)”2 +A- (Qrest - Q)T W(Qrest - Q)) T

v =K (o) <2

s.t. 49 <qg<qu
other obstacles ...

X

» Quick convergence: real-time compliant, < 20 ms

» Scalability: n can be high and set on the fly

» Singularities handling: no Jacobian inversion

»Joints bound handling: no explicit boundary functions
»Tasks hierarchy: no use of null space

» Complex constraints: intrinsically nonlinear

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini
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% (x,y,z’¢'e’w) ﬁ
module module
4 |

X, =[x52,] q

NLC Optimizer

Dynamical Systems

M. Hersch, A.G. Billard, “Reaching with
multi-referential dynamical systems”,
Springer-Verlag.

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini
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Reactive velocity controller with whole-body obstacle avoidance

Nguyen, P. D.; Hoffmann, M.; Roncone, A.; Pattacini, U. & Metta, G. (2018), Compact real-time avoidance on a humanoid robot for human-robot interaction, in 'HRI
’18: 2018 ACM/IEEE International Conference on Human-Robot Interaction, ACM, New York, NY, USA, pp. 416-424.[ACM digital library][arxiv]
43



http://www.youtube.com/watch?v=A9Por3anPJ8
http://dx.doi.org/10.1145/3171221.3171245
https://arxiv.org/abs/1801.05671

New reaching controller

*  Previously: iCub inverse kinematics solver and Cartesian controller
decoupled (Pattacini et al. 2010)

* Now: single velocity solver + controller _){
—xd

Controller | |
(Ipopt) AJ_qd')t_” o

d, = arg min (IFeew = (R + I (@) a)|[) 1 q |

q, <q+7,q<q,

,
s.t.9q, <q<q, bstac] . §= Jn{ Ve a}PPS .
. = max s >
other constraints... obstac es> qu S; i
;= mm{ I.} s, <0

- Local constrained minimization @ each instant t of Cartesian distances
with one-step look-ahead t + T

« Search space: joint velocities
- Fast convergence,canrun @ Ts < 10 ms

- Use of consolidated optimization library: Ipopt 44
—————————



Reaching Controller: Obstacles

*  Mapping multiple Cartesian obstacles / repulsive vectors onto
joint velocity limits to bring about avoidance

-

s=-Jdn.-V. a,,
3 —max{ i} s, >0
—mm{ l.} s, <0

Control points (C) - loci of PPS
activations

V. - gain factor for avoidance

a,ps — PPS activation

V,,V, - bounding values of joint velocity

S; - degree of influence of the Cartesian constraint on the j-th joint
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Inverse kinematics for humanoids

There’s no free lunch...

(a bit speculative)

forward kinematics

Method General Possibility of Problems with | Problems with | Runtime Examples
solution including singularities local minima
(not robot | additional
specific) constraints
Analytical - © © & (5
(closed-form)
Iterative using some | & = = (not DLS) © & KDL / Orocos
form of Jacobian (ROS)
inverse
Optimization using S ® S ® S iCub IK solver,

iCub reactive
controller
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https://voutu.be/l4ZKfAvs1v0 https://youtu.be/_dPIkFPowCc?t=35

' TN
gazing with saccades t

Roncone, A., Pattacini, U., Metta, G., & Natale, L. (2016, June). A Cartesian 6-DoF Gaze Controller for Humanoid Robots. In Robotics: Science and Systems (Vol. 2016). 48


http://www.youtube.com/watch?v=I4ZKfAvs1y0
https://youtu.be/I4ZKfAvs1y0
https://youtu.be/_dPlkFPowCc?t=35
http://www.youtube.com/watch?v=_dPlkFPowCc

Gaze control

What kind of inverse kinematics problem is it?

How many DoF in joint space?
How many DoF for the task?
What can the redundancy be used for?

|_Joint #_
0

2

__Part _|JointName | _Range | _unit _|

Neck
Neck
Neck

Eyes
Eyes
Eyes

Pitch
Roll
Yaw

Tilt
Version

Vergence

+/-
+/-
+/-

+/-
+/~
=0

[deg]
[deg]
[deg]

[deg]
[deg]
[deg]
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iCub gaze controller

gyro

ﬁ head_q
I neck_v
Neck Controller

Target (x,y,2)

Yet another Cartesian Controller: reuse ideas ...
Then, apply easy transformations from Cartesian to ...

1. Egocentric angular space R
2. Image planes (mono and stereo) =

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini

50
S


https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf

iCub gaze controller

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini
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iCub gaze controller

gyro

é head_q

neck_v

Neck Controller

Target (x,y,2)

eyes_v

head_q 2

qrest - qneck

* .
qneck - arg I‘Illl'l3
Ineck ER

eck

c08(0(¢eq ) >1-¢

qneck L < qneck < qnecku

S.t.

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini
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iCub gaze controller

gyro

é head_q

Neck Solver neck_qy | neck_v
(IpOpt) I Neck Controller

Target (x,y,z)

head_q

2

Gyro

qsyes =arg min HFPd —Kpp (qeyes)

3
Geyes eR

G + AT(G T (FP =Koy (4 )) - )

qeyes

t+1

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini
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Inverse kinematics solution under multiple task constraints

e For arm reach of a humanoid, whole-body motion
motion may be employed.

e Total number of joints, e.g.: n
6+1+7=17.

e Degree of kinematicredundancy=17-6=11.

e With such a high degree of redundancy, it is possible
to realize multiple additional tasks.

n_+n +nN =

total leg torso arm

Section 2.8 in Nenchey, D. N., Konno, A., & Tsuijita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann.




Motion task constraints

e Main task: hand motion ~ reaching.

e Other motion tasks:
keep balance

avoid obstacles
avoid self-collisions
avoid singularities
avoid joint limits
gaze task

o o0 O O O o o©o

e Constraints helpful in resolving kinematic redundancy.
o Caveat: Overconstrained state (task conflict).

IE

Section 2.8.1 in Nencheyv, D. N., Konno, A., & Tsuijita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann.
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Types of motion task constraints

e link-motion constraints

o movement of reaching hand
o movement of Center of Mass

e joint-motion constraints
o jointranges
o joint velocity limits
o singularity avoidance

e equality- and inequality (unilateral)-type constraints
e permanently active and temporal constraints "
e high-priority and low-priority constraints /I\

Section 2.8.1 in Nencheyv, D. N., Konno, A., & Tsuijita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann.

56




Examples - Classify e equality- and inequality

(unilateral)-type constraints

e permanently active and
temporal constraints
high-priority and low-priority
constraints

e jointlimits
o inequality, permanent, high-priority
e reachingtask
o inequality / minimization term, middle
priority
e obstacles
o inequality, temporal, high priority
e singularities
o inequality, temporal, middle priority
e postural constraints
o min.term/inequality, permanent,
low-priority

Section 2.8.1 in Nencheyv, D. N., Konno, A., & Tsuijita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 57
S



iCub red ball demo - IK solver (+ Cartesian controller) + gaze controller

Pattacini, U., Nori, F., Natale, L., Metta, G., & Sandini, G. (2010, October). An experimental evaluation of a novel minimum-jerk Cartesian controller for humanoid robots. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems (pp. 1668-1674). IEEE.

Roncone, A., Pattacini, U., Metta, G., & Natale, L. (2016, June). A Cartesian 6-DoF Gaze Controller for Humanoid Robots. In Robotics: Science and Systems (Vol. 2016). 58



https://docs.google.com/file/d/11BmjO7AikcTMTupfBKRmSMWAyWR_vqNz/preview

iCub IK solver (+ Cartesian controller) + gaze controller

e Task1-Reach https://github.com/robotology/icub-basic-demos
o TaskDoFs:m=6
[ https://github.com/robotology/icub-basic-demos/blob/master/demoRedBall/src/main.c
#1147

o Joint DoFs:?
m m=7perarm+2ofthetorso=9

| https://github.com/robotology/icub-basic-demos/blob/master/demoRedBall/src/main.c

#L136

e Task2-Gaze

o TaskDoFs:m=3
o JointDoFs:n=6

O https://github.com/robotology/icub-basic-demos/blob/master/demoRedBall/src/main.cpp#L898

Pattacini, U., Nori, F., Natale, L., Metta, G., & Sandini, G. (2010, October). An experimental evaluation of a novel minimum-jerk Cartesian controller for humanoid robots. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems (pp. 1668-1674). IEEE.

Roncone, A., Pattacini, U., Metta, G., & Natale, L. (2016, June). A Cartesian 6-DoF Gaze Controller for Humanoid Robots. In Robotics: Science and Systems (Vol. 2016). 59



https://docs.google.com/file/d/11BmjO7AikcTMTupfBKRmSMWAyWR_vqNz/preview
https://github.com/robotology/icub-basic-demos
https://github.com/robotology/icub-basic-demos/blob/master/demoRedBall/src/main.cpp#L147
https://github.com/robotology/icub-basic-demos/blob/master/demoRedBall/src/main.cpp#L147
https://github.com/robotology/icub-basic-demos/blob/master/demoRedBall/src/main.cpp#L136
https://github.com/robotology/icub-basic-demos/blob/master/demoRedBall/src/main.cpp#L136
https://github.com/robotology/icub-basic-demos/blob/master/demoRedBall/src/main.cpp#L898

Reactive controller I o

qa,

= arg min (“iEEd _(XEE + TSJ(a)q)HZ)

1

q

qeR” §$= _Jz;nc Ve - ppg
qL <G+qu<qU .qL,izmaX{V;,i’Si} Si>0
styd, <4<dq, Gy, =min{V, 5§ 5, <0
: obstacles
other constraints... i

link-motion constraints

o  movement of reaching hand
o movement of Center of Mass

joint-motion constraints
o jointranges
o joint velocity limits
o  singularity avoidance

equality- and inequality (unilateral)-type constraints
permanently active and temporal constraints
high-priority and low-priority constraints
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Conflict resolution for multiple motion task constraints

e |nverse kinematics with constraints e |nverse kinematics as multiobjective
in a hierarchical structure, using optimization problem
null space projections e Pros: All kinds of constraints, incl.
e How to set priorities? (sentis & Khatib 2005) inequality constraints, can be
©  joint motion constraints incorporated, even on the run.

o link-motion constraints
m balance - CoM control o
m hand position stability.

o postural-variation constraints
e Pros: Stability may be guaranteed.
e Cons: Difficulty of incorporating
inequality constraints.

e Cons: Difficult to guarantee control

Section 2.8.1 in Nencheyv, D. N., Konno, A., & Tsuijita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann.
L. Sentis, O. Khatib, Synthesis of whole-body behaviors through hierarchical control of behavioral primitives, International Journal of

Humanoid Robotics 02 (2005) 505-518. 61
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iCub Red Ball demo ++

https://youtu.be/NMzhDgVgVvk

Piga, N., Onyshchuk, Y., Pasquale, G., Pattacini, U., and Natale, L., ROFT: Real-time Optical Flow-aided 6D Object Pose and Velocity Tracking, IEEE
Robotics & Automation Magazine, vol. 7, no. 1, pp. 159-166, 2022.
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iCub balancing and reaching

Set of admissible tasks:

right foot wrench task -
regulate the right foot
interaction wrench to a
predefined value

left foot wrench

right arm wrench

left arm wrench
postural task

reaching task

gaze task

https://youtu.be/7CxaynVnsCI

Nori, F., Traversaro, S., Eljaik, J., Romano, F., Del Prete, A., & Pucci, D. (2015). iCub whole-body control through force regulation on rigid non-coplanar

contacts. Frontiers in Robotics and Al, 2, 6. https://www.frontiersin.org/articles/10.3389/frobt.2015.00006/full
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Resources

e Books
o Sections 2.4.2 - 2.8 in Nenchey, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and
control. Butterworth-Heinemann.
o  Ch.5 Velocity kinematics and statics in Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge
University Press. (see also https://youtu.be/6tj8QLFE90K)
o Partlllin Corke, P. I. (2013). Robotics, vision and control: fundamental algorithms in MATLAB Berlin:
Springer.
e Online resources
o Howie Choset: https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability
o Modern robotics (Lynch and Park)
m https://modernrobotics.northwestern.edu/nu-am-book-resource/velocity-kinematics-and-statics/
o http://handbookofrobotics.org/view-chapter/videodetails/10
e Articles, book chapters

] Chiaverini, S., Oriolo, G., & Maciejewski, A. A. (2016). Redundant robots. In Springer Handbook of Robotics (pp. 221-242). Springer,
Cham.

¢) Pattacini, U., Nori, F., Natale, L., Metta, G., & Sandini, G. (2010, October). An experimental evaluation of a novel minimum-jerk cartesian
controller for humanoid robots. In 2070 IEEE/RSJ international conference on intelligent robots and systems (pp. 1668-1674). IEEE.
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