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Kinematics - forward and inverse

Study of properties of motion (position, velocity, acceleration) without considering body
inertias and internal/external forces.
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Slide source: https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf. Courtesy Ugo Pattacini.



https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf

How about iCub?

Kinematic redundancy

e Whenever the limb mobility, determined by the number of
limb joints n, exceeds the DoFs of the end link (six), the limb is
characterized as kinematically redundant.

e Some humanoid robots are equipped with kinematically
redundant, 7-DoF arms. Such robots can control the position
of their elbows without affecting thereby the instantaneous
motion of the hands. Thus, they attain the capability to
perform tasks in cluttered environments avoiding collisions
with their elbows, similar to humans.

e Also, there are humanoids that comprise 7-DoF legs. With
proper control, their gait appears more human-like than that
of robots with 6-DoF legs.

e Thedifferencer =n- 6isreferred to as the degree of
redundancy (DoR).

Section 2.7 in Nencheyv, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 3



Forward and inverse kinematics - recap

n , n=7,m=6(xy,z,¢,0, )
Consider a general case: (Q & R X € Rm

n=2,m = 3 (x,y,9) n=6,m=6(xy,z,¢,6,y) n=5,m=6(xy,z ¢,06,y)

Whatisn
and m?

Mapping type linear / nonlinear

q=f"(x)
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n , n=7,m=6(xy,z,¢,0, )
Consider a general case: (Q & R X € ]Rm

n=2,m = 3 (x,y,9) n=6,m=6(xy,z,¢,6,y) n=4,m =6 (xy,z, 9,6, y)

Whatisn
and m?

Mapping type linear / nonlinear

- Many-to-one (for n>=m nonlinear
x = f(q)  Meneenetormm

q — f_l (X) One-to-many (for n>1) nonlinear




Inverse kinematics - analytic (closed-form) solutions

TABLE 1
Number of Analytic Solutions for
(X =f (q) 6-Degree-of-Freedom Systems
Rn
14 € n Upper bound on solutions
x € R° .
>6
_ -l 6R, SRP

q=" (X) 4R2P, 6R with S joint

3R3P

Tolani, D., Goswami, A., & Badler, N. I. (2000). Real-time inverse kinematics techniques for
anthropomorphic limbs. Graphical models, 62(5), 353-388.



Inverse kinematics - analytic (closed-form) solutions

TABLE 1
Number of Analytic Solutions for
(X =f (q) 6-Degree-of-Freedom Systems

14 € R n Upper bound on solutions

X € [R6 <6 0

>0 o0

el 6R, SRP 16

q=" (X) 4R2P, 6R with S joint 8

3R3P 2

Tolani, D., Goswami, A., & Badler, N. I. (2000). Real-time inverse kinematics techniques for
anthropomorphic limbs. Graphical models, 62(5), 353-388.



Inverse kinematics - closed form

Wrist position and E-E pose

e appealing
® fast AN LEFTUP
e laborious (N ‘
e notvery flexible w.r.t. new

constraints...

FIG. 3. Finding the elbow position that is the closest possible to a desired position.

TABLE 2
Summary of Methods Used When the Goal Is Reachable

Goal reachable Goal reachable
(joint limits off) (joint limits on)
Position Analytic Analytic
Position and orientation Analytic Analytic
Position and partial orientation Analytic Analytic + 2DOF unconstrained
optimization Armin rest position efter flexlonby 6 4
Aiming Analytic Analytic if 6, given 2DOF unconstrained

FIG.5. Decomposing R; into R, and R.
optimization otherwise

Tolani, D., Goswami, A., & Badler, N. I. (2000). Real-time inverse kinematics techniques for
anthropomorphic limbs. Graphical models, 62(5), 353-388.

Inverse solutions for an articulated 6R robot [PUMA 560]

TABLE 1
Number of Analytic Solutions for
6-Degree-of-Freedom Systems

n Upper bound on solutions
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Park, H. A, Ali, M. A, & Lee, C. G. (2012). Closed-form inverse kinematic position solution for
humanoid robots. International Journal of Humanoid Robotics, 9(03), 1250022.




Other stakeholders

e Whoelseisinterested in inverse kinematics of anthropomorphic creatures?
e Computer graphics/animation/game industry!
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e Whoelseisinterested in inverse kinematics of anthropomorphic creatures?
e Computer graphics/animation/game industry!
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https://youtu.be/0adqli7kwiA?t=321 hitps://youtu.be/SHpIMEC6IvO?t=156
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http://www.youtube.com/watch?v=0a9qIj7kwiA
https://youtu.be/0a9qIj7kwiA?t=321
http://www.youtube.com/watch?v=SHplmEc6iv0
https://youtu.be/SHplmEc6iv0?t=156

Inverse kinematics - robotics vs. animations

Humanoid robots ~ human-like characters in games etc.
Which problem is harder?
Constraints seem less strict for the animation industry:

e joint limits (position, velocity...)
e self-collisions
e [balance]

11



Differential kinematics

e Velocity relationships relating linear and angular velocities of the end effector to the joint velocities.

e “Mathematically, the forward kinematic equations define a function from the configuration space of
joint positions to the space of Cartesian positions and orientations.” (Spong et al., pg. 101)

e “The velocity relationships are then determined by the Jacobian of this function. The Jacobianis a
matrix that generalizes the notion of the ordinary derivative of a scalar function. The Jacobian is one of
the most important quantities in the analysis and control of robot motion. It arises in virtually every
aspect of robotic manipulation: in the planning and execution of smooth trajectories, in the
determination of singular configurations, in the execution of coordinated anthropomorphic motion, in
the derivation of the dynamic equations of motion, and in the transformation of forces and torques
from the end effector to the manipulator joints.” (Spong et al., pg. 101)

Today: iterative methods for IK, singularity and manipulability.
e Basics of Jacobian, manipulability etc. covered in Robotics by V. Smutny (B3B33ROB1).

Chapter 4 in Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2020). Robot modeling and control. John Wiley & Sons.12



Geometrical Jacobian

3.3.1in Nikolaus Correll, Bradley Hayes, Christoffer Heckman and Alessandro Roncone. Introduction to Autonomous Robots: Mechanisms, Sensors, Actuators, and Algorithms, MIT Press, 2022 (forthcoming).
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it is a function of the joint configuration g

contains all of the partial derivatives of f, relating every joint angle to every velocity
tells us how small changes in joint space will affect the end-effector’s position in Cartesian

space

columns: how each component of velocity changes when the configuration (i.e., angle) of a

particular joint changes

ow
oqn

q1

dn

rows: how movement in each joint affects a particular component of velocity

https://github.com/Introduction-to-Autonomous-Robots/Introduction-to-Autonomous-Robots
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FIGURE 2.3 End-link spatial velocity J; = [(e; x )T eiT]T is obtained with joint rate 6; = 1 rad/s. Vector e;
signifies the joint axis of rotation. The position r; of the characteristic point on the end link is determined w.r.t.
reference frame {Tg}, obtained by translating the common root frame for the arms, {T'}, to a suitably chosen point on
the joint axis, e.g. according to the Denavit and Hartenberg notation [26].

Section 2.4 in Nenchey, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 14




Analytical Jacobian

d/dt
x=f(q) = x=J(q)q
[ of, of,

oq, T &g,

Slide source: https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf. Courtesy Ugo Pattacini. 15
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iCub matlab demo
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Differential kinematics at singular
configurations

e There are certain limb configurations where the end link loses
mobility, i.e. the ability of instantaneous motion in one or more
directions.

e Atsingularities, bounded end-effector velocities may correspond to
unbounded joint velocities.

e Since the arms are fully extended, the hands cannot move in the
downward direction w.r.t. the {T} frame.

e Since the legs are stretched, the {B} frame cannot be moved in the
upward direction.

e Elbow/ knee singularities - unavoidable

o There are no alternative nonsingular configurations that T
would place the end links at the same locations, at the
workspace boundaries of each limb.

o inherent to both redundant and nonredundant limbs

Section 2.5 in Nenchey, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann.
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Differential kinematics at singular
configurations

e “Fig. 2.4C shows another type of singular configuration
for the right arm. The singularity is due to the alignment
of the two axes in the shoulder joint, the elbow joint
being at 90 degrees. The end link loses mobility in the
translational direction of the lower-arm link. This
configuration is called shoulder singularity. Note that the
end link is placed within the workspace; it is not on the
boundary. In this case, the self-motion of the arm, i.e. a
motion whereby the end link is fixed, yields a transition t
a nonsingular configuration. Such types of singular
configurations are characterized as avoidable”

rotate

Section 2.5 in Nenchey, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 18



Differential kinematics at singular
configurations

e Singularities can be also useful though! When?
e Resisting external forces with minimal load in the joints.

Section 2.5 in Nenchey, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 19



2.6 MANIPULABILITY ELLIPSOID

Manipulability

From the differential kinematics relation (2.11), it is apparent that the ability of the end link
to move instantaneously along a given spatial (rigid-body motion) direction will depend on
the current limb configuration. In particular, as already clarified, at a singular configuration
the ability to move along the singular directions becomes zero, and hence, mobility is lost in
these directions. To facilitate instantaneous motion analysis and control, it is quite desirable
to quantify the mobility in a given direction, at any given configuration. This can be done via
Singular-Value Decomposition (SVD) [42,147,90] of the Jacobian matrix. For the general case of
an n-DoF kinematically redundant limb, we have

J@O)=U®ZO)V®), (2.26)
where U (6) € :9%¢ and V (8) € R"**" are orthonormal matrices and
2(0) = [diag{o1(8), 02(8), ..., 06(8)) | 0]eRE*". (2.27)

Here o1 = 03 >, ..., > 06 = 0 are the singular values of the Jacobian. The columns of matrix
U@®),u;, i =1,...,6, provide a basis for the instantaneous motion space of the end link at the
given limb configuration. At a nonsingular limb configuration, all singular values are posi-
tive. At a singular configuration of corank 6 — p (p =rankJ), 6 — p of the singular values
become zeros, i.e. 01 > 03 >, ...,> 0, > 0, 0541 = ... = 06 = 0. The singular value o; quanti-
fies the instantaneous mobility of the end link along the instantaneous motion direction u;.
Assuming that the magnitude of the joint rate vector is limited at each limb configuration as
[8]] < 1, the highest mobility is along the direction corresponding to the maximum singular
value. At a singular configuration of corank 1, omin = 0 and the respective direction umin be-
comes a singular direction. Vectors o;u; constitute the principal axis of an ellipsoid—a useful
graphic tool for visualizing the instantaneous mobility along each possible motion direction.

Section 2.6 in Nenchev, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 20
S



Manipulability ellipsoid

FIGURE 2.8 Manipulability ellipsoid for translational motion. The right arm is in a nonsingular configuration and
the respective ellipsoid is 3D, with principal axes oy u, 02u3, and o3u3. The left arm is at a singular configuration: the
downward translational mobility has been lost, and therefore, the manipulability ellipsoid is only 2D. The principal
axes are ojuy and opuj.

The dimension of the ellipsoid is determined by the rank of the Jacobian. Fig. 2.8 shows a
robot configuration wherein the right arm is at a nonsingular configuration, whereas the left
one is at the elbow singularity. The two ellipsoids at the end links visualize the instantaneous
translational motion abilities. The ellipsoid for the right arm is 3D (full translational mobil-
ity), while that for the left arm is flat (an ellipse). The ellipse lies in a plane parallel to the floor
since translational mobility in the vertical direction is nil at the singularity. The ellipsoid-
based instantaneous mobility analysis has been introduced in [166]; the ellipsoid is referred
to as the manipulability ellipsoid.

Section 2.6 in Nenchev, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 21
S
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See also:

° Vahrenkamp, N., Asfour, T., Metta, G., Sandini, G., & Dillmann, R. (2012, November). Manipulability analysis. In 2012 12th
IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012) (pp. 568-573). IEEE.
e  https://github.com/robotology/community/discussions/559#:~:text=lpopt%20doesn%27t%20deal.Jacobian%20per%20se
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Self-motion

{1}
2.7.1 Self-Motion

In contrast to a nonredundant limb, a kinematically redundant limb can move even when
its end link is immobilized (V = 0). Such motion is shown in Fig. 2.9 for the arm; the hand
remains fixed w.r.t. the arm root frame while the elbow rotates around the line connecting the
shoulder and wrist joints. Such type of motion is known as self-motion, internal motion, or null
motion.

Self-motion is generated by the joint velocity obtained from the following homogeneous
differential relation:

J@d=0, 6+0. (2.28)
Since n > 6, the Jacobian is nonsquare (6 x n) and the above equation is characterized as an ‘
underdetermined linear system. Hence, there is an infinite set of solutions, each nontrivial
J W

FIGURE 2.9 The self-motion of the arm is shown as a rotation of the arm plane, determined by the upper/lower
arm links, around the line connecting the shoulder and wrist joints. The rotation angle o can be associated with
parameter by in (2.35).

Section 2.7.1 in Nenchey, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 23




Inverse differential kinematic relations  Howabouticub?

e Giventhejoint angles and the end-link spatial velocity, find the motion
rates in the joints.
e Inordertofind asolution in a straightforward manner, the following two

conditions have to be satisfied:
a. theJacobian matrix at branch configuration 6 should be of full rank;
b. the number of joints of the branch should be equal to the DoF of the end link.

e These conditions imply that the inverse of the Jacobian matrix exists.
e When the conditions are satisfied, solving V,, = J(#)8 the joint rates
yields the following solution to the inverse kinematics problem:

i —1
0=J@O) 'V
e Abranch configuration yielding a full-rank Jacobian is called a
nonsingular configuration.

e Abranch with a number of joints that conforms to the second condition
is called a kinematically nonredundant branch.

Section 2.4.3 in Nencheyv, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 24




Inverse diflferential Kinematic relations - challenges

e Whenever any of the above two conditions cannot be met, the inverse problem
needs to be handled with care.

e Special branch configurations where the Jacobian loses rank. Such configurations
are called singular.
o The branch can attain a singular configuration irrespective of the number of its joints.
e Further on, when the branch comprises more joints than the DoF of its end link (n > 6), then
V, = J(0)6 is underdetermined. This implies the existence of an infinite set of inverse

kinematics solutions for the joint rates. In this case, the branch is referred to as a kinematically
redundant branch.

Section 2.4.3 in Nenchey, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and control. Butterworth-Heinemann. 25



Forward, inverse, and differential kinematics - recap

Mapping type

linear / nonlinear

Many-to-one (for n>= m)

nonlinear

One-to-many (for n>1)

nonlinear

https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability

x (m)

p, = cosB) (a cos(B; + 63) + a, cosb)
P, = siny (ay cos(B; + 03) + a, cos6,)
p, = a3 sin(6; + 63) + a, sinb, + a;

0.3

0.2

-0.1

z (m)
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Forward, inverse, and differential kinematics - recap

Mapping type

linear / nonlinear

Many-to-one (for n>= m)

nonlinear

One-to-many (for n>1)

nonlinear

Many-to-one (for n>= m)

linear

One-to-many (for n>1)

linear
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Using differential kinematics for IK

e  When closed-form solutions do not exist.
e They are numerical, iterative methods.
o [Jacobian transpose]
o Jacobian pseudoinverse
m  Used by Orocos Kinematics and Dynamics Library (KDL) - used in ROS.
o  Damped least squares

° More details in

o Buss,S.R.(2004). Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least squares
methods. IEEE Journal of Robotics and Automation, 17(1-19), 16.

o 2.7.2-2.7.5in Nenchev et al. (2018)

o Jacobian transpose - duality of kinematics and statics - 8.4 in Corke, P. . (2013). Robotics, vision and control:
fundamental algorithms in MATLAB Berlin: Springer.

o https:/github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf

o  https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability

28
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Inversion of differential kinematics

o R

Find the joint velocity vector

vERM™ that realizes a end-

effector [linear and angular]

slide courtesy Alessandro Roncone



Incremental solution to IK problems

= Joint velocity inversion can be used to solve and a sequence of IK problems

= Each problem differs by a small amount dr from the previous one

: - : : ofr
Direct kinematics: 7 = £.(q) Differential kinematics : dr = %dq = J-(q)dq

First, increment the desired Then, solve the inverse
task variables kinematics problem

rtdr =l g=[Lit(r+idr)

dq = J;1(q)dr q—d+dq

First, solve the differential inverse Then, increment the original
kinematics problem joint variables

slide courtesy Alessandro Roncone




Inversion of differential kinematics

= Near a of the Jacobian matrix (high g)

Problems:

= For robots (J is [6xn],n > 6 — there is no standard “inverse” of

a rectangular matrix)

= More robust inversion methods are needed!

slide courtesy Alessandro Roncone




Pseudo-inverse method

i A -
min —EIIqII

A —
minH = 2 lgll> suchthatjg—v =0
q

S ={qeR™:||Jg — v|| is minimum}

» |nversion of differential kinematics as a
= If v € R(J) — the constraint is satisfied

= If v & R(J) — the constraint is impossible:
« Jg =vt —>the projection of v on R(J)

= vt g — vl

slide courtesy Alessandro Roncone




Pseudo-inverse method

=« J* is the that satisfies the four relationships:

Jt=]  JYrt=r Y =1t Y =g

s Ifrankp=m=n-J* =J7!
= Ifrankp=m<n-J* =]T(/]T)—1

- J# exists and can be computed numerically using Singular Value

Decomposition [SVD, e.g. in Matlab with ]

slide courtesy Alessandro Roncone




Pseudo-inverse method

i 4
min —Ellqll

A <S>
minH = 5 Ig|l> suchthatjg—v =0
q

S ={geR™:||Jg — v|| is minimum}

= At singularity:

« det(J)T) =0

» Pseudo-inverse is ill-defined

-1
= Inverse kinematics dq = ]T(]]T) dv computes “infinite” steps

slide courtesy Alessandro Roncone




Damped Least Square

A 1 -
minH = = 14112 + = |lJg — v||?, A=>0 : ; _ > JpLs can be used for
4 - . [this vetter for both m = n and

- T (AL = I
q=(Un+J"]) v ={]T(&I,n +7J7) 1%; m < n cases!!

Inversion of differential kinematics as an

H — weighted sum of: i) minimum error norm on end-effector velocity; ii) minimum norm of joint velocity
JpLs is

Aly, is called regularization term

A = 0 when from a singularity

IfA >0 —>thereisa & = v - Jq in executing the desired end-effector velocity v, but the joint velocities are always

reduced (“ ”)

slide courtesy Alessandro Roncone




IK for humanoid-like robots is an active research topic

e Orocos Kinematics and Dynamics Library (KDL) - used in ROS / Movelt!
o Uses joint-limit constrained pseudoinverse Jacobian solver

Despite its popularity, KDL’s IK implementation® exhibits
numerous false-negative failures on a variety of humanoid
and mobile manipulation platforms. In particular, KDL's IK
implementation has the following issues:

1) frequent convergence failures for robots with joint
limits,

2) no actions taken when the search becomes “stuck’ in
local minima,

3) inadequate support for Cartesian pose tolerances,

4) no utilization of tolerances in the IK solver itself.

Beeson, P., & Ames, B. (2015, November). TRAC-IK: An open-source library for improved solving of generic inverse kinematics. In 2015

IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 928-935). IEEE.
36



iCub IK solver (+ Cartesian controller)

https://youtu.be/7CxaynVnsCI

(video shows more recent work
- combined with balancing)

Pattacini, U., Nori, F., Natale, L., Metta, G., & Sandini, G. (2010, October). An experimental evaluation of a novel minimum-jerk Cartesian controller for
humanoid robots. In 20710 IEEE/RSJ international conference on intelligent robots and systems (pp. 1668-1674). IEEE. 37



http://www.youtube.com/watch?v=7CxaynVnsCI
https://youtu.be/7CxaynVnsCI

(%,y,z,9,0,p)

> Solver Controller
module module
qq =arg (;Iel]}& (”ad - Kq (Q)”2 +A- (Qrest - Q)T W(Qrest - Q)) T

v =K (o) <2

s.t. 49 <qg<qu
other obstacles ...

X

» Quick convergence: real-time compliant, < 20 ms

» Scalability: n can be high and set on the fly

» Singularities handling: no Jacobian inversion

»Joints bound handling: no explicit boundary functions
»Tasks hierarchy: no use of null space

» Complex constraints: intrinsically nonlinear

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini
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% (x,y,z’¢'e’w) ﬁ
module module
4 |

X, =[x52,] q

NLC Optimizer

Dynamical Systems

M. Hersch, A.G. Billard, “Reaching with
multi-referential dynamical systems”,
Springer-Verlag.

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini
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https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf

Inverse kinematics for humanoids

There’s no free lunch...

(a bit speculative)

forward kinematics

Method General Possibility of Problems with | Problems with | Runtime Examples
solution including singularities local minima
(not robot | additional
specific) constraints
Analytical = ® S S (D
(closed-form)
lterative using some | & - = ® (X KDL / Orocos
form of Jacobian (ROS)
inverse
Optimization using S ® S ® S iCub IK solver
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https://voutu.be/l4ZKfAvs1y0 https://youtu.be/ _dPIKFPowCc?t=35

&= )

; A
/ gazing with saccades Q

Roncone, A., Pattacini, U., Metta, G., & Natale, L. (2016, June). A Cartesian 6-DoF Gaze Controller for Humanoid Robots. In
Robotics: science and systems (Vol. 2016). a1


http://www.youtube.com/watch?v=I4ZKfAvs1y0
https://youtu.be/I4ZKfAvs1y0
https://youtu.be/_dPlkFPowCc?t=35
http://www.youtube.com/watch?v=_dPlkFPowCc

Gaze control

What kind of inverse kinematics problem is it?

How many DoF in joint space?
How many DoF for the task?
What can the redundancy be used for?

|_Joint #_
0

2

__Part _|JointName | _Range | _unit _|

Neck
Neck
Neck

Eyes
Eyes
Eyes

Pitch
Roll
Yaw

Tilt
Version

Vergence

+/-
+/-
+/-

+/-
+/~
=0

[deg]
[deg]
[deg]

[deg]
[deg]
[deg]
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iCub gaze controller

gyro

ﬁ head_q
I neck_v
Neck Controller

Target (x,y,2)

Yet another Cartesian Controller: reuse ideas ...
Then, apply easy transformations from Cartesian to ...

1. Egocentric angular space R
2. Image planes (mono and stereo) =

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini
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https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf

iCub gaze controller

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini
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https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf

iCub gaze controller

gyro

é head_q

neck_v

Neck Controller

Target (x,y,2)

eyes_v

head_q 2

qrest - qneck

* .
qneck - arg I‘Illl'l3
Ineck ER

eck

c08(0(¢eq ) >1-¢

qneck L < qneck < qnecku

S.t.

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini
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https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf

iCub gaze controller

gyro

é head_q

Neck Solver neck_qy | neck_v
(IpOpt) I Neck Controller

Target (x,y,z)

head_q

2

Gyro

qsyes =arg min HFPd —Kpp (qeyes)

3
Geyes eR

G + AT(G T (FP =Koy (4 )) - )

qeyes

t+1

https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf, courtesy Ugo Pattacini
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https://github.com/vvv-school/vvv18/blob/master/material/kinematics/kinematics.pdf

Wrap-up

Kinematic redundancy

Singular configurations
Manipulability

Self motion / Null space

Inverse kinematics
o Analytical / closed-form
o Iterative - Jacobian (pseudo)inverse
o  Optimization without Jacobian inverse
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Next week

e Demotime at E210. Please come to the lecture E301 as usual (12:45) and the
TAs will pick you up here.
e Labs will take place as usual at E132.
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Robots - humanoids and cobots

KUKA LBR iiwa Kinova Gen3 UR10 + Airskin



(%]
. @
Robot hands and grippers £
M
S
Anthropomorphic hands > ol
8 Barrett Hand
C
b7
Barrett Hand 4 .
(96 tactile + 3 fingertip = Robotiq 2F-85 qb SoftHand
joint torque + 8 joint pos. 3 )
sensors ) £ NUBS onRobot RGE
c N A ;
number of fingers / anthropomorphism
Qb SoftHand (1 motor with
position and current sensor) YCB object and model set
Industrial parallel jaw 2-finger
grippers
Robotiqg 2F-85, OnRobot RG6 )
iCub B
~ hand
deformable

objects set




Resources

® Books

O  Sections 2.4.2 - 2.7.3 in Nenchev, D. N., Konno, A., & Tsujita, T. (2018). Humanoid robots: Modeling and
control. Butterworth-Heinemann.

® Online resources
o https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability
o https://modernrobotics.northwestern.edu/nu-gm-book-resource/5-3-sinqularities/
® Articles

¢} Pattacini, U., Nori, F., Natale, L., Metta, G., & Sandini, G. (2010, October). An experimental evaluation of a novel minimum-jerk cartesian
controller for humanoid robots. In 2010 IEEE/RSJ international conference on intelligent robots and systems (pp. 1668-1674). IEEE.
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https://www.slideserve.com/antonia/inverting-the-jacobian-and-manipulability
https://modernrobotics.northwestern.edu/nu-gm-book-resource/5-3-singularities/

