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Humanoids

KUKA LBR iiwa UR10e + AirskinKinova Gen3

Cobots
iCub

Naos (1 with “iCub skin”)

Pepper
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Motivation
Hoffmann, M.; Chinn, L. K.; Somogyi, E.; Heed, T.; Fagard, 
J.; Lockman, J. J. & O'Regan, J. K. (2017), Development of 
reaching to the body in early infancy: From experiments to 
robotic models, in 'Joint IEEE International Conference on 
Development and Learning and Epigenetic Robotics (ICDL-
EpiRob)', pp. 112-119.

Roncone, A.; Hoffmann, M.; Pattacini, U. & Metta, 
G. (2014), Automatic kinematic chain calibration 
using artificial skin: self-touch in the iCub humanoid 
robot, in 'Proc. IEEE Int. Conf. Robotics and 
Automation (ICRA)'.
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Outline

Synthetic methodology ~ “understanding by 
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– Morphology facilitating control
• Body design simplifying task
• Behavior emergent from simple sensory-motor 

loops
– Morphology facilitating perception

Robot body models
Robots learning brain-like body models
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Synthetic methodology ~ 
understanding by building

Pfeifer & Scheier
(2001): Understanding 
intelligence
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Goals

[Pfeifer and Bongard, 2007, Chapter 3]:
1. understanding natural forms of intelligence
2. abstracting general principles of intelligent 

behavior
3. building intelligent artifacts
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synthetic sciences
artificial intelligence
cognitive robotics

brain-like 
computing:
deep NNs

spiking 
NNs

synthetic 
modeling prototypes

applications
service robotics

collaborative robotics

humanoid robots

empirical sciences
developmental and cognitive psychology

cognitive neuroscience

modeling

hypotheses
mechanisms

new experiments

CollaboratorsJ. Lockman, K. O’Regan,
G. Cappagli, T. Heed, M. 

Longo, A. Serino, J.-P. Noel

M. Zillich (Blue Danube Robotics - Airskin)
S. Haddadin, A. Ajoudani, H. Lehmann, A. 

Sciutti
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All synthetic, yet different…

Is playing chess 
intelligent?

Is walking 
intelligent?

What it takes 
to walk?

Passive Dynamic Walker – Tad McGeer (1990)
https://youtu.be/WOPED7I5Lac

Honda Asimo (2018)
https://youtu.be/1urL_X_vp7w

https://youtu.be/WOPED7I5Lac
https://youtu.be/1urL_X_vp7w
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11Illustration: Shun Iwasawa, from Pfeifer, R: How the body shapes the way we think, 2007

Input Output

sense
think

act

Classical: 
“intelligence as 
computation”
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Birth of Artificial Intelligence

• 1956 - onwards: Artificial Intelligence 
- 1956 Dartmouth Conference / McCarthy coins term “artificial 

intelligence” / first running AI program (Logic Theorist)
- from middle ‘50s to late ’80s : ‘Classical AI’ (e.g. Newell, Simon, McCarthy)

- human  cognition = a set of ‘rational activities’ (reasoning, language, formal 
games…); 

- intelligent artifacts = programs for computers

Classical AI = modelling “high level” capabilities (mainly) through
computer programs detached from robotic bodies

Slide source: Hagen Lehmann
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Classical AI – theoretical positions

Intelligence ~ abstract symbol processing
Functionalism

– Algorithm / software matters
– Hardware (on which it runs)  

does not matter
Physical Symbol Systems 

Hypothesis (Newell and Simon 1976) 
Digital computer 

– Key tool
– Metaphor for the mind!

Nicknamed GOFAI – Good Old-Fashioned Artificial 
Intelligence (Haugeland 1985)

Fig. 2.4 from Pfeifer & Scheier 1999
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• formally precisely defined discrete state space
• program has access to complete information (fully observable)
• deterministic state evolution
• not real-time (or soft real time)

• Premiere methods – e.g.: search, deep reinforcement learning

Where it works nicely… search

IBM Deep Blue chess computer, 1997 Google Deep Mind AlphaGo, 2016
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Where it works nicely… planning 
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Connecting to the real world - representation
Matej Hoffmann 2017 - Embodied AI

Fig. 2.5 from Pfeifer & Scheier 1999
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From formal world to real world

Chess Soccer
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From formal world to real world

Ancient times: 

Input Output

sense
think

act
update internal 
representation

compute over 
internal 

representation

Stanford Cart, 1975
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GOFAI fundamental problems

Frame problem
– How can a model of a continuously changing 

environment be kept in tune with the real world?  
Symbol grounding problem (Harnad, 1990)
Frame of reference problem

– Ant on the beach (Herbert A. Simon)
– simple behavioral rules
– complexity in interaction, not in brain
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GOFAI problems viewed today

Some problems have been mitigated 
through
– New algorithms

• Probabilistic reasoning (e.g. Thrun et al. 2005)
• Learning

– Reinforcement learning
– “Deep” neural networks

– Higher computational power
=> real-time operation in real world is possible

Stanley, 2006

Google self-
driving  car 
today
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What remains?

AI still heavily biased toward 
representation and 
computation.

vs. natural (also human) 
intelligence:
– embodied
– emergent from sensory-

motor and interaction processes
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Research questions

Classical AI
– Thinking, reasoning, abstract problem solving

Embodied AI
– Movement, physical interaction with the real 

world

“Why do plants not have brains? The answer is 
actually quite simple: they don’t have to 
move.”

Lewis Wolpert, UCL
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Embodiment

“intelligence requires a body”
Interplay / task distribution

– Brain
– Body (morphology – shape, materials, …)
– Environment

Principal of ecological balance
– match in complexity of sensory, motor, 

and neural system
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Ecologically unbalanced systems
Matej Hoffmann 2017 - Embodied AI

sensor for one quality
(e.g. temperature, light)

one motor

very large brain
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Physical implications of embodiment

~ morphology facilitating control
Is brain/computation needed for walking?
Passive dynamic walkers (McGeer 1990)

– “pure physics walking”
– no computer
– no motors
– no sensors

Cornell PDW with arms, 
Collins et al. 2001

Morphology:
- shape of feet

- counterswing of 
arms

- friction on
bottom of  feet



27Steve Collins, Passive dynamic walker
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Task-environment
Ecological niche

Body dynamics/morphology

Mechanical system
Musculoskeletal system

Movement
Mechanical 
feedback

Schematics based on Pfeifer et al., Science 2007
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Self-stabilization

Fig. adapted from 
Blickhan et al. 2007 

https://youtu.be/Zt7J0dly70M

https://youtu.be/Zt7J0dly70M
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Grasping with coffee balloon grippers
Matej Hoffmann 2017 - Embodied AI

Brown et al. 2010

https://youtu.be/ZKOI_lVDPpw

https://youtu.be/ZKOI_lVDPpw
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Task-environment
Ecological niche

Body dynamics/morphology

Mechanical system
Musculoskeletal system

Movement
Mechanical 
feedback

Controller
Central nervous system

Motor 
commands
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Grey Walter
Turtle, 1940s

V. Breitenberg, 1980s

R. Brooks, 1980s
subsumption architecture
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Middle ’40s: Cybernetics - modelling intelligence 
through machines (Wiener 1948, von Neumann 1948)

- early ideas of embodiment and modeling neurophysiological
processes in the 1940s (McCulloch, Pitts 1946 - formal neuron;
Ross Ashby - Homeostat; Grey Walter - tortoise robots)

- 1946 - 1953 Macy Conferences on Cybernetics

Beginnings

Slide source: Hagen Lehmann
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William Grey Walter (1910-1977)

English neurophysiologist and roboticist
Work on EEG, conditioning, etc.
“Robotic tortoises” (1948-49)

– Autonomous robots with
touch and light sensors

– Simple “brain” ( 2 “neurons”)
– “tortoises” influenced a number of roboticists 

(Hans Moravec, Rodney Brooks, etc.)
– “descendants”: robotic vacuum cleaners

Slide source: Miloš Železný
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Grey Walter’s tortoises
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Breitenberg vehicle






Task-environment
Ecological niche

Body dynamics/morphology

Mechanical system
Musculoskeletal system

Movement
Mechanical 

feedback

Controller
Central nervous system

Motor 
commands

Sensory system
Sensory receptors

External 
physical 
stimuli

Sensory
feedback
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Behavior-based robotics manifestos
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Insect eye morphology

Different species of insects have evolved different non-
homogeneous arrangements of the light-sensitive 
cells in their eyes, providing an advantageous 
nonlinear transformation of the input for a 
particular task

horsefly

honeybee
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Obstacle avoidance

exploiting ego-motion together with motion 
parallax

Franceschini et al. 1992
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Nonuniform distribution & elementary 
motion detectors

CurvACE – artificial compound 
eye  - image courtesy of Dario 
Floreano

The distribution of the cells is nonuniform and follows a sine gradient in 
the interommatidial angle, such that sampling of the visual space is finer 
towards the front than laterally. This effectively compensates for the sine 
relationship in the formula and allows uniform motion detection circuitry to 
be used everywhere.
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Message to remember: embodiment

behavior is not in the brain
(or cell, molecule…)

it is in the interaction

Illustrations: Shun Iwasawa, from R. Pfeifer & J. Bongard: How the body shapes the way
we think, 2007

(vs. “all behavior is a result of brain 
function” – Eric R. Kandel, Ch. 1: The 
Brain and Behavior, in Kandel, E.R., 
Schwartz, J.H. and Jessell, T.M. eds., 
2000. Principles of neural science (Vol. 4, 
pp. 1227-1246). New York: McGraw-hill.
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How we make robots do things –
the traditional way

inputs

state 
estimation

forward 
kinematics

inverse 
kinematics

movement 
planning

movement 
execution

inverse 
dynamics
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Engineering way – pros and cons

Pros
• very neat… 
• mathematics and physics

 extrapolation…
• veridical representation

 we understand the 
model

 accuracy can be 
measured

• modularity
 maintenance

Cons
• lot of man-hours
• model typically fixed

 external calibration 
procedures…

• no redundancy
 fragility
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• Robotic models tend to be
• fixed
• centralized
• explicit
• rely on minimal sensory info
• start from significant prior knowledge

• Calibration is typically performed using external
metrology (e.g., calibration chambers).

• Calibration ~ fine-tuning of parameters

Robot body models and calibration



49

Traditional kinematic calibration
open-loop calibration

• utilizes an external metrology 
system to measure the pose 
components

• manipulator not in contact 
with environment

closed-loop calibration
• utilizes physical constraints 

on the end link pose to 
substitute for measurements

Hollerbach, J., Khalil, W., & Gautier, M. (2016). Model identification. 
In Springer handbook of robotics (pp. 113-138). Springer, Cham.

http://drive.google.com/file/d/1VO66i0o2BPbzhOCqLtS7pNY9z6BSyYYY/view
http://drive.google.com/file/d/1VO66i0o2BPbzhOCqLtS7pNY9z6BSyYYY/view
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Automatic self-contained robot calibration -
motivation

Current robots:
● cheaper and more elastic materials
● set of affordable but increasingly 

accurate 
sensors  (e.g. RGB-D cameras, 
tactile, force, 

or inertial sensors, etc.)
=> Necessity and opportunity for 
autonomous continuous (re-)calibration
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Multisensorial self-contained robot calibration

Roncone, A.; Hoffmann, M.; Pattacini, U. & Metta, G. 
(2014), Automatic kinematic chain calibration using 
artificial skin: self-touch in the iCub humanoid robot, in 
'Proc. IEEE Int. Conf. Robotics and Automation (ICRA)'.

Stepanova, K.; Pajdla, T. & Hoffmann, M. (2019), 
'Robot self-calibration using multiple kinematic 
chains – a simulation study on the iCub humanoid 
robot', IEEE Robotics and Automation Letters 4(2), 
1900-1907.

Rustler, L.; Potocna, B.; Polic, M.; Stepanova, K. & 
Hoffmann, M. (2021), Spatial calibration of whole-body 
artificial skin on a humanoid robot: comparing self-
contact, 3D reconstruction, and CAD-based calibration, 
in 'Humanoid Robots (Humanoids), IEEE-RAS 
International Conference on'. 

Stepanova, K.; Rozlivek, J.; Puciow, F.; 
Krsek, P.; Pajdla, T. & Hoffmann, M. 
(2022), 'Automatic self-contained 

calibration of an industrial dual-arm 
robot with cameras using self-contact, 

planar constraints, and self-
observation', Robotics and Computer-
Integrated Manufacturing 73, 102250.

https://github.com/ctu-
vras/multirobot-
calibration

Rozlivek, J.; Rustler, L.; Stepanova, K. & 
Hoffmann, M. (2021), Multisensorial robot 
calibration framework and toolbox, in 
'Humanoid Robots (Humanoids), IEEE-RAS 
International Conference on'. 

https://github.com/ctu-vras/multirobot-calibration
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Self-contact and self-observation

Rozlivek, J.; Rustler, L.; Stepanova, K. & Hoffmann, M. (2021), Multisensorial robot calibration framework and toolbox, 
in 'Humanoid Robots (Humanoids), IEEE-RAS International Conference on'. 
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Multi-chain robot calibration

Estimate parameter vector:

~ Reprojection error (camera chains)
~ Distance of real (observed) and estimated end effector 
positions (other chains)
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It works, but…

• Still quite laborious.
• Local optimization methods => good initial 

guess of parameters is needed.
• Will not cope with dramatic changes. 
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Resilient robots

https://youtu.be/x579QKA6fkY
Bongard, J., Zykov, V., & Lipson, H. (2006). Resilient machines 
through continuous self-modeling. Science, 314(5802), 1118-1121.

https://youtu.be/T-c17RKh3uE
Cully, A., Clune, J., Tarapore, D., & Mouret, J. B. (2015). Robots that 
can adapt like animals. Nature, 521(7553), 503-507.

https://youtu.be/x579QKA6fkY
https://youtu.be/T-c17RKh3uE
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Beyond the white-box (body) model

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., & Hutter, M. (2019). Learning 
agile and dynamic motor skills for legged robots. Science Robotics, 4(26).
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Let’s forget about the body model

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018). Learning hand-eye coordination for robotic grasping with 
deep learning and large-scale data collection. The International Journal of Robotics Research, 37(4-5), 421-436.

(actually, there is a body model – robot inverse kinematics and control)



58

End-to-end / deep / RL way
– pros and cons

Pros
• it is learned 

 adaptive (possibly)
• fewer man-hours

• unless hand-labeling 
is needed

Cons
• one task only
• black-box

 fragility / danger of 
overfitting

 interpolation only
 limited understanding 

of the model
 difficult maintenance

• many simulator/robot and 
GPU hours
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Making black-box models generalize

Agrawal P, Nair AV, Abbeel P, Malik J, Levine S (2016) Learning to 
poke by poking: Experiential learning of intuitive physics. In: 
Advances in neural information processing systems, pp 5074–5082

“regularization” by simultaneous 
learning of forward and inverse model

Zambelli, M., Cully, A., & Demiris, Y. (2020). Multimodal 
representation models for prediction and control from 
partial information. Robotics and Autonomous 
Systems, 123, 103312.

learning sensory-motor mappings 
(~ body schema) rather than a task
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Robots failing…

https://youtu.be/g0TaYhjpOfo

https://youtu.be/g0TaYhjpOfo
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Let’s look at animals and brains….
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tool-using and tool-making crows
https://youtu.be/UZM9GpLXepU

Body awareness and body schema plasticity

• adaptation to injury
• resilience

dogs that never give up
https://youtu.be/B2f58Khnohk

• tool use
• body extension

• awareness of 
body in space

https://youtu.be/akjDRRgeUoI

https://youtu.be/UZM9GpLXepU
https://youtu.be/UZM9GpLXepU
https://youtu.be/akjDRRgeUoI
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Let’s look at animals and brains….

Lesson 1 – there is a lot of plasticity 
(adaptivity) and few constraints.

https://www.slideserve.com/amal/the-pinocchio-illusion

https://www.slideserve.com/amal/the-pinocchio-illusion
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The octopus

https://youtu.be/APdRR2bL_Z0
Levy, G., Flash, T., & Hochner, B. (2015). Arm coordination in octopus crawling 
involves unique motor control strategies. Current Biology, 25(9), 1195-1200.

https://youtu.be/Y0o4Wuf1Nt4

Yekutieli et al. (2005b) speculate that the octopus reaches toward a target using the following strategy: 
1. Initiating a bend in the arm so that the suckers point outward. 
2. Orienting the base of the arm in the direction of the target or just above it. 
3. Propagating the bend along the arm at the desired speed by a wave of muscle activation that equally 

activates all muscles along the arm.
4. Terminating the reaching movement when the suckers touch the target by stopping the bend propagation 

and thus catching the target. 
3 kinematic control parameters (two angles for arm base orientation and one for movement speed) and 1 
dynamic control parameter (~ muscle force). 

Yekutieli, Y., Sagiv-Zohar, R., Hochner, B., & Flash, T. (2005). Dynamic model of the octopus arm. II. Control of reaching movements. Journal of neurophysiology, 94(2), 1459-1468.

… there is no octopunculus…

https://youtu.be/APdRR2bL_Z0
https://youtu.be/Y0o4Wuf1Nt4
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Let’s look at animals and brains….

Lesson 2 – use the body directly whenever you 
can
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“When we examine very simple level 
intelligence we find that explicit 
representations and models of the world 
simply get in the way. It turns out to be 
better to use the world as its own model.”

The world is its own best model

“The key observation is that the world is its own 
best model. It is always exactly up to date. It 
always contains every detail there is to be known. 
The trick is to sense it appropriately and often 
enough.”

Ghenghis robot 
https://youtu.be/K2xUHYFcYKI

https://youtu.be/K2xUHYFcYKI
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How about the body?

It is also (and even more) always there! 
So do we need to model it?

https://en.wikipedia.org/wiki/Cortical_homunculus#/media/File:Sensory_and_motor_homunculi.jpg

https://en.wikipedia.org/wiki/Cortical_homunculus#/media/File:Sensory_and_motor_homunculi.jpg
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“body maps” in the human brain

• From sensory and motor homunculi to …
• Body schema – “for action”

• ~ sensorimotor representation of body for action
• neural representation of the body [Head & Holmes, 1911]

• Body image – “for perception”
• body structural description [Schwoebel & Coslett 2005]

• body semantics [Schwoebel & Coslett 2005]

• Hierarchies – primary somatosensory repr., body
form representation, postural repr. [Medina & Coslett 2010]

• …
• => “chaotic state of affairs” [Berlucchi and Aglioti 2000]

• Our focus: body representations that mediate implicit
knowledge related to the body, its parts, and their posture
relevant in the context of sensorimotor coordination ~
“sensorimotor self”
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Better performance of robots –
autonomy, robustness, safety

Hoffmann, M. & Pfeifer, R. (2018), Robots as Powerful Allies for the Study of Embodied Cognition from the Bottom Up, in Albert 
Newen; Leon de Bruin & Shaun Gallagher, ed., 'The Oxford Handbook 4e Cognition', Oxford University Press, pp. 841-862.

Hoffmann, M.; Marques, H.; Hernandez Arieta, A.; Sumioka, H.; Lungarella, M. & Pfeifer, R. (2010), 'Body Schema in Robotics: A 
Review', Autonomous Mental Development, IEEE Transactions on 2(4), 304-324.

Characteristics of body models

Modeling mechanisms of 
biological body 
representations
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Plasticity, multimodality

Hoffmann, M. (2022), Biologically inspired robot body models and self-calibration, in Marcelo Ang; 
Oussama Khatib & Bruno Siciliano, ed., 'Encyclopedia of Robotics', Springer.
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explicit / veridical implicit / embodied

body schemabody image

Hoffmann, M. (2021), Body models in humans, animals, and robots, in Yochai Ataria; Shogo Tanaka & Shaun Gallagher, 
ed., 'Body Schema and Body Image: New Directions', Oxford University Press. 
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Are robots like Ian Waterman?

Hoffmann, M. (2021), Body models in humans, animals, and robots, in Yochai Ataria; Shogo Tanaka & Shaun Gallagher, 
ed., 'Body Schema and Body Image: New Directions', Oxford University Press. 

McNeill, D., Quaeghebeur, L., & Duncan, S. (2010). IW-“The man who lost his body”. In Handbook of phenomenology and cognitive 
science (pp. 519-543). Springer, Dordrecht.

http://www.thearticulatehand.com/ian.html

http://www.thearticulatehand.com/ian.html
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Robots learning brain-like body models

(A) Penfield W., Rasmussen T.: The cerebral cortex of man; a clinical 
study of localization of function, 1950. (pic from OpenStax College)

(B,C) Organization of the representations of body surface in area 3b of 
the cynomolgus macaque. (after Nelson 1980)
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Learning using Self-Organizing (Kohonen) map (SOM)

input layer: 1154 taxels

Output layer: 7 x 24 neurons
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Hoffmann, M.; Straka, Z.; Farkas, I.; Vavrecka, M. & Metta, G. (2018), 'Robotic homunculus: Learning of 
artificial skin representation in a humanoid robot motivated by primary somatosensory cortex', IEEE 
Transactions on Cognitive and Developmental Systems 10(2), 163-176. 
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learning with standard SOM

To obtain a layout similar to area 3b: 
sequence of body parts ensured through 
additional constraints – maximum 
receptive field size setting: MRF-SOM.
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Learned SOM with maximum RF setting
RFs of neurons representing 

torso repr. of indiv. skin parts on 
final map

Hoffmann, M.; Straka, Z.; Farkas, I.; Vavrecka, M. & Metta, G. (2018), 'Robotic homunculus: Learning of 
artificial skin representation in a humanoid robot motivated by primary somatosensory cortex', IEEE 
Transactions on Cognitive and Developmental Systems 10(2), 163-176. 
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Learning to reach for stimulus on the body

1. Spontaneous self-touch
2. Detecting motor-

proprioceptive-tactile (-visual)    
correlations

3. “Intrinsic motivation” needed to 
focus exploration? Learning to 
recreate a stimulus (self-touch) 
that first occurred spontaneously?

3 months
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Active exploration of “skin space”

• simulated Nao robot with 
artificial skin

• Action space Q:
• 5 degrees of freedom (DoF) for 

torso-reaching experiments
(Q⊆ ℝ5)

• 7 DoF for head-reaching
experiments (Q ⊆ ℝ7) 

• Observation space X ⊆ ℝ2

• Planar projection of skin 
surface

Gama, F.; Shcherban, M.; Rolf, M. & Hoffmann, M. (2020), Active exploration for body model learning through self-touch on a humanoid robot with 
artificial skin, in 'Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)'.
Gama, F.; Shcherban, M.; Rolf, M. & Hoffmann, M. (2021), 'Goal-directed tactile exploration for body model learning through self-touch on a 
humanoid robot', IEEE Transactions on Cognitive and Developmental Systems. [in revision]
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Motor babbling vs. active goal exploration

Random Motor Babbling (RMB) Discretized Goal Babbling (DGB)
• exploring goal space (skin space)
• building inverse model (from skin 

space to joint space)
• focusing exploration onto regions with 

fastest progress
• https://github.com/flowersteam/explauto

mean reaching error number of touches

https://github.com/flowersteam/explauto
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“Sporadic touch” vs. “complex touch”

Gama, F.; Shcherban, M.; Rolf, M. & Hoffmann, M. (2021), 'Goal-directed tactile exploration for body model learning through self-touch on a 
humanoid robot', IEEE Transactions on Cognitive and Developmental Systems. [in revision]

first 2 months (DiMercurio et al. 2018)
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What from brain-like control / body models 
should robots take on board?

• Should we learn tasks, body models or physics 
(Lake et al. 2017)?
• The human brain cannot afford an end-to-end network for 

every task – that’s why it developed body representations…
• Some characteristics of brain-like body models 

should clearly be incorporated and it should be 
largely unproblematic. 
• adaptivity/plasticity (a.k.a. self-calibration) 

• multimodality 
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Some characteristics of brain-like body models are 
clearly at odds with engineering practice….

• Giving up
• modularity?  
• centralized & universal nature? 
• explicit and veridical character? 
• serial operation (and mindset)? 

• In the end, humans and animals’ body models serve 
action – they don’t need to be correct, but useful.

• Many suboptimal redundant solutions => 
robustness.
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Resources and further reading

Pfeifer, R. & Scheier, C. (2001), Understanding intelligence, MIT 
Press Cambridge, MA, USA.

Pfeifer, R. & Bongard, J. C. (2007), How the body shapes the 
way we think: a new view of intelligence, MIT Press, 
Cambridge, MA.

Cangelosi, A., & Schlesinger, M. (2015). Developmental robotics: 
From babies to robots. MIT press.

ShanghAI lectures repository: 
http://shanghailectures.org/lectures

Hoffmann, M. & Pfeifer, R. (2011), The implications of 
embodiment for behavior and cognition: animal and robotic 
case studies, in W. Tschacher & C. Bergomi, ed., 'The 
Implications of Embodiment: Cognition and Communication', 
Exeter: Imprint Academic, pp. 31-58.

Müller, V. C., & Hoffmann, M. (2017). What is morphological 
computation? On how the body contributes to cognition and 
control. Artificial life, 23(1), 1-24.

http://shanghailectures.org/lectures
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