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Humanoids -

Naos (1 with “iCub skin”)

Cobots

KUKA LBR iiwa . UR10e + Airskin
Kinova Gen3




B Motivation

Hoffmann, M.; Chinn, L. K.; Somogyi, E.; Heed, T.; Fagard,
J.; Lockman, J. J. & O'Regan, J. K. (2017), Development of
reaching to the body in early infancy: From experiments to
robotic models, in 'Joint IEEE International Conference on
Development and Learning and Epigenetic Robotics (ICDL-
EpiRob)', pp. 112-119.

Roncone, A.; Hoffmann, M.; Pattacini, U. & Metta,
G. (2014), Automatic kinematic chain calibration
using artificial skin: self-touch in the iCub humanoid
robot, in 'Proc. IEEE Int. Conf. Robotics and

Automation (ICRA)".
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- Synthetic methodology —
understanding by building

Pfeifer & Scheier
(2001): Understanding

| analytic L ___Isyntheticl.

Pl it LT intelligence
empirical | synthetic | _ 2~ s (QEEE
. ;_ % | principles of » applications
sciences modeling / 'intelligence 7~
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biology . _
neurobiology cognitive science
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- Goals

[Pfeifer and Bongard, 2007, Chapter 3]:
1. understanding natural forms of intelligence

2. abstracting general principles of intelligent
behavior

3. building intelligent artifacts

| analytic |--H__;____....-|'synthetic_i...________
// ! : “-:\\\\ . -.
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empirical sciences
developmental and cognitive psychology
cognitive neuroscience

synthetic
modeling

modeling

hypotheses
mechanisms
new experiments

)

J. Lockman, K. O’'Regan,
G. Cappagli, T. Heed, M.
Longo, A. Serino, J.-P. Noel

synthetic sciences
artificial intelligence
cognitive robotics

applications
service robotics
collaborative robotics

brain-like
computing:
deep NNs
spiking
NNs

prototypes

Collaborators M. Zillich (Blue Danube Robotics - Airskin)
S. Haddadin, A. Ajoudani, H. Lehmann, A.
Sciutti



- All synthetic, yet different...

Is walking
Intelligent?

What it takes
to walk?

Is playing chess

I I ?
Honda Asimo (2018) intelligent”

https://youtu.be/lurL X vp7w

Passive Dynamic Walker — Tad McGeer (1990)
https://youtu.be/WOPED7I5Lac



https://youtu.be/WOPED7I5Lac
https://youtu.be/1urL_X_vp7w
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Classical:
“intelligence as
computation”

Input Output
L ~1 think ~—~
sense act

lllustration: Shun Iwasawa, from Pfeifer, R: How the body shapes the way we think, 2007




B Birth of Artificial Intelligence

« 1956 - onwards: Artificial Intelligence

- 1956 Dartmouth Conference / McCarthy coins term “artificial
intelligence” / first running Al program (Logic Theorist)
- from middle ‘50s to late '80s : ‘Classical Al' (e.g. Newell, Simon, McCarthy)

- human cognition = a set of ‘rational activities’ (reasoning, language, formal
games...);

- intelligent artifacts = programs for computers

Classical Al = modelling “high level” capabilities (mainly) through
computer programs detached from robotic bodies

o

Slide source: Hagen Lehmann



- Classical Al — theoretical positions

Intelligence — abstract symbol processing

Functionalism
— Algorithm / software matters

— Hardware (on which it runs) @
does not matter @ |
Physical Symbol Systems 2

Hypothesis (Newell and Simon R{ 7

Digital computer

- Key tOOI Fig. 2.4 from Pfeifer & Scheier 1999
— Metaphor for the mind!

Nicknamed GOFAI — Good Old-Fashioned Artificial
Intelligence (Haugeland 1985)




Where it works nicely... search

Elg%’g?ig : . o | 4 . LEE SEDOL
+++00:00: 98 O _ ,Ui}:b‘l:UO

IBM Deep Blue chess computer, 1997 Google Deep Mind AlphaGo, 2016

 formally precisely defined discrete state space

e program has access to complete information (fully observable)
» deterministic state evolution

 not real-time (or soft real time)

* Premiere methods — e.g.: search, deep reinforcement learning




- Where 1t works nicely... planning

Example : Blocks World

*STRIPS : A planning system — Has rules with
precondition deletion list and addition list

Robot Robot
o |||hand ‘; H—‘hﬂnd
A B &
START GOAL

on(B, table) on(C, table)
on(A, table) on(B, C)
on(C, A) on(A, B)
hand empty hand empty
clear(C) clear(A)

clear(B)




Matej Hoffmann 2017 - Embodied Al
- Connecting to the real world - representation

original - rasult ot
situgéltinn oparation oparation
X4 T Xz
real FRE
world T
X |
:rl;'i:rr::;nlatiun — encode ancade decode —
v 7
H-| Hz
(block A) (block B) = (block A) (block B)
(table Ta) k3 (table Ta)
(on B A) {on A Ta) (maove operator) (on A Ta) {on B Ta)

Fig. 2.5 from Pfeifer & Scheier 1999




Soccer

Chess

- From formal world to real world




- From formal world to real world

Input

| update internal
representation

compute over
internal
representation

Output

sense

think

act

Ancient times:

Stanford Cart, 1975







- GOFAI fundamental problems

Frame problem

— How can a model of a continuously changing
environment be kept in tune with the real world?

Symbol grounding problem (Harnad, 1990)

Frame of reference problem
— Ant on the beach (Herbert A. Simon)
— simple behavioral rules
— complexity In interaction, not in brain




- GOFAI problems viewed today

Some problems have been mitigated
through

— New algorithms
e Probabilistic reasoning (e.g. Thrun et al. 2005)

e Learning
— Reinforcement learning
— “Deep” neural networks

— Higher computational power
== real-time operation in real world is possible

Google self-
driving car
today

Stanley, 2006




- What remains?

Al still heavily biased toward
representation and
computation.

vs. natural (also human)
Intelligence:
— embodied

— emergent from sensory-
motor and interaction processes




- Research questions

Classical Al
— Thinking, reasoning, abstract problem solving

Embodied Al

— Movement, physical interaction with the real
world

“Why do plants not have brains? The answer is
actually quite simple: they don’t have to
move.”

Lewis Wolpert, UCL
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- Embodiment

“Intelligence requires a body”

Interplay / task distribution
— Brain
— Body (morphology — shape, materials, ...)
— Environment

Principal of ecological balance

— match in complexity of sensory, motor,
and neural system




Matej Hoffmann 2017 - Embodied Al

- Ecologically unbalanced systems

sensor for one quality
(e.g. temperature, light)

very large brain

Linear camera
extension
(TSL3301) -

one motor




- Physical implications of embodiment

~ morphology facilitating control
Is brain/computation needed for walking?

Passive dynamic walkers (McGeer 1990)
— “pure physics walking”
— NO computer
— NO Mmotors

— NO Sensors Morphology:

- shape of feet
- counterswing of
arms
- friction on
bottom of feet

Cornell PDW with arms,
Collins et al. 2001




Steve Collins, Passive dynamic walker



Body dynamics/morphology

Mechanical system
Musculoskeletal system

Mechanical
Movement feedback

_Task-environment _
Ecological niche

Schematics based on Pfeifer et al., Science 2007




- Self-stabilization

Motor *

Movement
command 5

A
)
Mechanical
feedback
Ground
) ]
C p k # » 2 ?
< / 1 /) = S - »
A0 9 | o = @ = 4
sy b : * ~ .'| > . \ N
95
_ 90t
=
i 85|
gBG-=_====== -------
g 7sh .
70 ;
1.5 1 0.5 0 0.5 1 15 2

Distance (m)

Fig. adapted from
Blickhan et al. 2007

https://youtu.be/Zt7J0dly70M



https://youtu.be/Zt7J0dly70M

Matej Hoffmann 2017 - Embodied Al

- Grasping with coffee balloon grippers

BRI R SO D https://youtu.be/ZKOI IVDPpw

Brown et al. 2010



https://youtu.be/ZKOI_lVDPpw

Controller
Central nervous system

Motor
commands

Body dynamics/morphology

Mechanical system
Musculoskeletal system

Mechanical
Movement feedback

Task-environment

Ecological niche
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Grey Walter
Turtle, 1940s

R. Brooks, 1980s
subsumption architecture




Middle '40s: Cybernetics - modelling intelligence
through machines (Wiener 1948, von Neumann 1948)

- early ideas of embodiment and modeling neurophysiological
processes in the 1940s (McCulloch, Pitts 1946 - formal neuron;
Ross Ashby - Homeostat; Grey Walter - tortoise robots)

- 1946 - 1953 Macy Conferences on Cybernetics

Slide source: Hagen Lehmann



B William Grey Walter (1910-1977)

English neurophysiologist and roboticist
Work on EEG, conditioning, etc.

“Robotic tortoises” (1948-49)

— Autonomous robots with
touch and light sensors
— Simple “brain” ( 2 “neurons”)

— “tortoises” influenced a number of robot|C|sts
(Hans Moravec, Rodney Brooks, etc.)

— “descendants”: robotic vacuum cleaners

Slide source: Milos Zelezny



- Grey Walter’s tortoises







- Breitenberg vehicle







Controller

Central nervous system

Motor Sensory
commands feedback

Body dynamics/morphology

__Mechanical system Sensory system
Musculoskeletal system Sensory receptors
VIR External
Movement fecdgnlcka physical
eedbac stimuli

Task-environment

Ecological niche




- Behavior-based robotics manifestos

Intelligence without representation™

Rodney A. Brooks

MIT Artificial Intelligence Laboratory, 545 Technology Square, Rm. 836, Cambridge, MA 02139, US4

Recerved September 1987
Brooks, B_A .. Intelligence without representation, Artificial Intelligence 47 (1991), 139-1359.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

AL Memo Noo 1293 April, 1991

Intelligence Without Reason

Rodney A. Brooks

Prepared for Compaters and Thought. 11CA] 9]
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- Insect eye morphology

Different species of insects have evolved different non-
homogeneous arrangements of the light-sensitive
cells in their eyes, providing an advantageous
nonlinear transformation of the input for a

particular task
horsefly

honeybee



- Obstacle avoidance

exploiting ego-motion together with motion

parallax

Franceschini et al. 1992

v,

. sin®

Q=
D

Figure 6. Principle of motion parallax. Any agent (fly,
human, robot, etc.) translating at speed Vp can gauge the
distance to a contrast point P located at azimuth ¢ if it is
equipped with a passive sensor able to measure the angular
speed £2 of P when this point crosses its visual field due to the
agent’s own movement.




- Nonuniform distribution & elementary
motion detectors

The distribution of the cells is nonuniform and follows a sine gradient in
the interommatidial angle, such that sampling of the visual space is finer
towards the front than laterally. This effectively compensates for the sine
relationship in the formula and allows uniform motion detection circuitry to
be used everywhere.

"llllllllu_ﬁumu '

2 mm

(b)

CurvACE - artificial compound

eye -image courtesy of Dari
Floreano




- Message to remember: embodiment

behavior is not in the brain
(or cell, molecule...)

it iS i n th e i nte raCti O n (vs. “all behavior is a result of brain

function” — Eric R. Kandel, Ch. 1: The
Brain and Behavior, in Kandel, E.R.,
Schwartz, J.H. and Jessell, T.M. eds.,
2000. Principles of neural science (Vol. 4,
pp. 1227-1246). New York: McGraw-hill.

lllustrations: Shun Iwasawa, from R. Pfeifer & J. Bongard: How the body shapes the way 44
we think, 2007
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- Engineering way — pros and cons

Pros

very neat... ©
mathematics and physics
» extrapolation...
veridical representation
» we understand the
model
» accuracy can be
measured
modularity
» Mmaintenance

How we make robots do things -
the traditional way N i

Ccons

lot of man-hours

model typically fixed

» external calibration
procedures...

no redundancy

» fragility




- Robot body models and calibration

 Robotic models tend to be
* fixed
e centralized
o explicit
 rely on minimal sensory info \_ il .
o start from significant prior knowledge
o Calibration is typically performed using external

metrology (e.g., calibration chambers).
e Calibration — fine-tuning of parameters

Allows the end ol the tobot o be lovated inspace
relative 1o the base of the robol. The caleulations
— C 0 C ot Yoyl 1 1091

are done 1 t joint coordinates (joint angles)
Trarkesin o 1les,




B Traditional kinematic calibration

open-loop calibration closed-loop calibration

o utilizes an external metrology < utilizes physical constraints

system to measure the pose on the end link pose to
components substitute for measurements

« manipulator not in contact
with environment

chain A .ﬂ.‘ E::r_i:emal device ) /m‘g"
X R LI / X Y Contac uffmcg/ 2] o ot

P-TEI ne coordinate system

Base cc:-n-rd wstern

Hollerbach, J., Khalil, W., & Gautier, M. (2016). Model identification.
In Springer handbook of robotics (pp. 113-138). Springer, Cham.



http://drive.google.com/file/d/1VO66i0o2BPbzhOCqLtS7pNY9z6BSyYYY/view
http://drive.google.com/file/d/1VO66i0o2BPbzhOCqLtS7pNY9z6BSyYYY/view

- Automatic self-contained robot calibration -
motivation

4 directional microphones 3 capaditive touch sensors

Current robots:

front-facing camera

e cheaper and more elastic materials o o

e set of affordable but increasingly h N -
accurate o \ é, S—
sensors (e.g. RGB-D cameras, e o/

Inertial Measurement Unit

tactile, force,
or inertial sensors, etc.) | ——

== Necessity and opportunity for S
autonomous continuous (re-)calibration =«

/76 laser line projectors

~7

3 bumper sensors




self-contained robot calibration

Roncone, A.; Hoffmann, M.; Pattacini, U. & Metta, G.
(2014), Automatic kinematic chain calibration using
artificial skin: self-touch in the iCub humanoid robot, in
'Proc. IEEE Int. Conf. Robotics and Automation (ICRA)".

Stepanova, K.; Pajdla, T. & Hoffmann, M. (2019),
'Robot self-calibration using multiple kinematic
chains — a simulation study on the iCub humanoid
robot', IEEE Robotics and Automation Letters 4(2),
1900-1907.

https://github.com/ctu-
vras/multirobot-
calfbtation _

ial robot calibration fi k and toolbox

Stepanova, K.; Rozlivek, J.; Puciow, F.;
Krsek, P.; Pajdla, T. & Hoffmann, M.

Rustler, L.; Potocna, B.; Polic, M.; Stepanova, K. &

. . ; (2022), 'Automatic self-contained
i, GO Sl bl 00 cen . user . o 4 et of an s
contact, 3D reconstruction, and CAD-based calibration, Hoffmann, M. (2021), Multisensorial robot robot \f”t cameras using sg —cl?ntact,
in '"Humanoid Robots (Humanoids), IEEE-RAS calibration framework and toolbox, in b planar 'coFr;skt)ral_nts, ag Cse .
International Conference on'. ‘Humanoid Robots (Humanoids), IEEE-RAS LRI o LEOBEIES eI el -

InternationallConference on:. Integrated Manufacturing 73, 102250.


https://github.com/ctu-vras/multirobot-calibration




- Self-contact and self-observation

A offset chain
qa(&) B
A xB

] el ti DLy,
chain | 9 Siserition 2Dy
A e
..-::A

Camera image

......... phsaration 2(Dy)
r"‘ 'l.l. =
) chain B
Camera lrnag e
Rozlivek, J.; Rustler, L.; Stepanova, K. & Hoffmann, M. (2021), Multisensorial robot calibration framework and toolbox,

in 'Humanoid Robots (Humanoids), IEEE-RAS International Conference on'.



- Multi-chain robot calibration

Estimate parameter vector:

qf’:{[alk*-*}an]1[d11---1dra]1[ala-“:ﬂn]:[Gla-**aﬂrh]}WitthN

N = {1,...,n} is a set of indices identifying individual links; at, d; and oy, are the
first three parameters of the DH formulation of link k; o, is the offset that specifies
the positioning of the encoders on the joints with respect to the DH representation.

¢* =arg min f (¢, D, ), D c D"
¢

f(¢,D,¢) = |g(¢,D,0)|* = X, 9(¢, D:, )" D; = [mi,ci,u, 6]

S

~ Reprojection error (camera chains)
~ Distance of real (observed) and estimated end effector
positions (other chains)




- It works, but...

o Still quite laborious.

 Local optimization methods == good Iinitial
guess of parameters Is needed.

 Will not cope with dramatic changes.




- Resilient robots

https://youtu.be/x5790QKAGTKY https://youtu.be/T-c17RKh3uE

Bongard, J., Zykov, V., & Lipson, H. (2006). Resilient machines Cully, A., Clune, J., Tarapore, D., & Mouret, J. B. (2015). Robots that
through continuous self-modeling. Science, 314(5802), 1118-1121. can adapt like animals. Nature, 521(7553), 503-507.



https://youtu.be/x579QKA6fkY
https://youtu.be/T-c17RKh3uE

B Beyond the white-box (body) model

%

Stochastic
rigid body modeling

Deploy on the
real system '
Reinforcement
learning in simulation

Train actuator net
with real data

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., & Hutter, M. (2019). Learning
agile and dynamic motor skills for legged robots. Science Robotics, 4(26).




- Let’s forget about the body model

repeated

stride 2
6x6 conv + ReLU

3x3 conv + RelLU
Hully conn. + RelLU
Iully conn. + ReLU

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018). Learning hand-eye coordination for robotic grasping with
deep learning and large-scale data collection. The International Journal of Robotics Research, 37(4-5), 421-436.

(actually, there is a body model — robot inverse kinematics and control)




- End-to-end / deep / RL way
— pros and cons

- Let’s forget about the body model Cons
' ]  one task only

 pblack-box
. > fragility / danger of
E ﬁﬁﬂ ‘““”ﬁ]‘i ‘ﬁﬁﬂ IR overfitting
| HigEsisn | i
@| i “I & e > interpolation only
= - > limited understanding

e i oAt i e i St T MR et Mt o Pt Pt ST oy DA 0 of the model
{actually, there is a body model - robot inverse kinematics and control) m > d iffi Cu It m ai nte n an Ce

« many simulator/robot and

Pros GPU hours

e jtislearned ©
» adaptive (possibly)
« fewer man-hours
 unless hand-labeling
IS nheeded




- Making black-box models generalize

Model training from
motor babbling data

Motor babbling
Joint pos. RN SR Joint pos. rec.
— YA — —
S S~
Vision SO RS N Vision rec.
U~ SN
Touch IR NS Touch rec.
— YA —
S U~
Sound SR [N Sound rec.
— YA — —
~ SR
Motor c. \R\ T \m\ Motor c. rec.
— YA — —
NN NN

Input:
Combinations of available and missing data
at time tand -1

Zambelli, M., Cully, A., & Demiris, Y. (2020). Multimodal

Agrawal P, Nair AV, Abbeel P, Malik J, Levine S (2016) Learning to representation models for prediction and control from
poke by poking: Experiential learning of intuitive physics. In: partial information. Robotics and Autonomous
Advances in neural information processing systems, pp 5074-5082 Systems, 123, 103312.

“regularization” by simultaneous learning sensory-motor mappings
learning of forward and inverse model (— body schema) rather than a task [t




Robots failing...



https://youtu.be/g0TaYhjpOfo

- Let’s look at animals and brains....




- Body awareness and body schema plasticity

tool-using and tool-making crows
https://youtu.be/UZM9GpL XepU

e tool use

 body extension

awareness of
body In space

dogs that never give up

https://youtu.be/B2f58Khnohk

e adaptation to injury
e resilience

https://youtu.be/akjDRRgeUol



https://youtu.be/UZM9GpLXepU
https://youtu.be/UZM9GpLXepU
https://youtu.be/akjDRRgeUoI










- Let’s look at animals and brains....

Lesson 1 — there Is a lot of plasticity
(adaptivity) and few constraints.

vibrator here
makes you think
arm is extended

The Pinocchio lllusion

https://www.slideserve.com/amal/the-pinocchio-illusion



https://www.slideserve.com/amal/the-pinocchio-illusion

The octopus

Levy, G., Flash, T., & Hochner, B. (2015). Arm coordination in octopus crawling
involves unique motor control strategies. Current Biology, 25(9), 1195-1200.

Yekutieli et al. (2005b) speculate that the octopus reaches toward a target using the following strategy:

1. Initiating a bend in the arm so that the suckers point outward.

2. Orienting the base of the arm in the direction of the target or just above it.

3. Propagating the bend along the arm at the desired speed by a wave of muscle activation that equally
activates all muscles along the arm.

4. Terminating the reaching movement when the suckers touch the target by stopping the bend propagation
and thus catching the target.

3 kinematic control parameters (two angles for arm base orientation and one for movement speed) and 1

dynamic control parameter (~ muscle force).
Yekutieli, Y., Sagiv-Zohar, R., Hochner, B., & Flash, T. (2005). Dynamic model of the octopus arm. Il. Control of reaching movements. Journal of neurophysiology, 94(2), 1459-1468.

... there Is no octopunculus...


https://youtu.be/APdRR2bL_Z0
https://youtu.be/Y0o4Wuf1Nt4

- Let’s look at animals and brains....

Lesson 2 — use the body directly whenever you
can




- The world Is 1ts own best model

Elephants Don’t Play Chess

Rodney A. Brooks
MIT Arsificial Inteliigence Laboratory, Cambridge, MA 02139,
UsA

There it an alternative foute to Artificial Intelligence that
diverges from the directions pursued under that banner for the
last thity some years, The traditional approach has empha-
sized the abstract manipulation of symbols, whose grounding
in physical reality has rarcly been achicved. We explore a
research methodology which emphasizes ongoing physical in-
teraction with the enviranment s the primary source of GoA-
straint on the design of intelligent systems. We shaw how this
methodology has recently had significant successes on a par
with the most successful classical efforts, We outline plausible
future work along these lines which can lead to vastly more
ambitious systems.

Kaywards: Situated activity; Mebile robots; Planning; Sub-
sumption architecture; Artificial Intelligence.

. Brooks born
Adelse,  Australia He wudied
Mathematics at the Flinders Univer-
sity of South Australia and received a
Ph.

e
c Mellon University and the Mas-
sachusets Insitae of Technology and
ully positions at ﬁlnl’wm and
MIT He ls corrently ssociale
Profussar of Electrical Bngincering and
Computer Science at M.LT. and a
member of the Afhbcul Totellgene Laboratory where he
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1. Introduetion

Artificial Intelligence research has foundered in
a sea of incrementalism. No one is quite sure
where to go save improving on earlier demonstra-
tions of techni in symbolic ipulation of
ungrounded represeniations. At the same time,
small Al companies are folding, and attendance is
well down at national and international Artificial
Intelligence conferences. While it is true that the
use of Al is prospering in many large compandes,
it is primarily through the application, to novel
domains of long developed techniques that have
become passé in the research community.

What has gone wrong? (And how is this book
the answer?(t)

In this paper we argue that the ir symbol system
hypothesis upon which it classical Al is based is
fundamentally flawed, and as such imposes severe
limitations on the fitness of its progeny. Further,
we argue that the dogma of the symbol system
hypothesis implicitly includes a number of largely
unfounded great leaps of faith when called upon
to provide a plausible path to the digital equiv-
alent of human level intelligence. It is the chasms
to be crossed by these leaps which now impede
classical Al research.

But there is an alternative view, or dogma,
variously called ir nouvelle Al, it fundamenralist
AI, or in a weaker form it situated activity *. It is
based on the it physical grounding hypothesis. Tt
provides a different methodology for building in-
telligent systems than that pursued for the last
thirty years. The traditional methodology bases its
decomposition of intelligence into functional in-
formation processing modules whose combina-
tions provide overall sysiem hahavnor The new

bases ils of intelli-
gence into individual hehavmr generating mod-

" Note that what is discussed in this paper is completely
unrelated to what is popularly known as it Neural Netwarks
That given, there are nevertheless a number of aspects of
nouvelle Al appronches which may be of interest o peaple
working in classical neurascicace.

0921-8830,/90/303.50 © 1990 — Elsevier Science Publishers B.V. {North-Holland)

“The key observation is that the world is its own
best model. It is always exactly up to date. It
always contains every detail there is to be known.
The trick is to sense it appropriately and often

enough.”

Intelligence without representation™

Rodney A. Brooks

MIT Artificial Intelligence Laboratory, 345 Technology Square, Rm. 8§36, Cambridge, MA 02139, USA
Received September 1987

Brooks, R.A.. Intelligence without representation. Artificial Intelligence 47 (1991). 139-159.

“When we examine very simple level
intelligence we find that explicit
representations and models of the world
simply get in the way. It turns out to be
better to use the world as its own model.”

Ghenghis robot
https://youtu.be/K2xUHYFcYKI



https://youtu.be/K2xUHYFcYKI

- How about the body?

It Is also (and even more) always there!
So do we need to model it?

https://en.wikipedia.org/wiki/Cortical homunculus#/media/File:Sensory and motor homunculi.jpg


https://en.wikipedia.org/wiki/Cortical_homunculus#/media/File:Sensory_and_motor_homunculi.jpg

- “body maps” in the human brain | e f
e From sensory and motor homunculi to ... \ S
- Body schema — “for action” =

e — sensorimotor representation of body for action
 neural representation of the body [Head & Holmes, 1911]
« Body image — “for perception”
 body structural description [schwoebel & Coslett 2005]
o bOdy semantics [Schwoebel & Coslett 2005]
« Hierarchies — primary somatosensory repr., body
form representation, postural repr. [Medina & Coslett 2010]

e == ““chaotic state of affairs’ [serlucchi and Aglioti 2000]

e Our focus: Dbody representations that mediate implicit
knowledge related to the body, its parts, and their posture
relevant in the context of sensorimotor coordination ~
“sensorimotor self” E




- Characteristics of body models
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Hoffmann, M. & Pfeifer, R. (2018), Robots as Powerful Allies for the Study of Embodied Cognition from the Bottom Up, in Albert
Newen; Leon de Bruin & Shaun Gallagher, ed., 'The Oxford Handbook 4e Cognition’, Oxford University Press, pp. 841-862.
Hoffmann, M.; Marques, H.; Hernandez Arieta, A.; Sumioka, H.; Lungarella, M. & Pfeifer, R. (2010), '‘Body Schema in Robotics: A
Review', Autonomous Mental Development, IEEE Transactions on 2(4), 304-324.




B Plasticity, multimodality

>

multisensorial

fixed adaptive

Hoffmann, M. (2022), Biologically inspired robot body models and self-calibration, in Marcelo Ang;
Oussama Khatib & Bruno Siciliano, ed., 'Encyclopedia of Robotics', Springer.
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Hoffmann, M. (2021), Body models in humans, animals, and robots, in Yochai Ataria; Shogo Tanaka & Shaun Gallagher,

ed., 'Body Schema and Body Image: New Directions', Oxford University Press.




- Are robots like lan Waterman?

http://www.thearticulatehand.com/ian.html

McNeill, D., Quaeghebeur, L., & Duncan, S. (2010). IW-“The man who lost his body”. In Handbook of phenomenology and cognitive
science (pp. 519-543). Springer, Dordrecht.

Hoffmann, M. (2021), Body models in humans, animals, and robots, in Yochai Ataria; Shogo Tanaka & Shaun Gallagher,
ed., 'Body Schema and Body Image: New Directions', Oxford University Press.



http://www.thearticulatehand.com/ian.html

- Outline

Synthetic methodology — “understanding by
building”
Classical Al — intelligence as computation

Embodied Al

— Morphology facilitating control
 Body design simplifying task
 Behavior emergent from simple sensory-motor
loops

— Morphology facilitating perception
Robot body models
Robots learning brain-like body models




- Robots learning brain-like body models

Genitalia
A Posterior leg
Ankle, Heel
/_/ - Leg fingers
‘ 2
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| = Foot
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(A) Penfield W., Rasmussen T.: The cerebral cortex of man; a clinical
study of localization of function, 1950. (pic from OpenStax College)
(B,C) Organization of the representations of body surface in area 3b of
the cynomolgus macaque. (after Nelson 1980)




Learning using Self-Organizing (Kohonen) map (SOM)




Torso

Upper arm

Forearm

Palm
Fingers

Hoffmann, M.; Straka, Z.; Farkas, I.; Vavrecka, M. & Metta, G. (2018), 'Robotic homunculus: Learning of
artificial skin representation in a humanoid robot motivated by primary somatosensory cortex', IEEE
Transactions on Cognitive and Developmental Systems 10(2), 163-176.




To obtain a layout similar to area 3b:
sequence of body parts ensured through
additional constraints — maximum
receptive field size setting: MRF-SOM.

arm’ e
Upper arm

Fingers Palm




- Learned SOM with maximum RF setting

RFs of neurons representing

repr. of indiv. skin parts on
torso P P

final map

Upperarm

Forearm

Palm
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Hoffmann, M.; Straka, Z.; Farkas, I.; Vavrecka, M. & Metta, G. (2018), 'Robotic homunculus: Learning of
artificial skin representation in a humanoid robot motivated by primary somatosensory cortex', IEEE
Transactions on Cognitive and Developmental Systems 10(2), 163-176.




- Learning to reach for stimulus on the

1. Spontaneous self-touch

2. Detecting motor-
proprioceptive-tactile (-visual)

correlations

3. “Intrinsic motivation” needed to
focus exploration? Learning to
recreate a stimulus (self-touch)
that first occurred spontaneously?

3 months

body




- Active exploration of “skin space”

 simulated Nao robot with
artificial skin
e Action space Q:
5 degrees of freedom (DoF) for
torso-reaching experiments

(QE R°)
7 DoF for head-reaching
experiments (Q € R’)
 Observation space X € R?
 Planar projection of skin

surface

Gama, F.; Shcherban, M.; Rolf, M. & Hoffmann, M. (2020), Active exploration for body model learning through self-touch on a humanoid robot with
artificial skin, in 'Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)".

Gama, F.; Shcherban, M.; Rolf, M. & Hoffmann, M. (2021), 'Goal-directed tactile exploration for body model learning through self-touch on a
humanoid robot', IEEE Transactions on Cognitive and Developmental Systems. [in revision]




- Motor babbling vs. active goal exploration

Random Motor Babbling (RMB)

Mean reaching distance [cm)]

1 ! 1 1 1 1 1 1
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lteration number

mean reaching error

J
100C

]
Discretized Goal Babbling (DGB)

 exploring goal space (skin space)

* building inverse model (from skin
space to joint space)

 focusing exploration onto regions with

fastest progress
. https://qgithub.com/flowersteam/explauto
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900 [—RGB
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https://github.com/flowersteam/explauto







“Sporadic touch” vs. “complex touch”

first 2 months (DiMercurio et al. 2018)

FIGURE 3 | llustration of number of touches coded by area and body side with comesponding network maps from one condition and session (week &) of one infant
(D). (A) Network map of touches and fransitions performed by the right hand. The colored dols (nodes) represent the different locations touched, their size and
color indicate the frequency each were touched (warmer colors indicate more frequent touches to that anea). and the armows and thedr thickness indicate the direction
and frequency of transitions between pairs of nodes. [B) Frequency of touches by area. Each dot comesponds 1o a coded contact to that area. The blus dots ane
contacts performed by the right hand, the rad dots are contacts parformead by the laft hand. (C) Comasponding network map for the left hand.

Gama, F.; Shcherban, M.; Rolf, M. & Hoffmann, M. (2021), 'Goal-directed tactile exploration for body model learning through self-touch on a
humanoid robot', IEEE Transactions on Cognitive and Developmental Systems. [in revision]










What from brain-like control /7 body models
should robots take on board?

 Should we learn tasks, body models or physics
(Lake et al. 2017)?

« The human brain cannot afford an end-to-end network for
every task — that’s why it developed body representations...

« Some characteristics of brain-like body models
should clearly be incorporated and it should be
largely unproblematic.

e adaptivity/plasticity (a.k.a. self-calibration) M
« multimodality [V] x




Some characteristics of brain-like body models are
clearly at odds with engineering practice....

e Giving up
 modularity?
e centralized & universal nature?
« explicit and veridical character?
» serial operation (and mindset)?

 In the end, humans and animals’ body models serve
action — they don’t need to be correct, but useful.

« Many suboptimal redundant solutions ==>
robustness.
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- Resources and further reading

Pfeifer, R. & Scheier, C. (2001), Understanding intelligence, MIT
Press Cambridge, MA, USA.

Pfeifer, R. & Bongard, J. C. (2007), How the body shapes the
way we think: a new view of intelligence, MIT Press,
Cambridge, MA.

Cangelosi, A., & Schlesinger, M. (2015). Developmental robotics:

From babies to robots. MIT press.

ShanghAl lectures repository:
http://shanghailectures.org/lectures

Hoffmann, M. & Pfeifer, R. (2011), The implications of
embodiment for behavior and cognition: animal and robotic
case studies, in W. Tschacher & C. Bergomi, ed., 'The
Implications of Embodiment: Cognition and Communication’,
Exeter: Imprint Academic, pp. 31-58.

Mduller, V. C., & Hoffmann, M. (2017). What is morphological
computation? On how the body contributes to cognition and
control. Artificial life, 23(1), 1-24.

how the body shapes
the way we think
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