GVG Lab-13 EN

1. (a) Find the unknowns a, b, c in the following fundamental matrix

$$
\mathbf{F}=\left[\begin{array}{lll}
a & 1 & 1 \\
b & 1 & 0 \\
c & 2 & 1
\end{array}\right]
$$

when the epipole in the first image is $[1,1]^{\top}$.
(b) Find the epipolar line in the second image that corresponds to point $[0,1]^{\top}$ in the first image.
2. Consider two cameras with scaled camera projection matrices

$$
\mathbf{Q}_{1}=\xi_{1} \mathrm{P}_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \mathbf{Q}_{2}=\xi_{2} \mathrm{P}_{2}=\left[\begin{array}{rrrr}
0 & 0 & -1 & -1 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 0 & 0
\end{array}\right]
$$

Find point \vec{X}_{δ} in space that projects into image points $\vec{u}_{1 \alpha_{1}}=[2,1]^{T}, \vec{u}_{2 \alpha_{2}}=[2,0]^{T}$.
3. Suppose we are given the essential matrix

$$
\mathrm{E}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Compute 4 pairs ($\mathrm{R}, \vec{t}_{\delta}$) with $\left\|\vec{t}_{\delta}\right\|=1$ such that they define E (up to scale).

