Reasons of Introducing the Language of Projective Geometry

GVG Lab 08

April 2022

Projection from \mathbb{A}^{3} to \mathbb{A}^{2}

The algebraic model of perspective projection from (almost whole) \mathbb{A}^{3} to \mathbb{A}^{2} has the form

$$
\eta\left[\begin{array}{c}
\vec{u}_{\alpha} \\
1
\end{array}\right]=\underbrace{\left[\mathrm{A} \mid-\mathrm{A} \vec{C}_{\delta}\right]}_{\mathrm{P}_{\beta}}\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right], \quad \eta \neq 0
$$

It assumes that X doesn't belong to the principal plane.

What about points from the principal plane?

We can still evaluate the product $\mathrm{P}_{\beta}\left[\begin{array}{c}\vec{X}_{\delta} \\ 1\end{array}\right]$ on the right-hand side for X from the principal plane to see what happens:

$$
\left[\begin{array}{l}
u \\
v \\
0
\end{array}\right]=\mathrm{P}_{\beta}\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right]
$$

We can see that the vector on the left doesn't have a representation as $\eta\left[\begin{array}{c}\vec{u}_{\alpha} \\ 1\end{array}\right]$ for $\eta \neq 0$.

Extending affine plane \mathbb{A}^{2} to projective plane \mathbb{P}^{2}

Geometric construction: Identify points in the image plane with rays passing through those points and the camera center (finite points of the projective plane, or points that are visible in the image), and add new rays passing through the camera center and lying in the principal plane (ideal points or points at infinity of the projective plane, or points that are not visible in the image).

Algebraic construction: For the equivalence relation \sim on the set $\mathbb{R}^{3} \backslash\{\mathbf{0}\}$ defined by

$$
\mathbf{x}_{1} \sim \mathbf{x}_{2} \Longleftrightarrow \exists \lambda \in \mathbb{R} \backslash\{0\}: \mathbf{x}_{1}=\lambda \mathbf{x}_{2}
$$

we define

$$
\mathbb{P}^{2}=\left(\mathbb{R}^{3} \backslash\{\mathbf{0}\}\right) / \sim=\left\{[\mathbf{x}] \mid \mathbf{x} \in \mathbb{R}^{3} \backslash\{\mathbf{0}\}\right\}
$$

where

$$
[\mathbf{x}]=\{\lambda \mathbf{x} \mid \lambda \in \mathbb{R} \backslash\{0\}\}
$$

is a point of the projective plane \mathbb{P}^{2}.

Extending affine plane \mathbb{A}^{2} to projective plane \mathbb{P}^{2}

Advantages:

1) Now any two lines in \mathbb{P}^{2} intersect (even parallel ones) \rightarrow studying points and lines becomes simpler;
2) Working with just 1 point (the camera center) which doesn't project to the camera is easier than with the plane of points which don't project (the principal plane). As a consequence, the back-projected plane of an image line is a plane in \mathbb{A}^{3} with just 1 point removed (the camera center);
3) Despite the fact that points at infinity of \mathbb{P}^{2} are not visible in the image, we can still get useful information from them algebraically, e.g. using vanishing points at infinity for camera calibration.

Projection from \mathbb{A}^{3} to \mathbb{P}^{2}

By extending \mathbb{A}^{2} to \mathbb{P}^{2} we extend the domain of definition of the projection map:

$$
\mathbf{x}=\mathrm{P}_{\beta}\left[\begin{array}{c}
\vec{X}_{\delta} \\
1
\end{array}\right], \quad[\mathbf{x}] \in \mathbb{P}^{2}
$$

Now X can be any point from \mathbb{A}^{3} except for the camera projection center C.

Vanishing point

Extending affine space \mathbb{A}^{3} to projective space \mathbb{P}^{3}

Reason: It happens that vanishing points can be used for camera calibration. We can introduce 3 different definitions for the vanishing point:
(a) the intersection of the projections of 2 parallel lines;
(b) the limit of the projection of a line as the variable which parametrizes it goes to infinity;
(c) the projection of the point at infinity of a line.
(Of course, the last definition only makes sense after introducing the projective space). From some point of view the last definition is the most convenient to work with.

Idea: identify points of \mathbb{A}^{3} with 1 D subspaces of \mathbb{A}^{4} generated by $\left[\begin{array}{c}\vec{X}_{\delta} \\ 1\end{array}\right]$ (finite points of the projective space) and add 1D subspaces generated by $\left[\begin{array}{l}\mathbf{d} \\ 0\end{array}\right]$ (points at infinity of the projective space).

Projection from \mathbb{P}^{3} to \mathbb{P}^{2}

By extending \mathbb{A}^{3} to \mathbb{P}^{3} we extend the domain of the projection map:

$$
\mathbf{x}=\mathrm{P}_{\beta} \mathbf{X}, \quad[\mathbf{x}] \in \mathbb{P}^{2},[\mathbf{X}] \in \mathbb{P}^{3}
$$

The world point X can now be any point from \mathbb{P}^{3} (i.e. including points at infinity) except for the camera projection center C.

Finite points of $\mathbb{P}^{3} \rightarrow$ finite points of \mathbb{P}^{2}

Finite points of $\mathbb{P}^{3} \rightarrow$ points at infinity of \mathbb{P}^{2}

Points at infinity of $\mathbb{P}^{3} \rightarrow$ finite points of \mathbb{P}^{2}

Points at infinity of $\mathbb{P}^{3} \rightarrow$ points at infinity of \mathbb{P}^{2}

Intersection of 2 lines in \mathbb{P}^{2}

Task

Let us have two lines in the image l_{1} and l_{2} given by:

$$
l_{1}: v=1, \quad l_{2}: u=1
$$

Find their intersection (using techniques of projective geometry).

Intersection of 2 lines in \mathbb{P}^{2}

Line passing through 2 points in \mathbb{P}^{2}

Task

Let us have two image points x_{1} and x_{2} defined by

$$
\vec{u}_{1 \alpha}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \vec{u}_{2 \alpha}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Find the line in the image passing through them (using techniques of projective geometry).

Line passing through 2 points in \mathbb{P}^{2}

Lines in \mathbb{P}^{3}

Task

Let us have two lines L_{1} and L_{2} in \mathbb{A}^{3} given by:

$$
L_{1}: \vec{X}_{1 \delta}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \vec{X}_{2 \delta}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] ; \quad L_{2}: \vec{X}_{3 \delta}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \vec{X}_{4 \delta}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Find the intersection of L_{1} and L_{2} (if exists) in the projective space \mathbb{P}^{3}.

Lines in \mathbb{P}^{3}

Vanishing points and horizon

Task

Let the camera be given by the following camera projection matrix

$$
P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Let the rectangle in space be defined by the following 4 points:

$$
\vec{X}_{1 \delta}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \vec{X}_{2 \delta}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right], \vec{X}_{3 \delta}=\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right], \vec{X}_{4 \delta}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

Find the horizon of the plane defined by the rectangle.

Vanishing points and horizon

