3D Reconstruction Pipelines

GVG 2022 - Lecture 13

Torsten Sattler



GVG - Brief Summary

 Previously in the GVG lecture:
e Absolute camera pose estimation
e Homograph estimation
e Fundamental matrix estimation
e Reconstruction from two views
e Essential matrix estimation

 This lecture: Putting things together for full 3D reconstruction

Torsten Sattler



Structure-from-Motion (StM)

Input: Images

Output: (sparse) 3D point cloud, camera pbseé'
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model computed using Colmap



https://colmap.github.io/index.html
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Sequential / Incremental STM
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Sequential / Incremental STM

Feature Detection

e

| ' Detect interest points and extract
. descriptors for them, e.qg., SIFT
features (see lecture 06)
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Sequential / Incremental STM

Feature Detection
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Feature Matching &
H/E/F Matrix Fitting
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e Nearest neighbor search in descriptor space to establish feature matches
e Robust model fitting via RANSAC
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Model Fitting With RANdom SAmple Consensus (RANSAC)
- p

While probability of missing correct model >n

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]

Torsten Sattler



Model Fitting With RANdom SAmple Consensus (RANSAC)
- p

While probability of missing correct model >n
Estimate model from n random data points

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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Model Fitting With RANdom SAmple Consensus (RANSAC)
- p

While probability of missing correct model >n

Estimate model from n random data points
Estimate support inliers of model

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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Model Fitting With RANdom SAmple Consensus (RANSAC)
- p

While probability of missing correct model >n
Estimate model from n random data points
Estimate support inliers of model
If new best model

update best model, n

~

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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Model Fitting With RANdom SAmple Consensus (RANSAC)
- p

While probability of missing correct model >n

Estimate model from n random data points
Estimate support inliers of model
If new best model
update best model, n
Return: Model with most inliers

~

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC

2D line fitting example

O

© O

O O
O

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC

2D line fitting example

O Repeat:

O O Draw Minimal Sample
Estimate Model

O O Count Inliers

O O
O

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC

2D line fitting example

O Repeat:

O O Draw Minimal Sample
Estimate Model

O O Count Inliers

O O
O

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC

2D line fitting example
Repeat:

Draw Minimal Sample
Estimate Model

Count Inliers

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC

2D line fitting example

* Repeat:

Draw Minimal Sample
Estimate Model

\ 2
\ 2
) 2

O

O Count Inliers

best number of inliers: 3

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC

2D line fitting example

Repeat:

O Draw Minimal Sample
Estimate Model

O
O

O O Count Inliers

O O

O best number of inliers: 3

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC

2D line fitting example
Repeat:

Draw Minimal Sample
Estimate Model

O

Count Inliers

best number of inliers: 3

O

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC

2D line fitting example

Repeat:

. Draw Minimal Sample
Estimate Model

Count Inliers

best number of inliers: 4

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC

2D line fitting example

Repeat:

O Draw Minimal Sample
Estimate Model

O
O

O O Count Inliers

O O

O best number of inliers: 4

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]

Torsten Sattler



RANSAC

2D line fitting example

Repeat:

O Draw Minimal Sample
Estimate Model

O
O

O O Count Inliers

best number of inliers: 4

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC

2D line fitting example
O Repeat:

Q Q Draw Minimal Sample
Estimate Model
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RANSAC

2D line fitting example

Repeat:

O Draw Minimal Sample
Estimate Model

O
O

O O Count Inliers

O O

O best number of inliers: 4

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC

2D line fitting example

Repeat:

Draw Minimal Sample
Estimate Model

O

Torsten Sattler



RANSAC

2D line fitting example
Repeat:

Draw Minimal Sample
Estimate Model

Count Inliers

best number of inliers: 5

X 4
[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICE Torsten Sattler

CTU IN PRAGUE

Je8

W



RANSAC - Termination Criterion

e Let's assume we know the inlier ratio ¢ (fraction of inliers)

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

e Let's assume we know the inlier ratio ¢ (fraction of inliers)
e Probability of picking an inlier randomly: &

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

e Let's assume we know the inlier ratio ¢ (fraction of inliers)
 Probability of picking an inlier randomly: &
e Probability of picking n inlier randomly: en

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

e Let's assume we know the inlier ratio ¢ (fraction of inliers)
 Probability of picking an inlier randomly: &

e Probability of picking n inlier randomly: en

e Probability of non-all inlier sample (= 1 outlier): (1-er)

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

e Let's assume we know the inlier ratio ¢ (fraction of inliers)

e Probability of picking an inlier randomly: &

e Probability of picking n inlier randomly: en

e Probability of non-all inlier sample (= 1 outlier): (1-er)

e Probability of not picking all-inlier sample in k iterations: (1-gn)k

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

e TJerminate If (1-en)k<n

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

e TJerminate If (1-en)k<n
e |n practice: Compute maximum number iterations Kmax

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

e TJerminate If (1-en)k<n
e |n practice: Compute maximum number iterations Kmax
e Find Kmax such that (1-en)kmax =n

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

e TJerminate If (1-en)k<n
e |n practice: Compute maximum number iterations Kmax
e Find Kmax such that (1-en)kmax =n

& Kmax In(1-en) = 1In(n)

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

e TJerminate If (1-en)k<n

e |n practice: Compute maximum number iterations Kmax
e Find Kmax such that (1-en)kmax =n
& Kmax In(1-en) = 1In(n)
& Kmax =1In(n) / In(1-en)

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

e TJerminate If (1-en)k<n
e |n practice: Compute maximum number iterations Kmax
e Find Kmax such that (1-en)kmax =n
& Kmax In(1-en) = 1In(n)
& Kmax =1In(n) / In(1-en)
e Note: kmax(e) > kmax(€’) if e <€’

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

e TJerminate If (1-en)k<n
e |n practice: Compute maximum number iterations Kmax
e Find Kmax such that (1-en)kmax =n
& Kmax In(1-en) = 1In(n)
& Kmax =1In(n) / In(1-en)
e Note: kmax(e) > kmax(€’) if e <€’

e How do we know inlier ratio g7

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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RANSAC - Termination Criterion

e TJerminate If (1-en)k<n
e |n practice: Compute maximum number iterations Kmax
e Find Kmax such that (1-en)kmax =n
& Kmax In(1-en) = 1In(n)
& Kmax =1In(n) / In(1-en)
e Note: kmax(e) > kmax(€’) if e <€’
e How do we know inlier ratio &7

e |n practice more than kmax(€) steps necessary as not every all-inlier
sample leads to best model (due to, e.g., noise, degeneracies, etc.)

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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Model Fitting With RANdom SAmple Consensus (RANSAC)

4 )
While probability of missing correct model >n

~—_

e See also USAC [Raguram et al., PAMI’13] [code] (good overview, nice implementation)

e Never use standard RANSAC!

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6365642
http://www.cs.unc.edu/~rraguram/usac/

Model Fitting With RANdom SAmple Consensus (RANSAC)

4 )
While probability of missing correct model >n

Estimate model from n random data points

~

e See also USAC [Raguram et al., PAMI’13] [code] (good overview, nice implementation)

e Never use standard RANSAC!

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]

Torsten Sattler


http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6365642
http://www.cs.unc.edu/~rraguram/usac/

Model Fitting With RANdom SAmple Consensus (RANSAC)

4 )
While probability of missing correct model >n

Estimate model from n random data points
Estimate support (#inliers / robust cost func.) of model

~

e See also USAC [Raguram et al., PAMI’13] [code] (good overview, nice implementation)

e Never use standard RANSAC!

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6365642
http://www.cs.unc.edu/~rraguram/usac/

Model Fitting With RANdom SAmple Consensus (RANSAC)

4 )
While probability of missing correct model >n

Estimate model from n random data points

‘Chum, Matas,

Estimate support (#inliers / robust cost func.) of model  Optimal Randomizec
RANSAC. PAMI 2008]

~

e See also USAC [Raguram et al., PAMI’13] [code] (good overview, nice implementation)

e Never use standard RANSAC!

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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Model Fitting With RANdom SAmple Consensus (RANSAC)

4 )
While probability of missing correct model >n

Estimate model from n random data points

‘Chum, Matas,

Estimate support (#inliers / robust cost func.) of model  Optimal Randomizec

RANSAC. PAMI 2008]

If new best model

Perform Local Optimization (LO) Ontinizad RANSAC. BMVG 50151 loodel

~

e See also USAC [Raguram et al., PAMI’13] [code] (good overview, nice implementation

e Never use standard RANSAC!

)

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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Model Fitting With RANdom SAmple Consensus (RANSAC)

4 )
While probability of missing correct model >n

Estimate model from n random data points

‘Chum, Matas,

Estimate support (#inliers / robust cost func.) of model  Optimal Randomizec

RANSAC. PAMI 2008]

If new best model

Perform Local Optimization (LO) Ontinizad RANSAC. BMVG 50151 loodel

update best model, n

~

e See also USAC [Raguram et al., PAMI’13] [code] (good overview, nice implementation

e Never use standard RANSAC!

)

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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Model Fitting With RANdom SAmple Consensus (RANSAC)

4 )
While probability of missing correct model >n

Estimate model from n random data points

‘Chum, Matas,

Estimate support (#inliers / robust cost func.) of model  Optimal Randomizec

RANSAC. PAMI 2008]

If new best model

Perform Local Optimization (LO) Ontinizad RANSAC. BMVG 50151 loodel

update best model, n
Return: Model with most inliers / lowest cost

~

e See also USAC [Raguram et al., PAMI’13] [code] (good overview, nice implementation

e Never use standard RANSAC!

)

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]
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Sequential / Incremental STM

Feature Detection
Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

\_/

R, t with |[t|| = 1

e Extract relative rotation and translation from H/E/F matrix
e Use 2D-2D matches to triangulate 3D structure

Torsten Sattler 25
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Sequential / Incremental STM

Feature Detection
Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Y a N\
\_/

R, t with |[t|| = 1

e Extract relative rotation and translation from H/E/F matrix
e Use 2D-2D matches to triangulate 3D structure
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Sequential / Incremental STM

Feature Detection
Feature Matching &
H/E/F Matrix Fitting

®
Two-View Initialization

\_/

R, t with |[t|| = 1

e Extract relative rotation and translation from H/E/F matrix
e Use 2D-2D matches to triangulate 3D structure
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Sequential / Incremental STM

Feature Detection
Feature Matching &
H/E/F Matrix Fitting

®
e Two-View Initialization

\_/

R, t with |[t|| = 1

e Extract relative rotation and translation from H/E/F matrix
e Use 2D-2D matches to triangulate 3D structure
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Feature Detection
Feature Matching &
H/E/F Matrix Fitting

®
Two-View Initialization

\_/

R, t with |[t|| = 1

e Extract relative rotation and translation from H/E/F matrix
e Use 2D-2D matches to triangulate 3D structure
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Sequential / Incremental STM

Feature Detection
Feature Matching &
e H/E/F Matrix Fitting
® ®
Two-View Initialization

R, t with |[t|| = 1

e Extract relative rotation and translation from H/E/F matrix
e Use 2D-2D matches to triangulate 3D structure
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Sequential / Incremental STM

Feature Detection
Feature Matching &
H/E/F Matrix Fitting

e How to select a good initial pair?

Two-View Initialization

Torsten Sattler 28



Sequential / Incremental STM

Feature Detection
e How to select a good initial pair?
e Criteria: Feature Matching &
rteria. H/E/F Matrix Fitting

Two-View Initialization

Torsten Sattler 28



Sequential / Incremental STM

Feature Detection
e How to select a good initial pair?
e Criteria: Feature Matching &
rteria. H/E/F Matrix Fitting

e Accurate relative pose = many inlier matches

Two-View Initialization
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Sequential / Incremental STM

Feature Detection
e How to select a good initial pair?
e Criteria: Feature Matching &
rteria. H/E/F Matrix Fitting

e Accurate relative pose = many inlier matches

* Non-planar scene (planar scenes are degeneracy for F-matrix .o view Initialization
fitting)
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Sequential / Incremental STM

Feature Detection
e How to select a good initial pair?
e Criteria: Feature Matching &
rteria. H/E/F Matrix Fitting

e Accurate relative pose = many inlier matches

* Non-planar scene (planar scenes are degeneracy for F-matrix .o view Initialization
fitting)

e Compute both H and E/F matrix

TTTTTTTTTTTTTT
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Sequential / Incremental STM

Feature Detection
e How to select a good initial pair?
e Criteria: Feature Matching &
rteria. H/E/F Matrix Fitting

e Accurate relative pose = many inlier matches

* Non-planar scene (planar scenes are degeneracy for F-matrix .o view Initialization
fitting)

e Compute both H and E/F matrix
e Select pair with large ratio #inliers(E/F) / #inliers(H)

TTTTTTTTTTTTTT
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Sequential / Incremental STM

Feature Detection
e How to select a good initial pair?
e Criteria: Feature Matching &
rteria. H/E/F Matrix Fitting

e Accurate relative pose = many inlier matches

* Non-planar scene (planar scenes are degeneracy for F-matrix .o view Initialization
fitting)

e Compute both H and E/F matrix
e Select pair with large ratio #inliers(E/F) / #inliers(H)

 No pure forward motion (triangulation inaccurate / impossible)
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Sequential / Incremental STM

Feature Detection
e How to select a good initial pair?
e Criteria: Feature Matching &
rteria. H/E/F Matrix Fitting

e Accurate relative pose = many inlier matches

* Non-planar scene (planar scenes are degeneracy for F-matrix .o view Initialization
fitting)

e Compute both H and E/F matrix
e Select pair with large ratio #inliers(E/F) / #inliers(H)

 No pure forward motion (triangulation inaccurate / impossible)

e |n practice, try out multiple initial pairs

Torsten Sattler 28



Sequential / Incremental STM

Feature Detection
® ® Feature Matching &
® i Eg H/E/F Matrix Fitting

® ®
% Two-View Initialization

Pick image(s) with large number of matches to existing cameras

Obtain 2D-3D matches from 2D-2D matches
Estimate absolute pose of new image
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Sequential / Incremental STM

Pick image(s) with large number of matches to existing cameras
Obtain 2D-3D matches from 2D-2D matches
Estimate absolute pose of new image

Torsten Sattler
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Sequential / Incremental STM

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Pick image(s) with large number of matches to existing cameras
Obtain 2D-3D matches from 2D-2D matches
Estimate absolute pose of new image
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Sequential / Incremental STM

Pick image(s) with large number of matches to existing cameras
Obtain 2D-3D matches from 2D-2D matches
Estimate absolute pose of new image

Torsten Sattler
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Sequential / Incremental STM

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

e
® Two-View Initialization
o - °
c
Extend Motion

Extend Structure

e Associate existing 3D points with new features
e Triangulate new 3D points for features without associated 3D points

-
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Sequential / Incremental STM

Feature Detection

® Feature Matching &
0\ ‘ H/E/F Matrix Fitting
—

~—

° \ Two-View Initialization
® ®
c
/ Extend Motion

Extend Structure

e Associate existing 3D points with new features
e Triangulate new 3D points for features without associated 3D points

-
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Sequential / Incremental STM

Feature Detection

® Feature Matching &
‘\ H/E/F Matrix Fitting

’ Two-View Initialization
\

® ®
/< \% Extend Motion

Extend Structure

e Associate existing 3D points with new features
e Triangulate new 3D points for features without associated 3D points

-
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Sequential / Incremental STM

Feature Detection

® Feature Matching &
‘\ H/E/F Matrix Fitting

’ Two-View Initialization
\

® ®
/< \% Extend Motion

Extend Structure

e Associate existing 3D points with new features
e Triangulate new 3D points for features without associated 3D points
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Sequential / Incremental STM

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

True trajectory
Extend Structure
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Sequential / Incremental STM

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

True trajectory
Extend Structure
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Sequential / Incremental STM

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

True trajectory
Extend Structure
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Sequential / Incremental STM

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

True trajectory
Extend Structure

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICE Torsten Sattler 3

CTU IN PRAGUE

Ol



RS
foRe

Sequential / Incremental STM

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

¢ Two-View Initialization

Extend Motion

True trajectory
Extend Structure

|0
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Sequential / Incremental STM

Feature Detection

Feature Matching &
i H/E/F Matrix Fitting

¢ Two-View Initialization

Extend Motion

True trajectory
Extend Structure

|0
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Sequential / Incremental STM

True trajectory
Estimated trajectory

-

\

Torsten Sattler

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Extend Structure
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Sequential / Incremental STM

— 9

True trajectory
Estimated trajectory

\

|

Torsten Sattler

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Extend Structure
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Sequential / Incremental STM

”"\

True trajectory
Estimated trajectory

\

|

Torsten Sattler

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Extend Structure
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Sequential / Incremental STM
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|

True trajectory
Estimated trajectory

\

|

Torsten Sattler

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Extend Structure
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Sequential / Incremental STM

("‘\

)

True trajectory
Estimated trajectory

\

|

Torsten Sattler

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Extend Structure

4

N



Sequential / Incremental STM

P, NS
\
|

Drift
True trajectory
Estimated trajectory

e Errors accumulate, leading to drift over time
e Adjust motion and structure frequently

Torsten Sattler

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Extend Structure
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Sequential / Incremental STM

P, SN
\
|

‘ Drift

True trajectory
Estimated trajectory

e Errors accumulate, leading to drift over time
e Adjust motion and structure frequently

Torsten Sattler

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Extend Structure

Bundle Adjustment
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Bundle Agjustment

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

[Rj |tj] Extend Motion

25
SO

Extend Structure

Bundle Adjustment
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Bundle Agjustment

Feature Detection

ST Feature Matching &
\\ reprojection error H/E/F Matrix Fitting

Two-View Initialization

[Rj |tj] Extend Motion

25
SO

Extend Structure

Bundle Adjustment
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Bundle Agjustment

Feature Detection

ST Feature Matching &
\\ reprojection error H/E/F Matrix Fitting

Two-View Initialization

[Rj |tj] Extend Motion
argmin D D> Ailxig — pi (X 4 t5)|
T

camera poses, 3D points

25
SO

Extend Structure

Bundle Adjustment
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Bundle Agjustment

Feature Detection

ST Feature Matching &
\\ reprojection error H/E/F Matrix Fitting

Two-View Initialization

[Rj |tj] Extend Motion

argmin )3 A{jHXig‘ — 0 (B; X + t5)[
i

25
SO

camera poses, 3D points

Extend Structure
point i visible in image |?

Bundle Adjustment
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Bundle Agjustment

Feature Detection

ST Feature Matching &
\\ reprojection error H/E/F Matrix Fitting

Two-View Initialization

[Rj |tj] Extend Motion

argmin )3 A{jHXig‘ — 0 (B; X + t5)[
i

25
SO

camera poses, 3D points

'\ ey e . Extend Structure
point i visible in image |?

Can also refine camera intrinsics

Bundle Adjustment
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Bundle Agjustment

Feature Detection

ST Feature Matching &
\\ reprojection error H/E/F Matrix Fitting

Two-View Initialization

[Rj |tj] Extend Motion

argmin )3 A{jHXig‘ — 0 (B; X + t5)[
i

Extend Structure

camera poses, 3D points

\ boint i visible in image j?
Can also refine camera intrinsics

Cost function is highly non-linear — refine from initialization Bundle Adjustment
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Bundle Agjustment

Gradient descent
Feature Detection

P’ X
min f(X) = min g AN N =x; — i;‘?é , Feature Matching &
. X 5 2 H/E/F Matrix Fitting
3

Two-View Initialization

Extend Motion

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Gradient descent
Feature Detection

P'X Ay
1
min f(X) = minz AN N =x; — i;’é , A\ = : Feature Matching &
. X 5 Bix A H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Gradient descent
Feature Detection

P’ X Ay
1
min f(X) = min Z AN N =x; — i;’é A= Feature Matching &
£ x5 B X An H/E/F Matrix Fitting
Initialization: X = X, Two-View Initialization

Extend Motion

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Gradient descent
Feature Detection

P’ X Ay
1
min f(X) = min Z AN N =x; — i;’é A= Feature Matching &
£ x5 B X An H/E/F Matrix Fitting
Initialization: X = X, Two-View Initialization

Compute gradient: Vf(Xk) — JIA

Extend Motion

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Gradient descent
Feature Detection
P’iX Ay
min f(X) = minz AN N =x; — g’é , A\ = : Feature Matching &
X X Z. PzX An H/E/F Matrix Fitting
Initialization: X, = Xj Two-View Initialization
Compute gradient: Vf(Xk) — JTA
Extend Motion
Of(X) .
J = Q(X ) . Jacobian Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Gradient descent |
Feature Detection
P’iX Ay
min f(X) = minz AN N =x; — g’é , A\ = : Feature Matching &
X X Z. PzX An H/E/F Matrix Fitting
Initialization: X, = Xj Two-View Initialization
Compute gradient: Vf(Xk) — JTA
Extend Motion
Update: X ;41 = X — nV f(Xk)
Of(X) .
J = Q(X ) . Jacobian Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Gradient descent |
Feature Detection
P’iX Aq
min f(X) = minz AN N =x; — g’é , A\ = : Feature Matching &
X X = PzX An H/E/F Matrix Fitting
Initialization: X, = Xj Two-View Initialization
Compute gradient: Vf(Xk) — JTA
Extend Motion
Update: X ;41 = X — nV f(Xk)
0f(X . .
J = Q(X ) : Jacobian 77 . Step size Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Gradient descent |
Feature Detection
P; X Ay
min f(X) = min Z AN N =x; — §§§ A= Feature Matching &
£ x5 B X A H/E/F Matrix Fitting
Initialization: X, = X Two-View Initialization
— T
terate until |jCompute gradient: V f(X) = J* A
convergence _
. Extend Motion
number of 1 k=l f( k)
iterations OFf(X | |
J = [(X) " sacobiar T] : Step size Extend Structure

0X

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Gradient descent |
Feature Detection
P; X Ay
min f(X) = min Z AN N =x; — §§§ A= Feature Matching &
£ x5 B X A H/E/F Matrix Fitting
Initialization: X, = X Two-View Initialization
— T
terate until |iCompute gradient: V f(X) = J* A
convergence _
. Extend Motion
number of 1 k=l f( k)
iterations OFf(X | |
J = [(X) " sacobiar T] : Step size Extend Structure

0X

Slow convergence near minimum point!

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Newton’s method |
Feature Detection

2nd order approximation (quadratic Taylor expansion):
Feature Matching &

f(X+8)x_x, = f(X)+ Vf(X)"6- ;5TH5 H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Newton’s method |
Feature Detection

2nd order approximation (quadratic Taylor expansion):
Feature Matching &

f(X+8)x_x, = f(X)+ Vf(X)"6- ;5TH5 H/E/F Matrix Fitting

0% f(X + 0) Two-View Initialization
25 |xx.

Hessian matrix: H —

Extend Motion

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Newton’s method |
Feature Detection

2nd order approximation (quadratic Taylor expansion):
Feature Matching &

f(X+8)x_x, = f(X)+ Vf(X)"6- ;5TH5 H/E/F Matrix Fitting

0% f(X + 0) Two-View Initialization
25 |xx.

Hessian matrix: H —

Extend Motion

Find ¢ that minimizes f(X +d)|x_x !

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee

Torsten Sattler 47



Bundle Agjustment

Newton’s method |
Feature Detection

Differentiate and set to O gives:
9 Feature Matching &

0 =—-H'Vf (X%) H/E/F Matrix Fitting
Update: Xpi1 =Xg+0 Two-View Initialization

Extend Motion

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee

CZECH INSTITUTE
35 OF INFORMATICS

(5.4 creeanerics Torsten Sattler 48




Bundle Agjustment

Newton’s method

Differentiate and set to O gives:

0 = —H 'V f(X)

Update: Xk+1 = X + 0

Computation of H is not trivial (2nd order derivatives)
and optimization might get stuck at saddle point!

slide credit;: Gim Hee Lee

Torsten Sattler

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Extend Structure

Bundle Adjustment
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Bundle Agjustment

Gauss-Newton
Feature Detection

Approximate Hessian matrix by dropping 2nd order terms:

H ~~ JT J Feature Matching &
i H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Gauss-Newton
Feature Detection

Approximate Hessian matrix by dropping 2nd order terms:

H ~~ JT J Feature Matching &
i H/E/F Matrix Fitting

Solve normal equation:

3136 = —JtA

Two-View Initialization

Extend Motion

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Gauss-Newton |
Feature Detection

Approximate Hessian matrix by dropping 2nd order terms:

H ~~ JT J Feature Matching &
- H/E/F Matrix Fitting

Solve normal equation:

3136 = —JtA

Two-View Initialization

Extend Motion

Might get stuck and slow convergence at saddle point!
Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Levenberg-Marquardt
Feature Detection

Regularized Gauss-Newton with damping factor

Feature Matching &
T ¢
(J7I+AI)6=—-JA H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Levenberg-Marquardt |
Feature Detection

Regularized Gauss-Newton with damping factor

Feature Matching &
T ¢
(J7I+AI)6=—-JA H/E/F Matrix Fitting

A — 0: Gauss-Newton (when convergence is rapid) Two-View Initialization
A — oo Gradient descent (when convergence is slow)

Extend Motion

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Levenberg-Marquardt |
Feature Detection

Regularized Gauss-Newton with damping factor

Feature Matching &
T ¢
(J7I+AI)6=—-JA H/E/F Matrix Fitting

A — 0: Gauss-Newton (when convergence is rapid) Two-View Initialization
A — oo Gradient descent (when convergence is slow)

Adapt A during optimization: Extend Motion

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Levenberg-Marquardt |
Feature Detection

Regularized Gauss-Newton with damping factor

Feature Matching &
T ¢
(J7I+AI)6=—-JA H/E/F Matrix Fitting

A — 0: Gauss-Newton (when convergence is rapid) Two-View Initialization
A — oo Gradient descent (when convergence is slow)

Adapt A during optimization: Extend Motion
« Decrease A when function value decreases

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Levenberg-Marquardt |
Feature Detection

Regularized Gauss-Newton with damping factor

Feature Matching &
T ¢
(J7I+AI)6=—-JA H/E/F Matrix Fitting

A — 0: Gauss-Newton (when convergence is rapid) Two-View Initialization
A — oo Gradient descent (when convergence is slow)

Adapt ?& during Optimization: Extend Motion
« Decrease A when function value decreases
 Increase A otherwise

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Adjustment

Feature Detection

Feature Matching &
H/E/F Matrix Fitting

Two-View Initialization

Extend Motion

Extend Structure

Reconstruction of the old inner city of Aachen, Germany, using the Bundler SfM software

Bundle Adjustment

slide credit;: Gim Hee Lee
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Bundle Agjustment

Feature Detection
e Not covered here:

e Sparse structure of the bundle adjustment problem Feature Matching &
H/E/F Matrix Fitting

e Efficient strategies (e.g., Schur Complement Trick)

¢ Two-View Initialization

e Recommended reading:
* Triggs et al., Bundle Adjustment - A Modern Synthesis, 1999 Extend Motion

Extend Structure

Bundle Adjustment

slide credit;: Gim Hee Lee
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Multi-View Stereo (MVS)

Input: calibrated images, camera poses, SfM model

model computed using
Colmap and Poisson
Surface Reconstruction

Output: dense 3D point cloud or (textured) 3D mesh

Torsten Sattler
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https://colmap.github.io/index.html
https://github.com/mkazhdan/PoissonRecon
https://github.com/mkazhdan/PoissonRecon

-View Stereo In a Nutshell

e Use known epipolar relation to find dense matches between images
e (Create dense point cloud
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Multi-View Stereo In a Nutshell

e Use known epipolar relation to find dense matches between images
e (Create dense point cloud
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Multi-View Stereo In a Nutshell

e Use known epipolar relation to find dense matches between images
e (Create dense point cloud
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3D Reconstructiqn Packages

Bundler (https://github.com/snavely/bundler_sfm)
Linux (Windows also supported), open source
StM pipeline, MVS pipelines can read file format
Showed nice results on internet photo collections
Not state-of-the-art anymore

Torsten Sattler
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https://github.com/snavely/bundler_sfm

3D Reconstructlon Packages

7" VisualSFM - 1 DIEH Xl Tslom e

3 rimlz ﬂﬂa --E‘E;!'@. LAl X»w n¥ i

pie n Y -
* LibJPEG-6b from 1G for loading and saving 2PEGs;
* EXIF from JHEAD for processng P‘G

- GTRHLGL V2.5 s o Gl arfce s L, \ https://www.youtube.com/
* VisualSFM is free for personal, non-profit or research use. Check README for details WatCh?V:5C6iOd8YX3g

e VisualSFM (http://cowu.me/vsfm/)
e Linux, Mac OS X, Windows, closed source

e SfM pipeline, interface to external MVS software
 Graphical User Interface
Very efficient due to use of GPU

Torsten Sattler


http://ccwu.me/vsfm/

3D Reconstruction Packages

a@penM\/G

OpenMVG (https://github.com/openMVG/openMVG)

Linux, Mac OS X, Windows, open source

StM pipeline, MVS pipelines can read file format

Very modular, functionality not in other packages (full multi-camera support)
Not very efficient, no GUI

Torsten Sattler
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https://github.com/openMVG/openMVG

3D Reconstruction Packages

. . . -
oo - Sy S
<

e o _ T - . . ) . )
oL . - : o Ty i , - . *

e COLMAP (https://colmap.qgithub.io/index.html)
e Linux, Mac OS X, Windows, open source

e SfM and MVS (NVidia GPU required for MVS)
e Efficient pipeline, GUI

e High code quality, very great tool for research!

CZECH INSTITUTE
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https://colmap.github.io/index.html

3D Reconstruction Packages

‘.
Y
-

e .

e COLMAP (https://colmap.qgithub.io/index.html)
e Linux, Mac OS X, Windows, open source

e SfM and MVS (NVidia GPU required for MVS)
e Efficient pipeline, GUI

e High code quality, very great tool for research!

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND

CYBERNETICS Torsten Sattler
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https://colmap.github.io/index.html

3D Reconstruction Packages

AliceVision Meshroom (https://alicevision.org/)

Linux, Windows, open source

SfM and MVS (NVidia GPU required for both)
Includes work by Tomas Pajdla and his PhD students
Have not tried it yet, on my Todo list

Torsten Sattler

60


https://alicevision.org/

3D Reconstruction Packages

RealityCapture (https://www.capturingreality.com/)
Commercial software, Windows only

Start-up (CapturingReality) out of Slovakia, former PhD students at CVUT,
recently acquired by Epic Games

Both SfM and MVS (MVS requires NVidia GPU)
Highly efficient, SfM takes a few minutes even for large scenes
Very high quality (probably best software out there)

Torsten Sattler
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https://www.capturingreality.com/

3D Reconstruction Packages

RealityCapture (https://
Commercial software,

Start-up (CapturingRea
recently acquired by Epi

Both SfM and MVS (MVSy
Highly efficient, SfM takge®a few minutes even for large scenes
Very high quality (probably best software out there)

Students at CVUT,

Torsten Sattler
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https://www.capturingreality.com/

Results with RealityCapture

align_2l7-mesh 1 kaplrka® - RealityCapture 30
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Results with RealityCapture
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3D Reconstruction Packages

e Many more commercial packages available

e Agisoft Metashape (https://www.aqisoft.com/)
e Pix4D (https://www.pix4d.com/)

TTTTTTTTTTTTTT
OOOOOOOOOOOOO

¥ iy Torsten Sattler
J CTU IN PRAGUE
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https://www.agisoft.com/
https://www.pix4d.com/

Bonus: Neural Radiance Fields (NeRFs)

s h\_,

-
Sbse o g oS>,
s - . 4

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Volume Rendering
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Volume Rendering
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Volume Rendering
Sg:ain‘:,density Oi “ Rav 1

A

C(r) = .

final
color

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Volume Rendering
sg:ain‘:,density Oi x’ Rav 1

C(r) =
final =1 color at
color I-th sample

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Volume Rendering
color ¢;,

volume density oj N, Ray1

Z (1 — exp(—0;6;))c;

flnal 1=1 visibility color at
color I-th sample
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Volume Rendering
color ¢;,

volume density oj N, Ray1

Z (1 — exp(—0;6;))c;

flnal 1=1 visibility color at
color I-th sample
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Volume Rendering
color ¢;,

volume density oj N, Ray1

/ distance to
previous sample
i—1 l
Z T;(1 — exp(—0;9;))c; T; =exp| — Zaj(?]
j=1

flnal 1=1 visibility color at
color I-th sample
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Volume Rendering
color ¢;,

volume density o1 TN Ray s

distance to
previous sample

1—1 l
Z Ti(1 — exp(—0idi))c; Ti=exp| - 0,6,
=1

flnal 1=1 visibility color at

color i-th sample small if high density
before this sample
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Volume Rendering
color ¢;,

volume density o; wf{a}f 1 Fully differentiable!

distance to
previous sample

1—1 l
z Ti(1 — exp(—0idi))c; Ti=exp| - 0,6,
=1

flnal 1=1 visibility color at

color i-th sample small if high density
before this sample
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Neural Radiance Fields (NeRFs)

D”Dﬂ’ Ray 1
/f F Ray2 o / B
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[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Neural Radiance Fields (NeRFs)

2208~ [|-> &GBo)
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Neural Radiance Fields (NeRFs)

input: 3D point and (x,y,z,aqf)—»”["]—»(RGBo‘)
ray direction
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[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Neural Radiance Fields (NeRFs)

input: 3D point and
ray direction

>“3%
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Y
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output: color and density

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Neural Radiance Fields (NeRFs)

input: 3D point and
ray direction

>“:‘«>‘
el
Y

(x,y,z,9,¢)—>|]["]—>(RGBa)

output: color and density

Continuous scene representation (vs. discrete voxel volumes)

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Volume Sampling

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Volume Sampling

near far
plane plane

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Volume Sampling

near far
plane plane

subdivide into equally sized intervals

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Volume Sampling

uniform sampling inside intervals — continuous sampling of the volume

subdivide into equally sized intervals

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Hierarchical Volume Sampling

Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals

plane plane

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Hierarchical Volume Sampling

Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals

—+ ——+ —+ ——4—

near
plane plane

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICE Torsten Sattler

CTU IN PRAGUE

e



Hierarchical Volume Sampling

Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals

—+ ——+ —+ ——4—

near
plane plane

"Fine” sampling (“fine” network): Sample according to observed densities

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Hierarchical Volume Sampling

Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals

L e e e
plane plane

"Fine” sampling (“fine” network): Sample according to observed densities

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Hierarchical Volume Sampling

Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals

L e e e
plane plane

"Fine” sampling (“fine” network): Sample according to observed densities

All samples are used during volume rendering

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Training

£=Y"|Cr) - C(“)Hz +|Cr(r) - C(“>Hz

[Muller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022]
[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Training .
ground tru
color

£=Y"|Cr) - C(“)Hz +|Cr(r) - C(“>Hz

[Muller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022]
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Training .
ground tru
color

2 l 2
£=Y"/Culr) - C’(r)”2 +E(x) - C’(r)”2

color predicted by
“fine” network

[Muller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022]
[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Training .
ground tru
color

2 2
rc’k
color predicted by color predicted by
coarse network “fine” network

[Muller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022]
[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]
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Training .
ground tru
color

2>

2 l 2
Celr) = Cr)|| +||Cs(x) — )|

rc’kR
color predicted by color predicted by
coarse network “fine” network

Trained individually per scene, can now be done in a matter of minutes
[Muller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022]
[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

Torsten Sattler

71



Neural Radiance Fields (NeRFs)

Synthetic Scenes

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

CZECH INSTITUTE
OF INFORMATICS

CyBERNETICE Torsten Sattler

CTU IN PRAGUE

Je8

W



