3D Reconstruction Pipelines

GVG 2022 - Lecture 13

GVG - Brief Summary

- Previously in the GVG lecture:
 - Absolute camera pose estimation
 - Homograph estimation
 - Fundamental matrix estimation
 - Reconstruction from two views
 - Essential matrix estimation
- This lecture: Putting things together for full 3D reconstruction

Torsten Sattler

Structure-from-Motion (SfM)

Input: images

Output: (sparse) 3D point cloud, camera poses

model computed using Colmap

Sequential / Incremental SfM

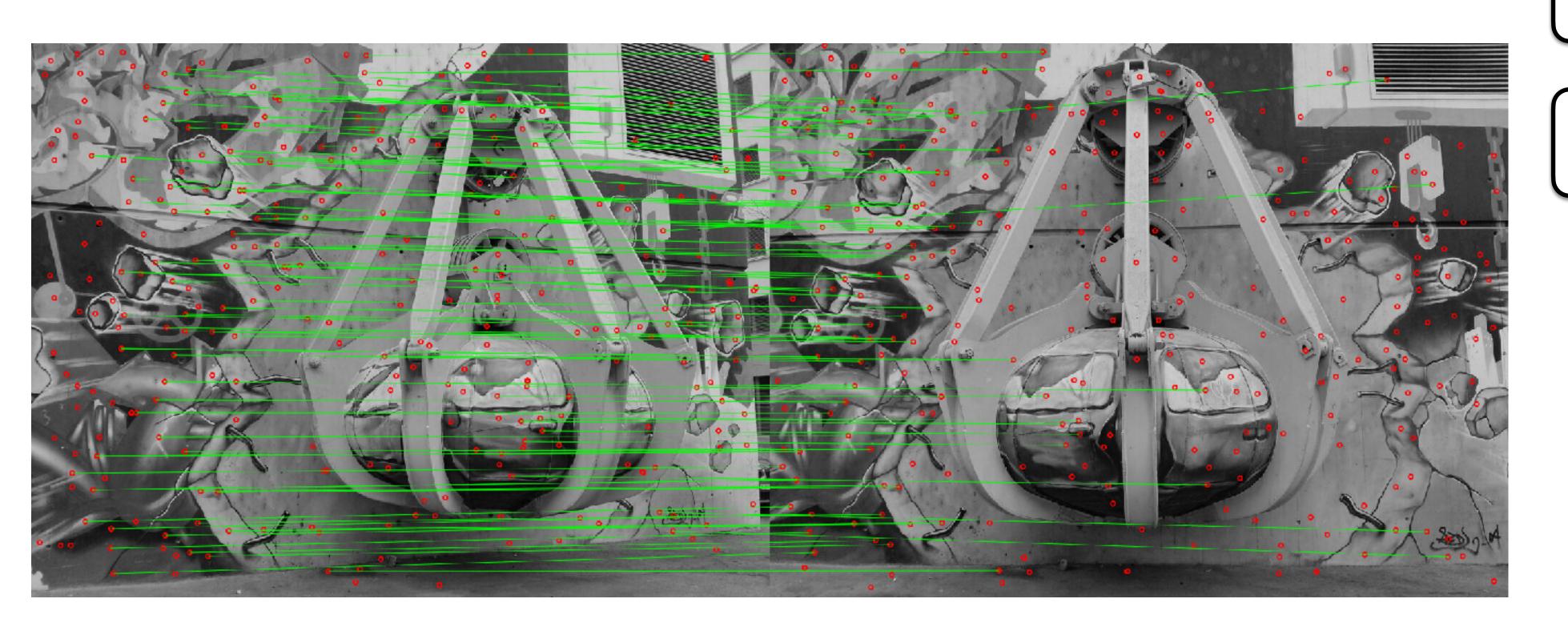
Sequential / Incremental SfM

Feature Detection

Detect interest points and extract descriptors for them, e.g., SIFT features (see lecture 06)

Torsten Sattler

Sequential / Incremental SfM



Feature Detection

Feature Matching & H/E/F Matrix Fitting

- Nearest neighbor search in descriptor space to establish feature matches
- Robust model fitting via RANSAC

While probability of missing correct model >η

While probability of missing correct model $>\eta$ Estimate model from n random data points

While probability of missing correct model >η

Estimate model from *n* random data points

Estimate support inliers of model

While probability of missing correct model >η
Estimate model from *n* random data points
Estimate support inliers of model
If new best model
update best model, η

While probability of missing correct model >η

Estimate model from *n* random data points

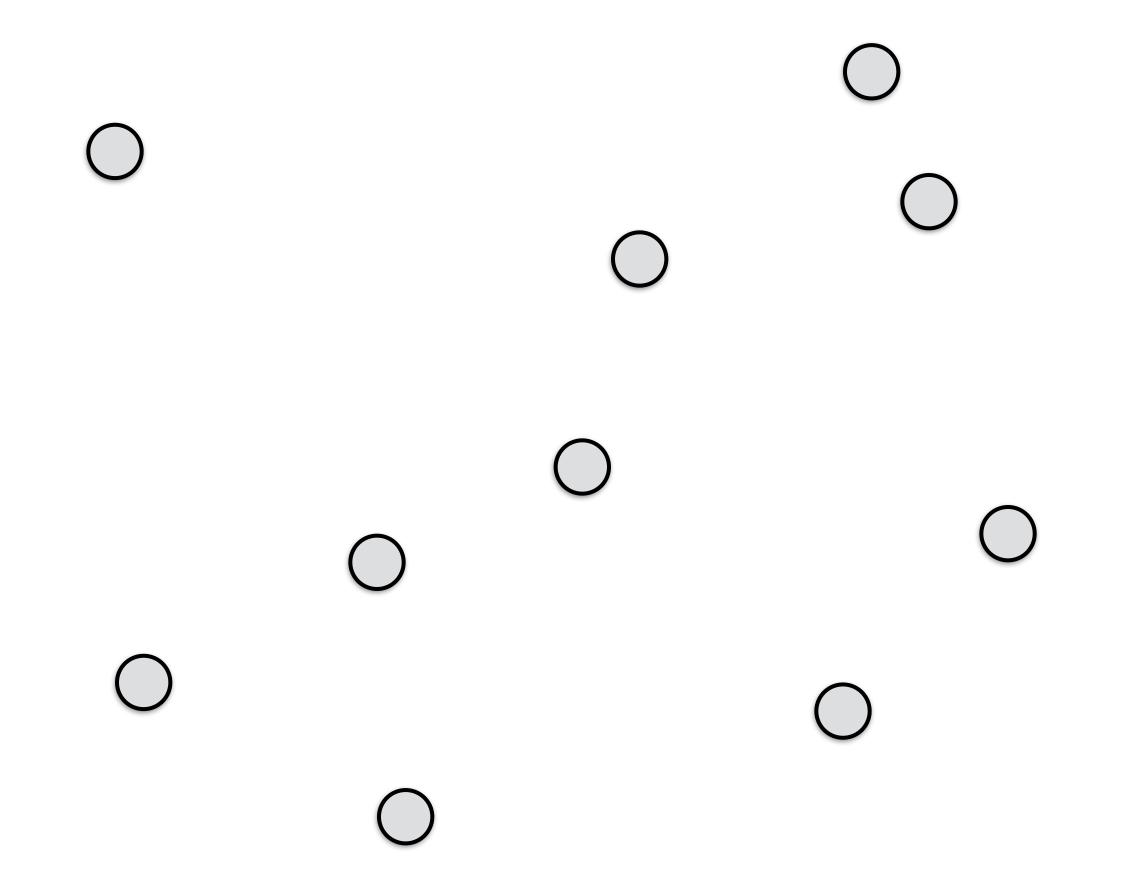
Estimate support inliers of model

If new best model

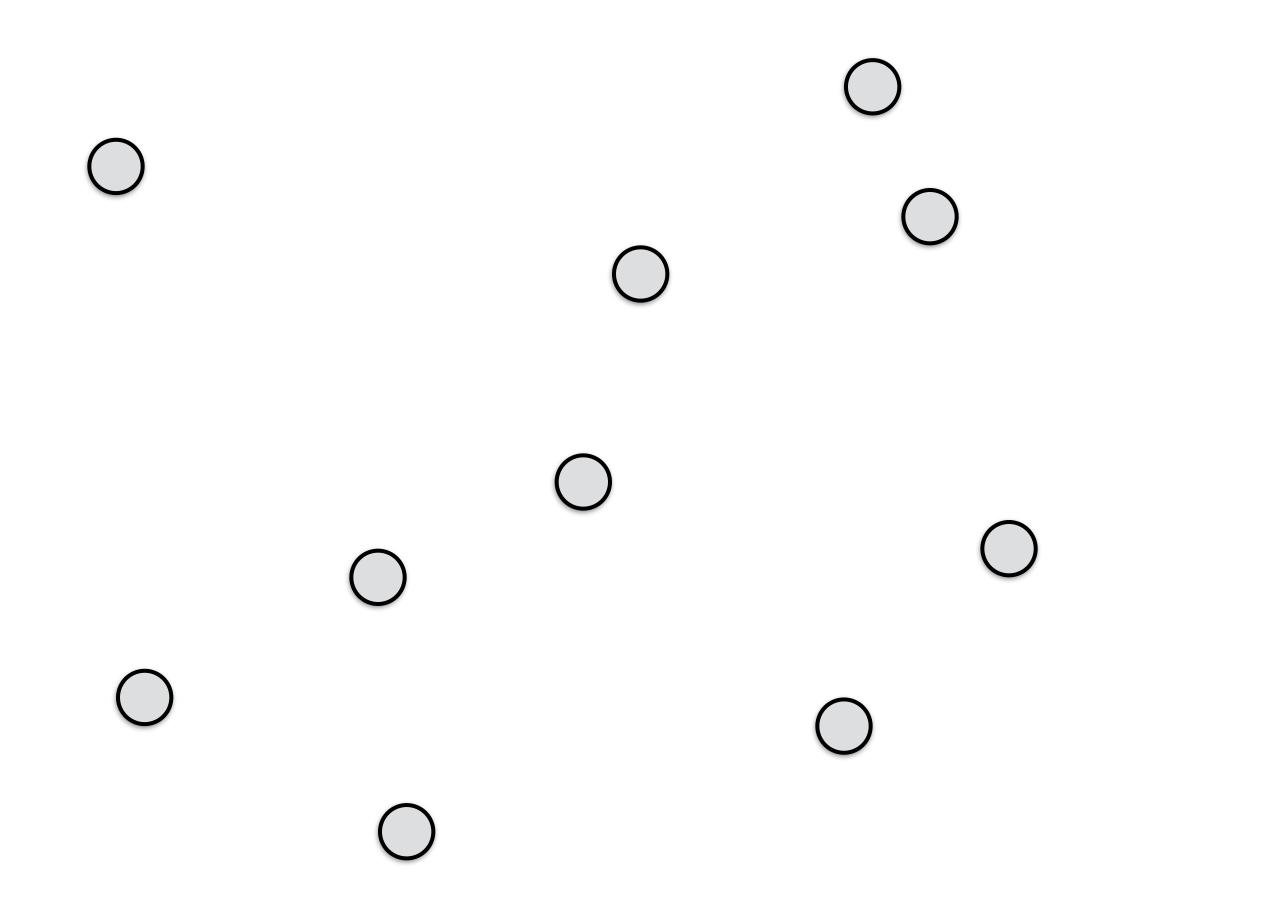
update best model, η

Return: Model with most inliers

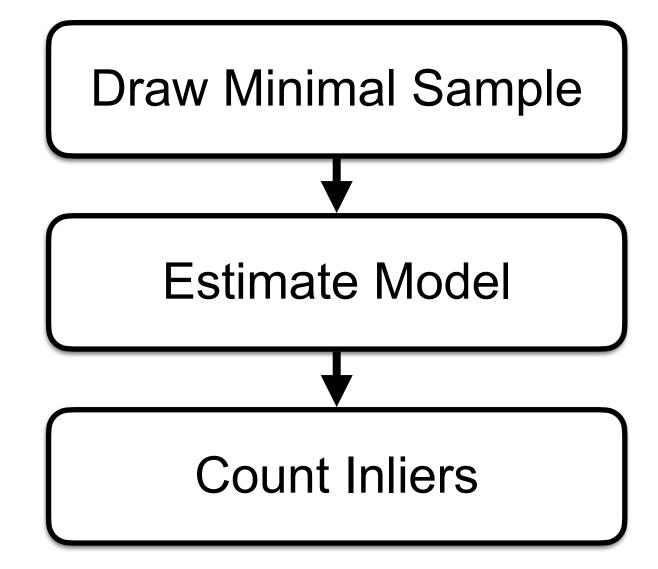
2D line fitting example



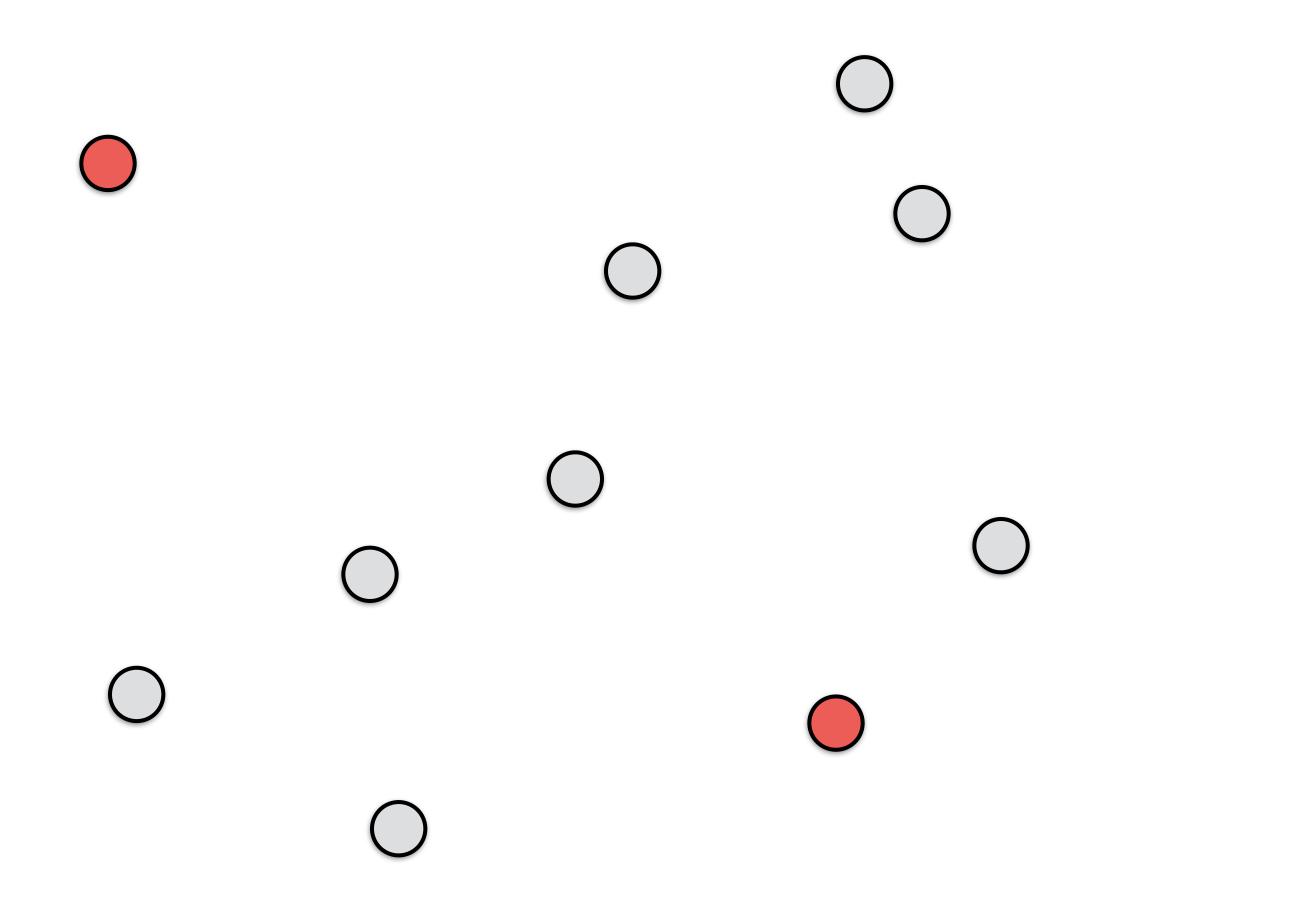
2D line fitting example



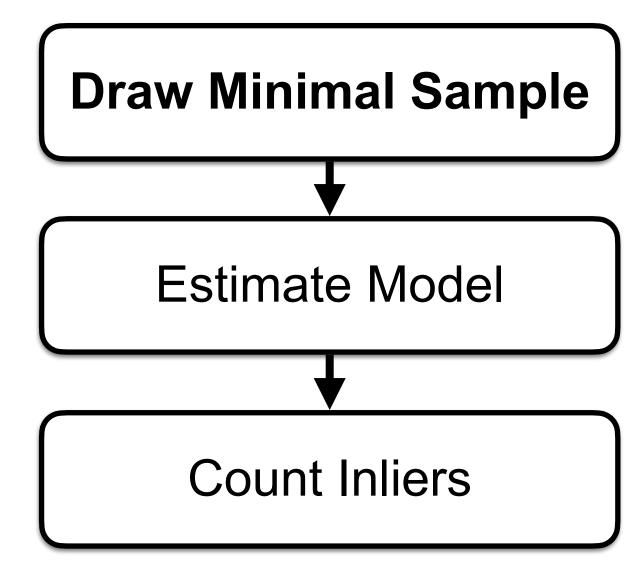
Repeat:



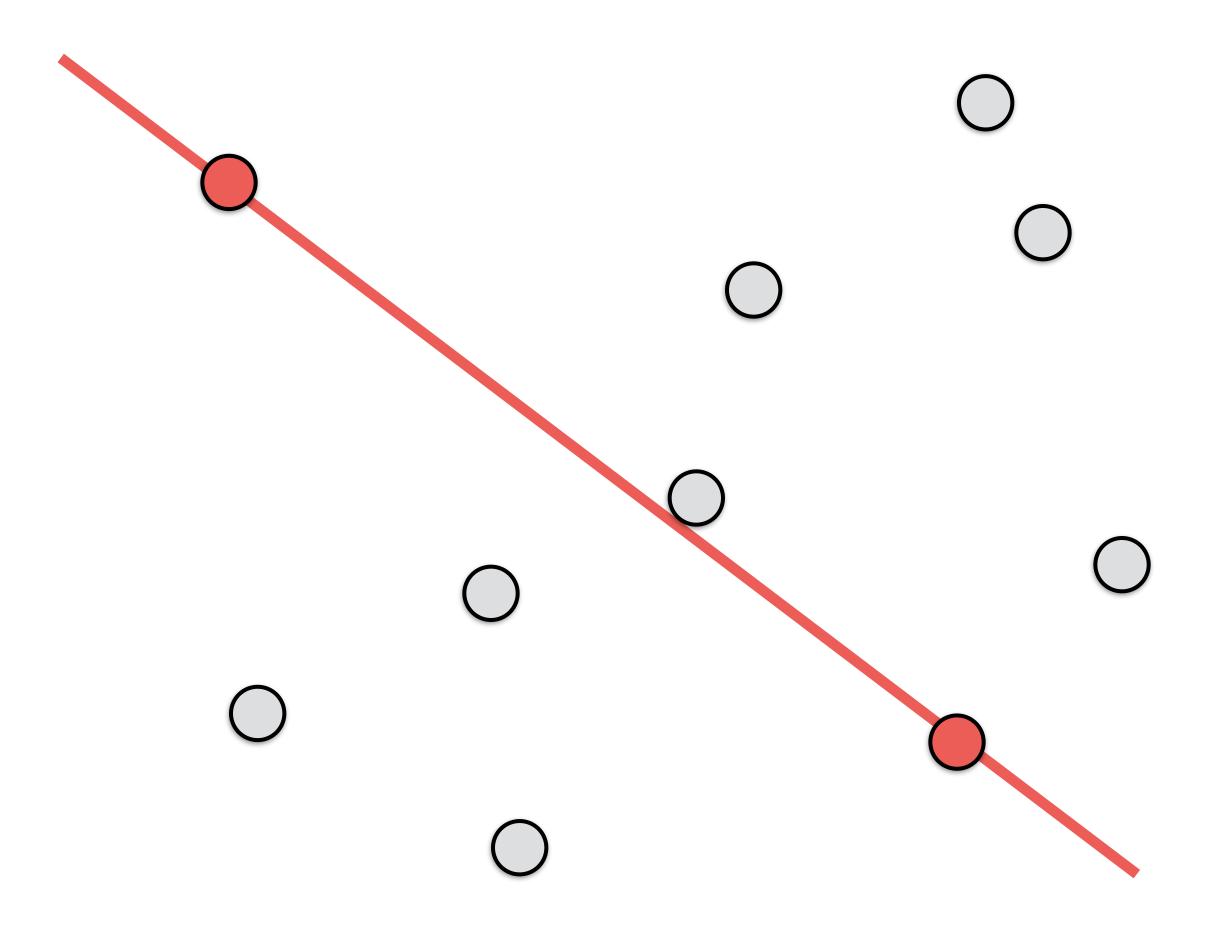
2D line fitting example



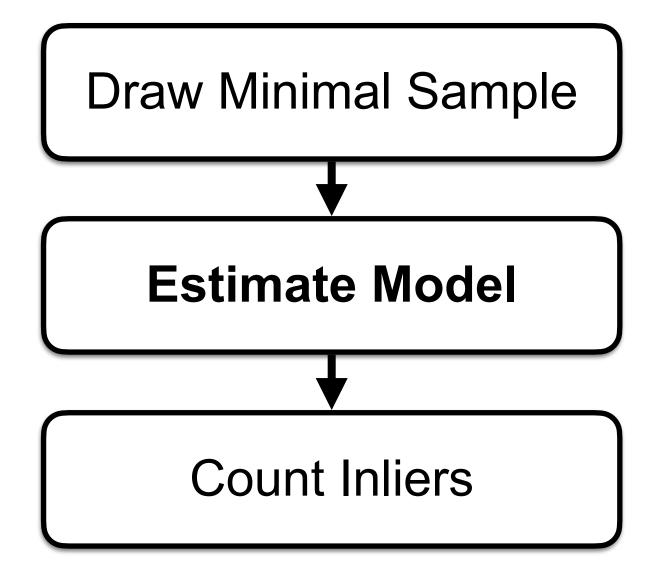
Repeat:



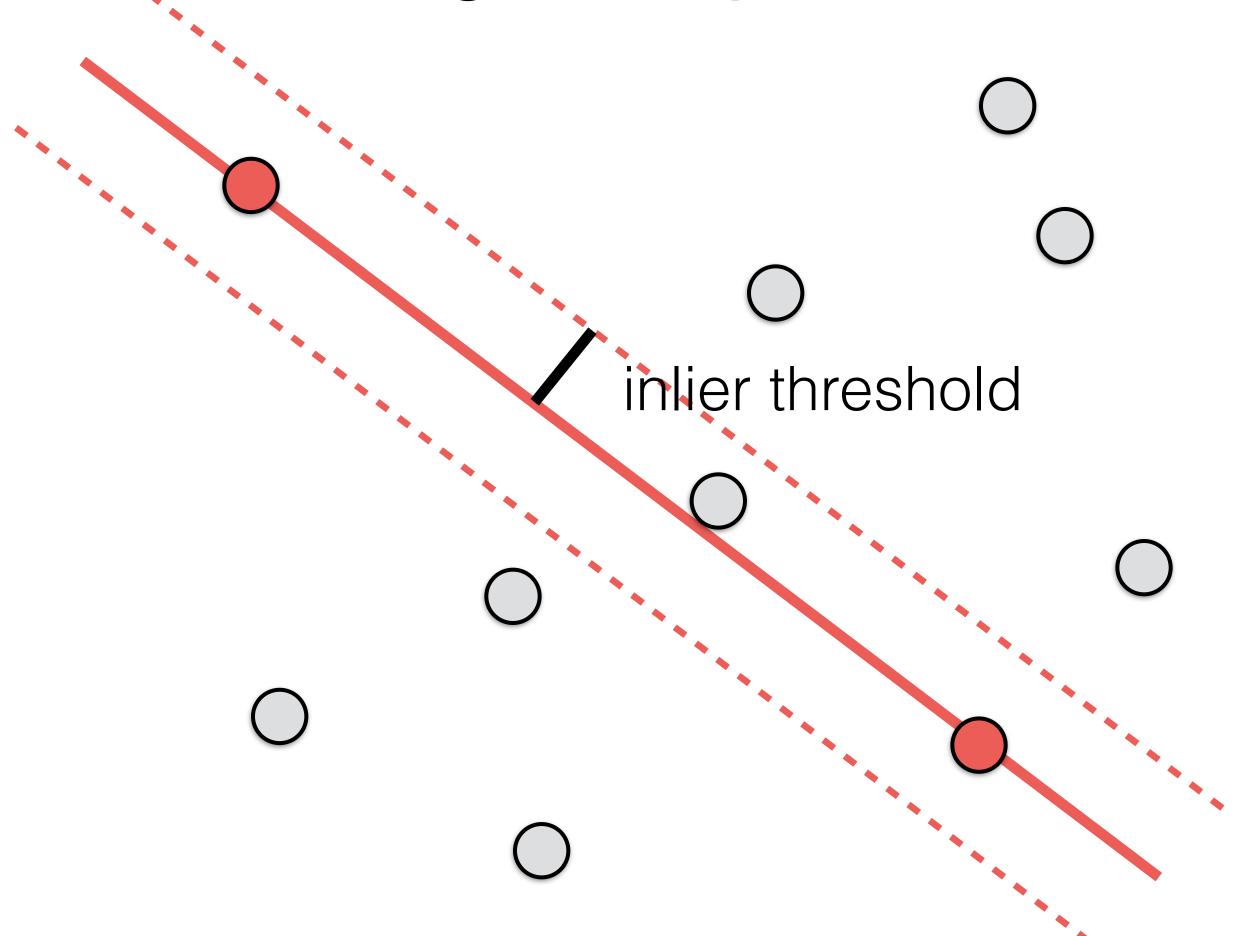
2D line fitting example



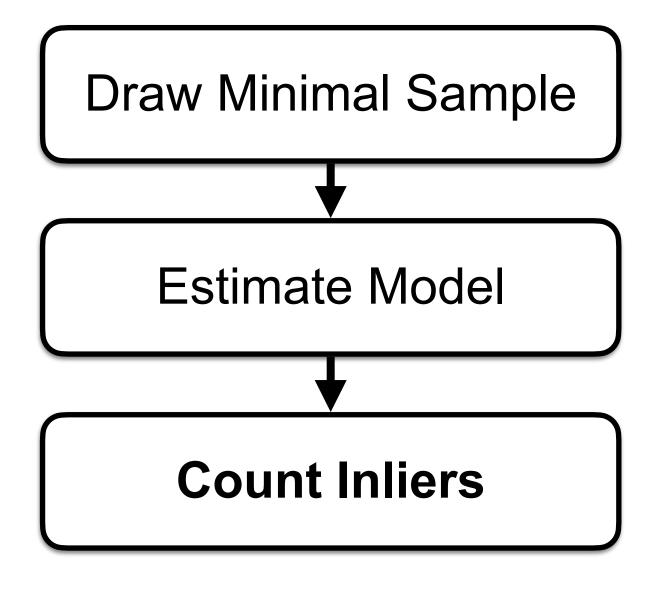
Repeat:



2D line fitting example

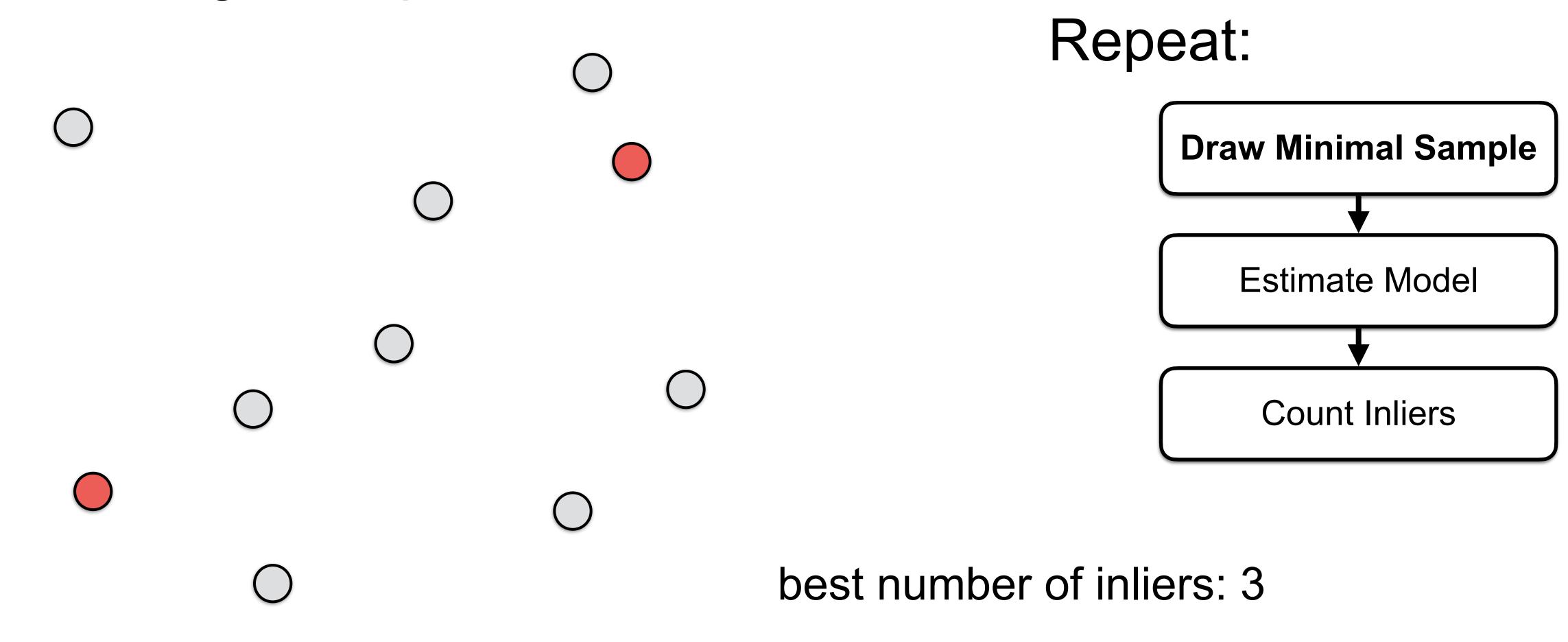


Repeat:

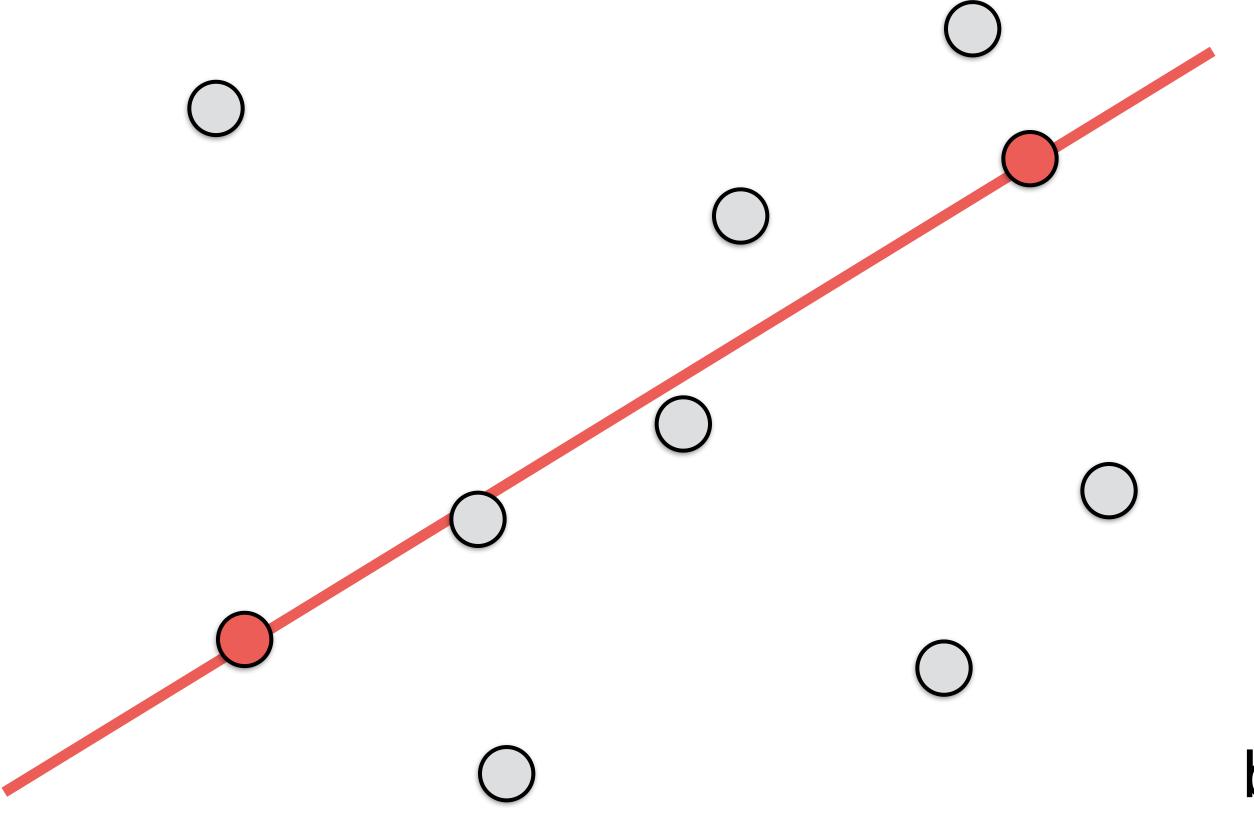


best number of inliers: 3

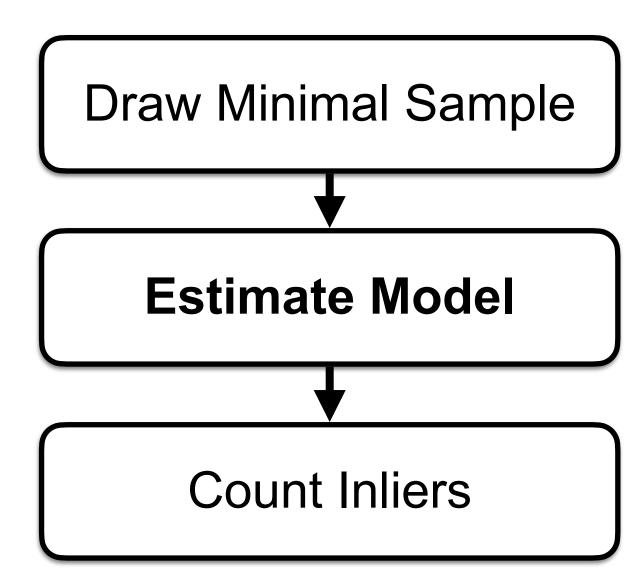
2D line fitting example



2D line fitting example

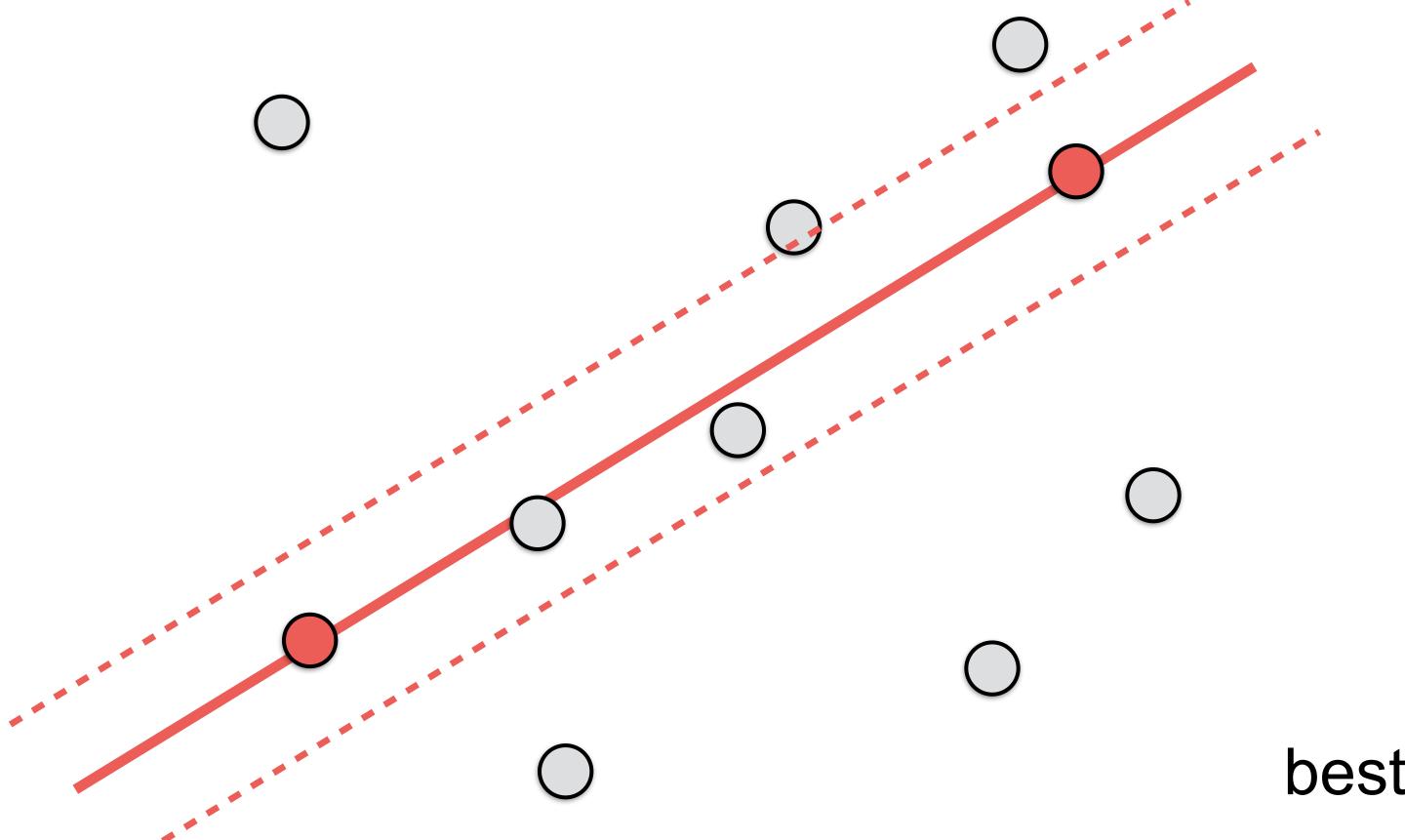


Repeat:

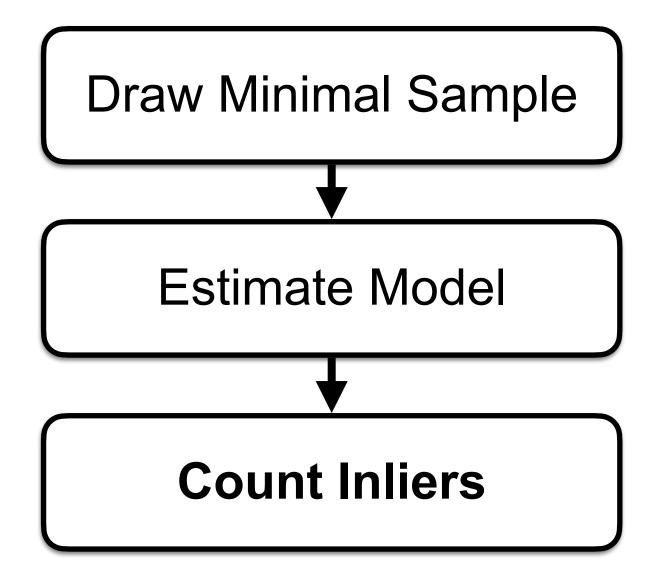


best number of inliers: 3

2D line fitting example

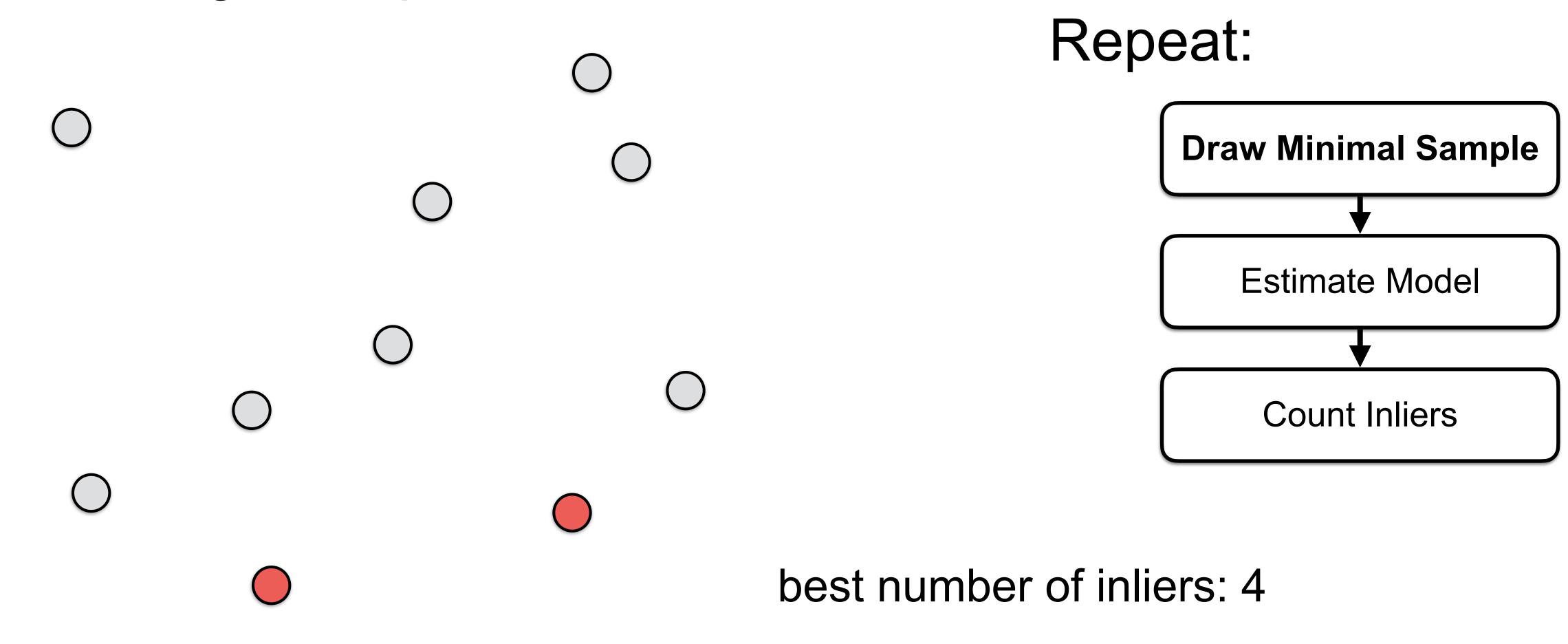


Repeat:

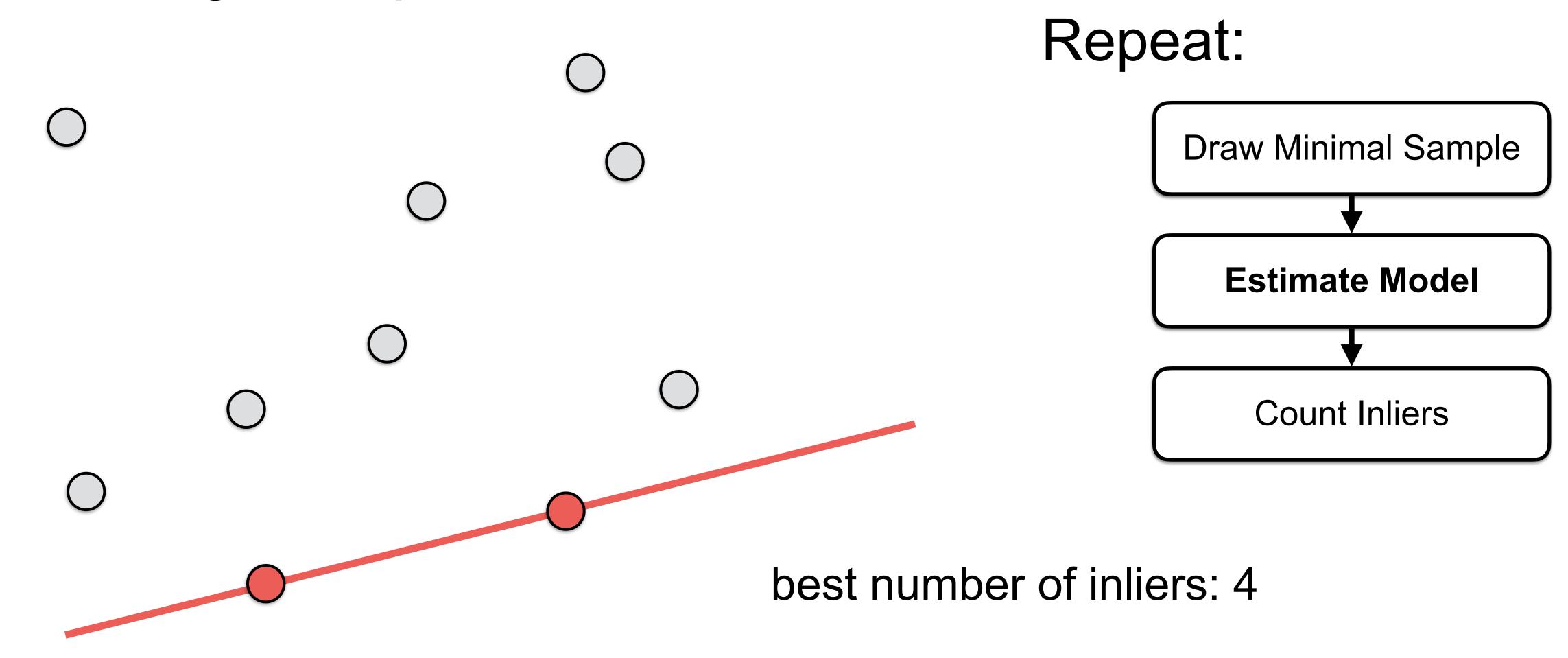


best number of inliers: 4

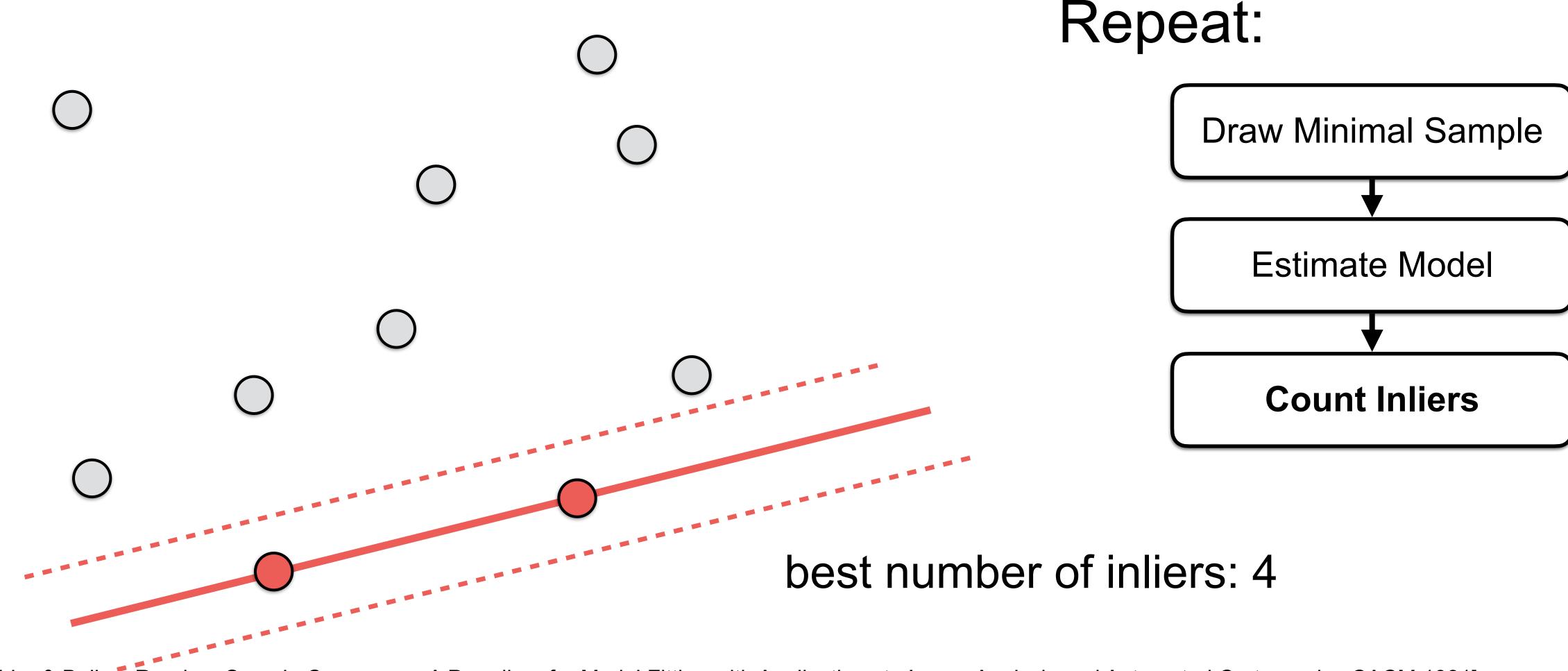
2D line fitting example



2D line fitting example

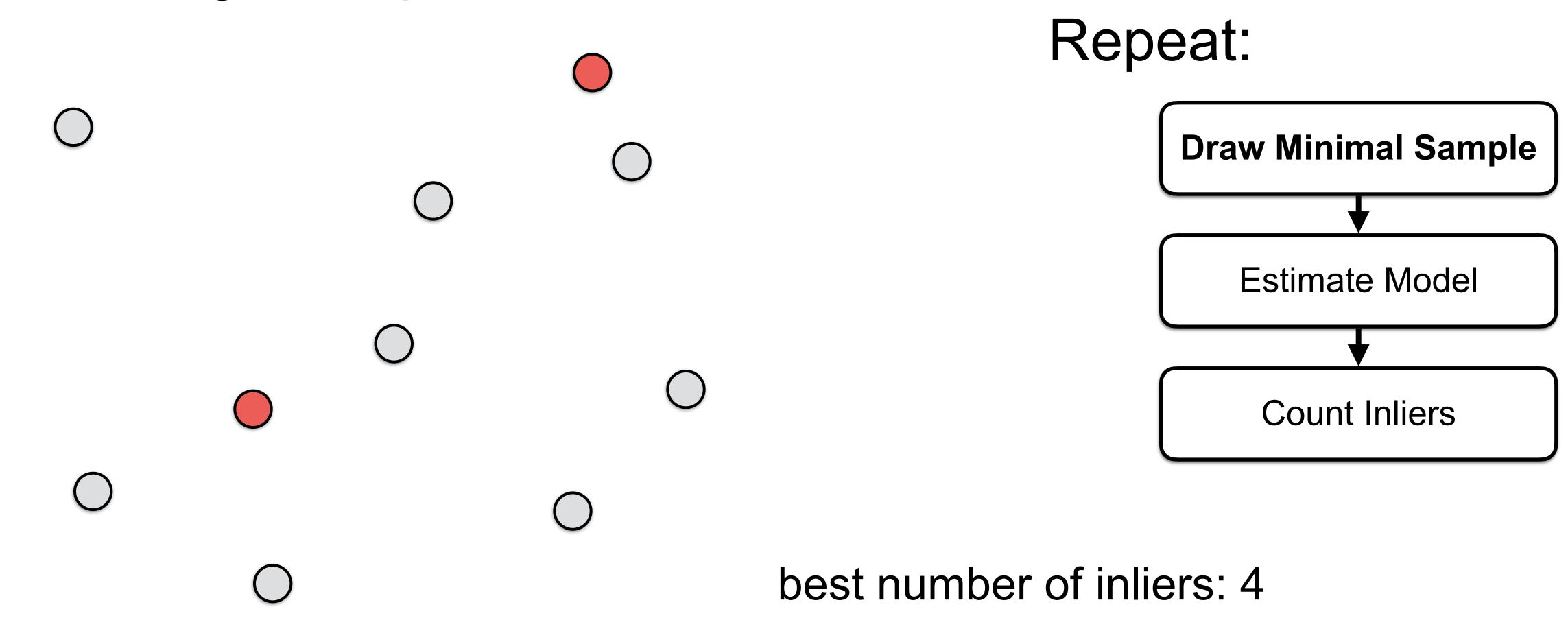


2D line fitting example





2D line fitting example



2D line fitting example Repeat: Draw Minimal Sample **Estimate Model Count Inliers** best number of inliers: 4

2D line fitting example Repeat: Draw Minimal Sample **Estimate Model Count Inliers** best number of inliers: 5

• Let's assume we know the inlier ratio ε (fraction of inliers)

- Let's assume we know the inlier ratio ε (fraction of inliers)
- Probability of picking an inlier randomly: ε

- Let's assume we know the inlier ratio ε (fraction of inliers)
- Probability of picking an inlier randomly: ε
- Probability of picking n inlier randomly: εn

- Let's assume we know the inlier ratio ε (fraction of inliers)
- Probability of picking an inlier randomly: ε
- Probability of picking n inlier randomly: εn
- Probability of non-all inlier sample (≥ 1 outlier): (1-εn)

- Let's assume we know the inlier ratio ε (fraction of inliers)
- Probability of picking an inlier randomly: ε
- Probability of picking n inlier randomly: εn
- Probability of non-all inlier sample (≥ 1 outlier): (1-εn)
- Probability of not picking all-inlier sample in k iterations: (1-εn)k

Terminate if (1-εn)k<η

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{kmax} = \eta$

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{kmax} = \eta$
 - $\Leftrightarrow k_{\text{max}} \ln(1-\epsilon^n) = \ln(\eta)$

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{kmax} = \eta$
 - $\Leftrightarrow k_{\text{max}} \ln(1-\epsilon^n) = \ln(\eta)$
 - $\Leftrightarrow k_{\text{max}} = \ln(\eta) / \ln(1-\epsilon^n)$

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{kmax} = \eta$
 - $\Leftrightarrow k_{\text{max}} \ln(1-\epsilon^n) = \ln(\eta)$
 - $\Leftrightarrow k_{\text{max}} = \ln(\eta) / \ln(1-\epsilon^n)$
 - Note: $k_{max}(\varepsilon) > k_{max}(\varepsilon')$ if $\varepsilon < \varepsilon'$

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{kmax} = \eta$
 - $\Leftrightarrow k_{\text{max}} \ln(1-\epsilon^n) = \ln(\eta)$
 - $\Leftrightarrow k_{\text{max}} = \ln(\eta) / \ln(1-\epsilon^n)$
 - Note: $k_{max}(\varepsilon) > k_{max}(\varepsilon')$ if $\varepsilon < \varepsilon'$
- How do we know inlier ratio ε?

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{kmax} = \eta$
 - $\Leftrightarrow k_{\text{max}} \ln(1-\epsilon^n) = \ln(\eta)$
 - $\Leftrightarrow k_{\text{max}} = \ln(\eta) / \ln(1-\epsilon^n)$
 - Note: $k_{max}(\varepsilon) > k_{max}(\varepsilon')$ if $\varepsilon < \varepsilon'$
- How do we know inlier ratio ε?
- In practice more than $k_{max}(\epsilon)$ steps necessary as not every all-inlier sample leads to best model (due to, e.g., noise, degeneracies, etc.)

While probability of missing correct model >η

- See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)
- Never use standard RANSAC!

While probability of missing correct model $>\eta$ Estimate model from n random data points

- See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)
- Never use standard RANSAC!

While probability of missing correct model >n

Estimate model from *n* random data points

Estimate support (#inliers / robust cost func.) of model

• See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]

Never use standard RANSAC!

While probability of missing correct model >η

Estimate model from *n* random data points

Estimate support (#inliers / robust cost func.) of model

[Chum, Matas, Optimal Randomized RANSAC. PAMI 2008]

- See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)
- Never use standard RANSAC!

While probability of missing correct model >η

Estimate model from *n* random data points

Estimate support (#inliers / robust cost func.) of model

[Chum, Matas, Optimal Randomized RANSAC. PAMI 2008]

If new best model

Perform Local Optimization (LO)

[Lebeda, Matas, Chum, Fixing the Locally Optimized RANSAC. BMVC 2012] [code]

- See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)
- Never use standard RANSAC!

While probability of missing correct model >η

Estimate model from *n* random data points

Estimate support (#inliers / robust cost func.) of model

[Chum, Matas, Optimal Randomized RANSAC. PAMI 2008]

If new best model

Perform Local Optimization (LO)

[Lebeda, Matas, Chum, Fixing the Locally Optimized RANSAC. BMVC 2012] [code]

update best model, η

- See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)
- Never use standard RANSAC!

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS

While probability of missing correct model >η

Estimate model from *n* random data points

Estimate support (#inliers / robust cost func.) of model

[Chum, Matas, Optimal Randomized RANSAC. PAMI 2008]

If new best model

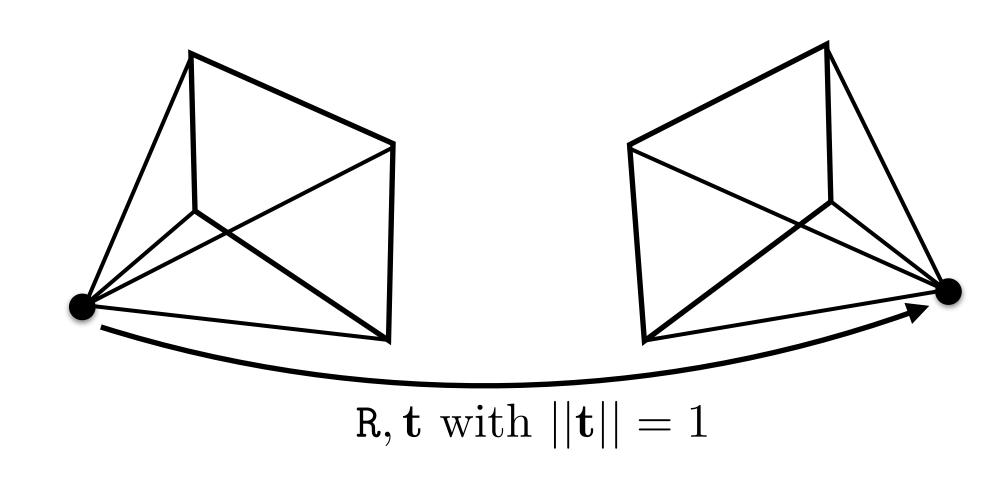
Perform Local Optimization (LO)

[Lebeda, Matas, Chum, Fixing the Locally Optimized RANSAC. BMVC 2012] [code]

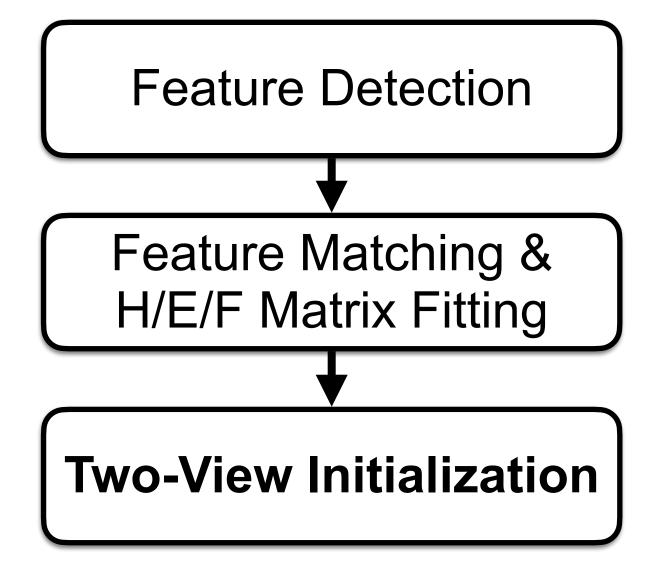
update best model, η

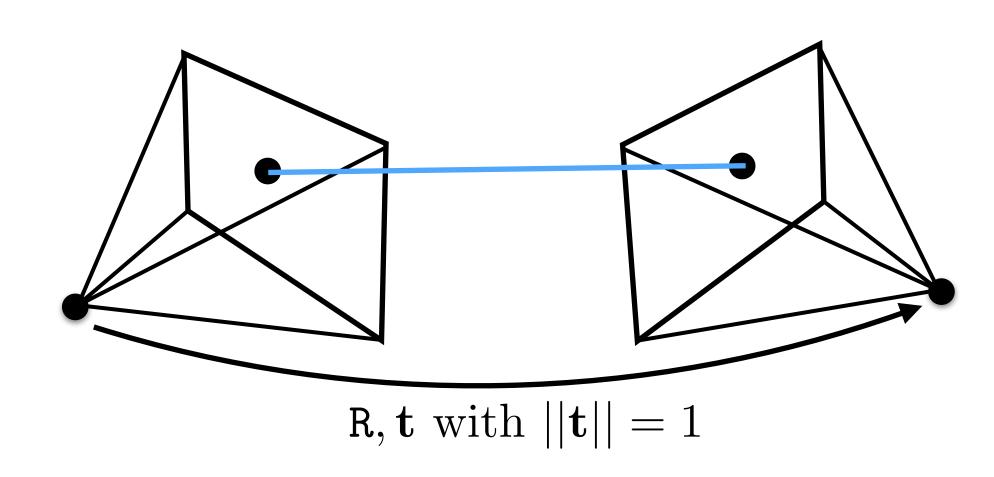
Return: Model with most inliers / lowest cost

- See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)
- Never use standard RANSAC!

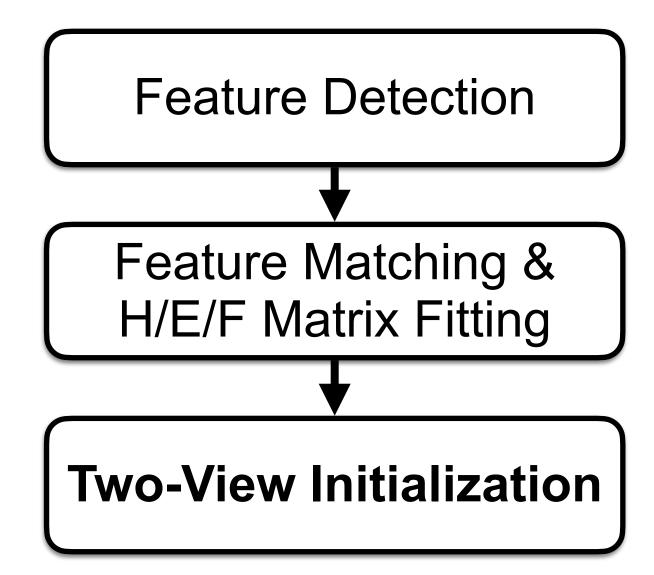


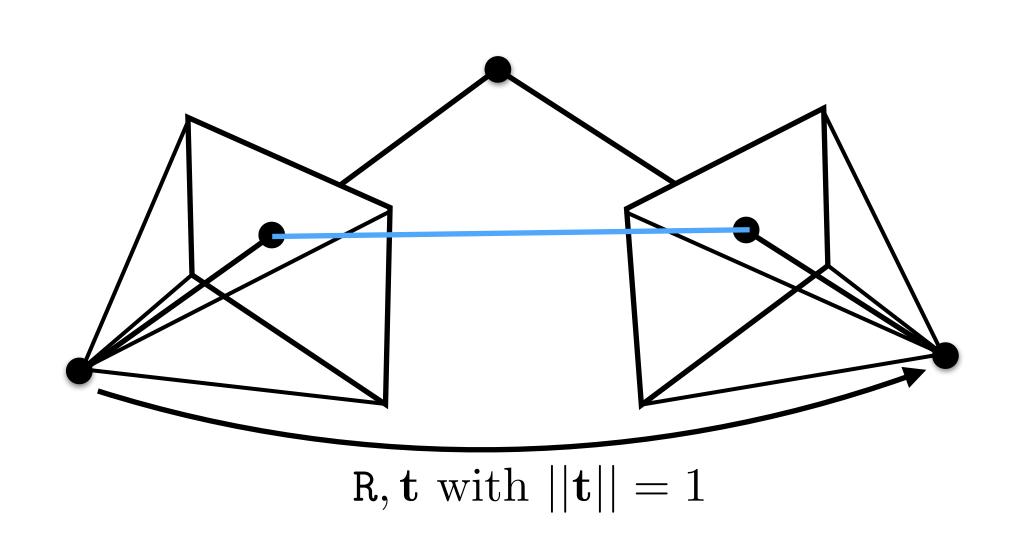
- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure



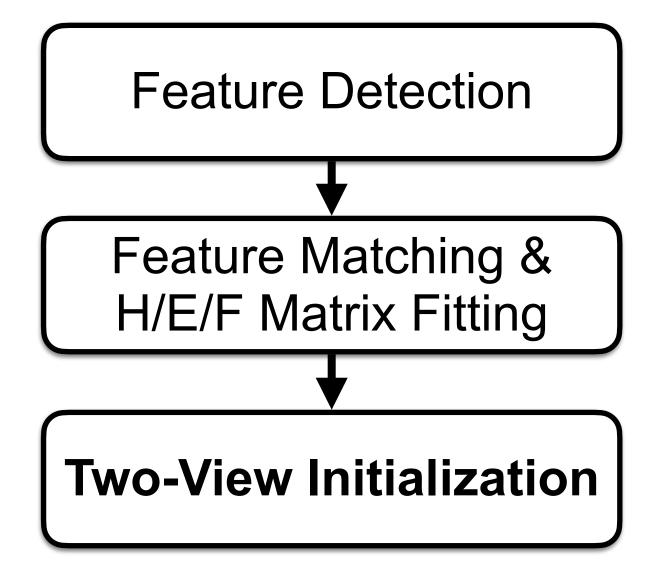


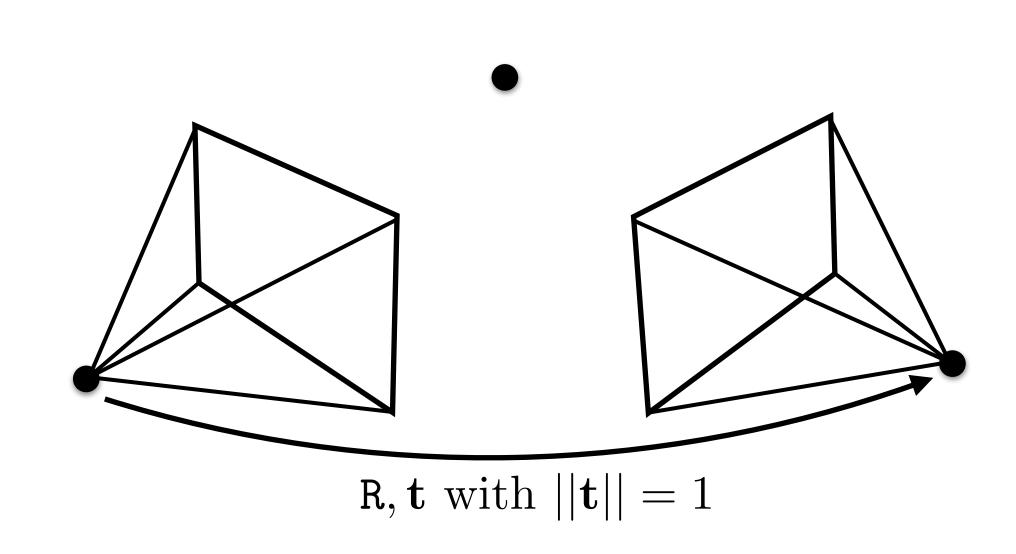
- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure



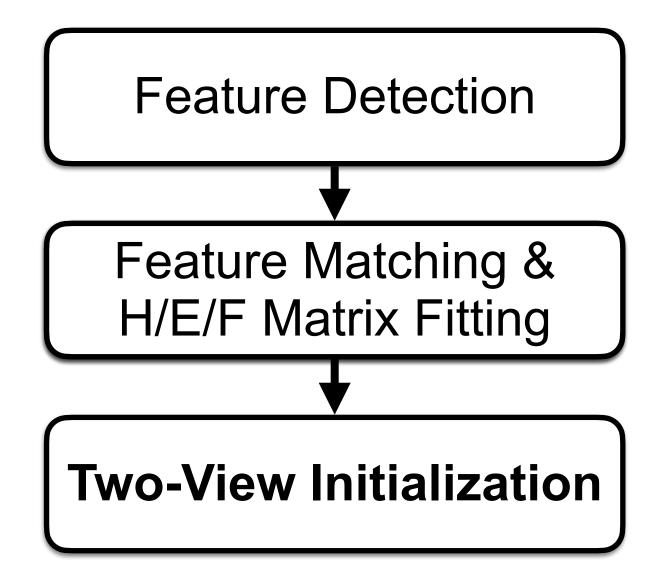


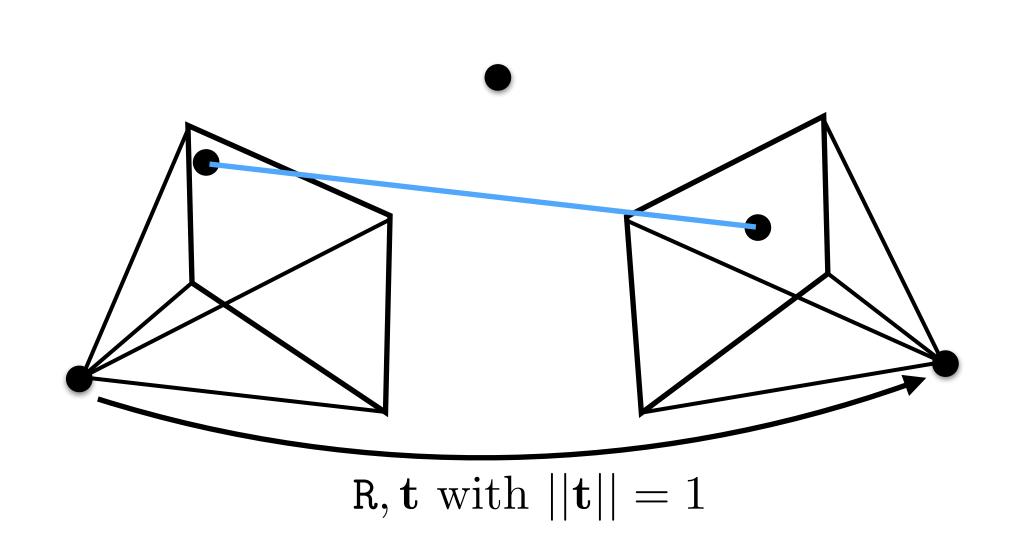
- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure



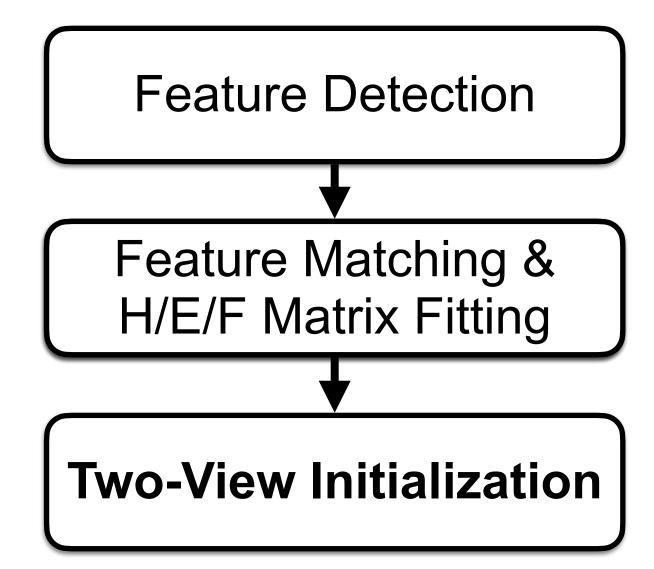


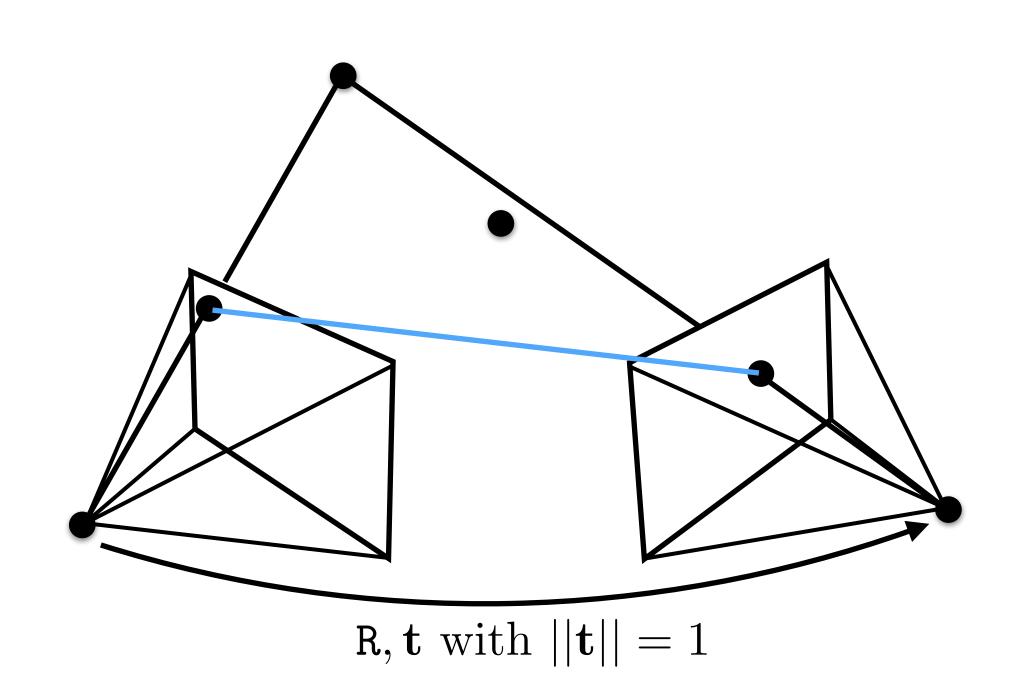
- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure





- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure



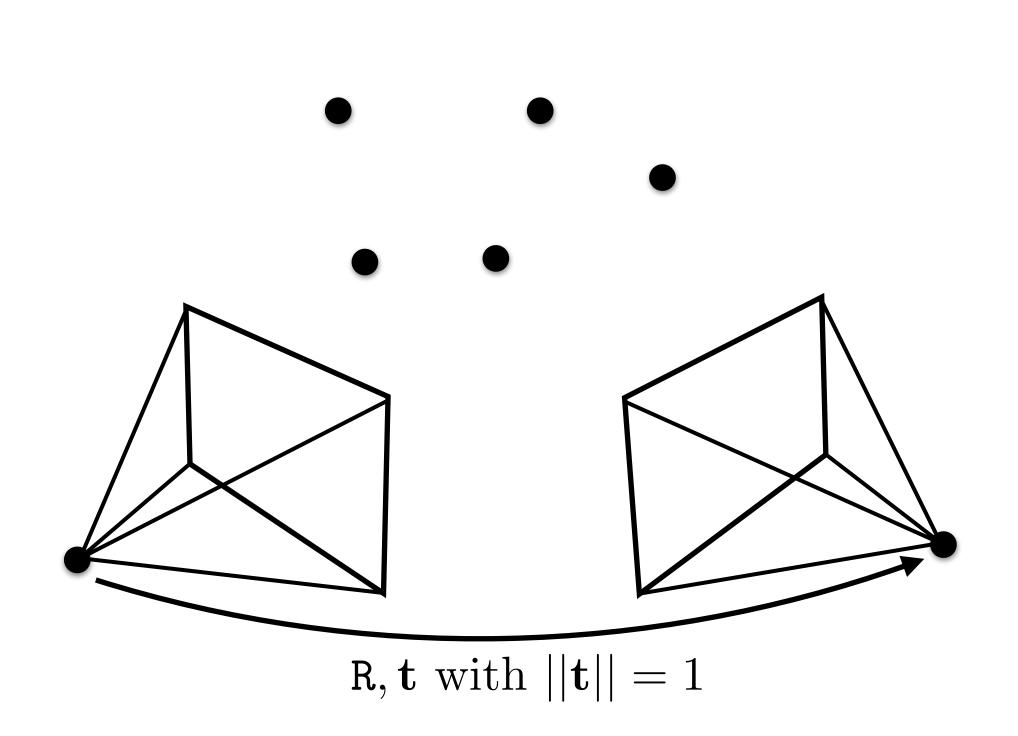


Feature Detection

Feature Matching & H/E/F Matrix Fitting

Two-View Initialization

- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure



Two-View Initialization

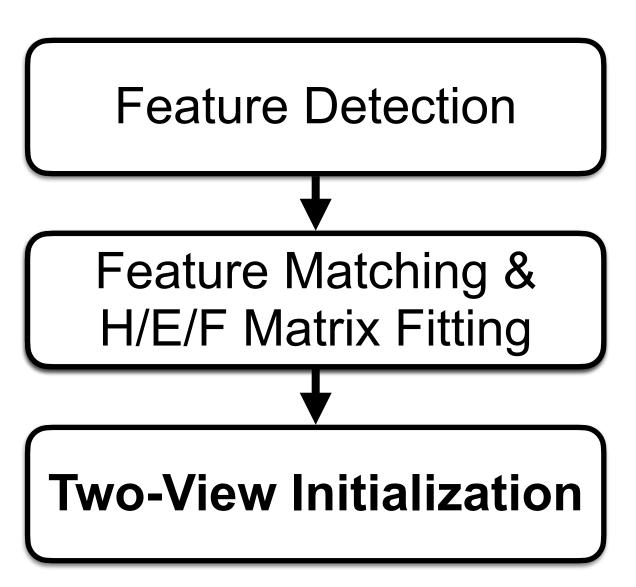
Feature Detection

Feature Matching &

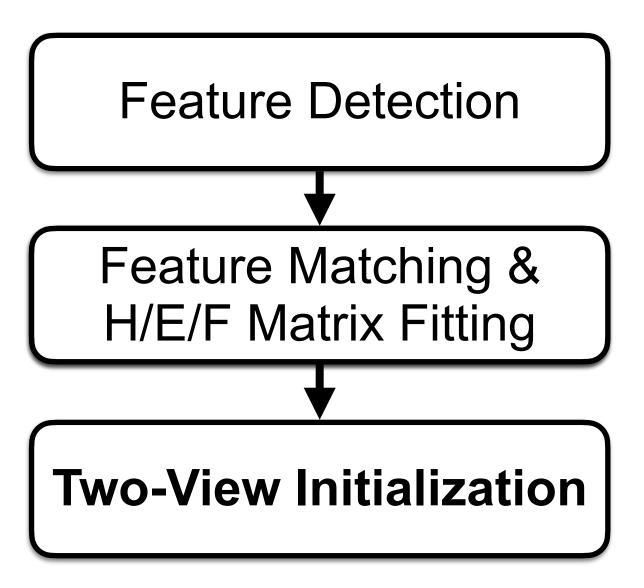
H/E/F Matrix Fitting

- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure

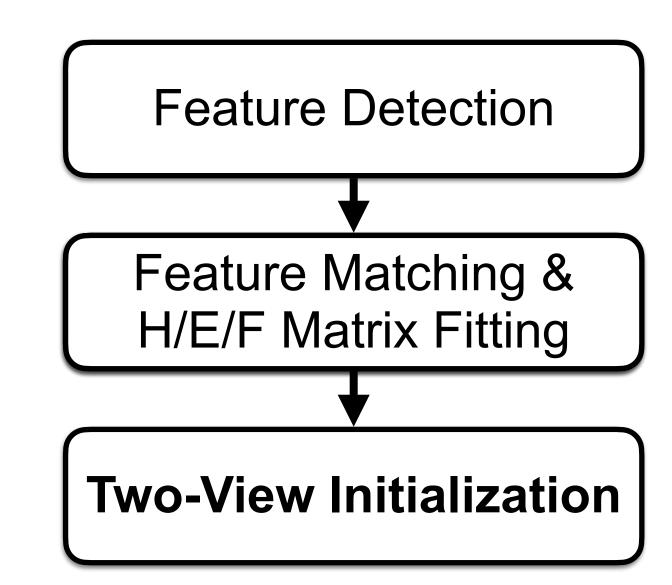
How to select a good initial pair?



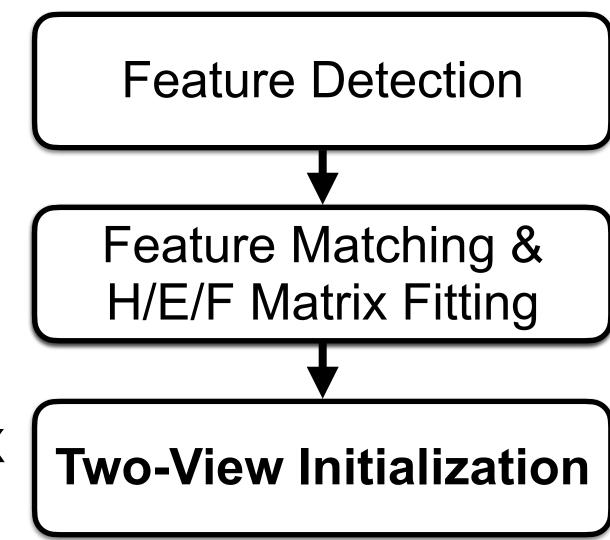
- How to select a good initial pair?
- Criteria:



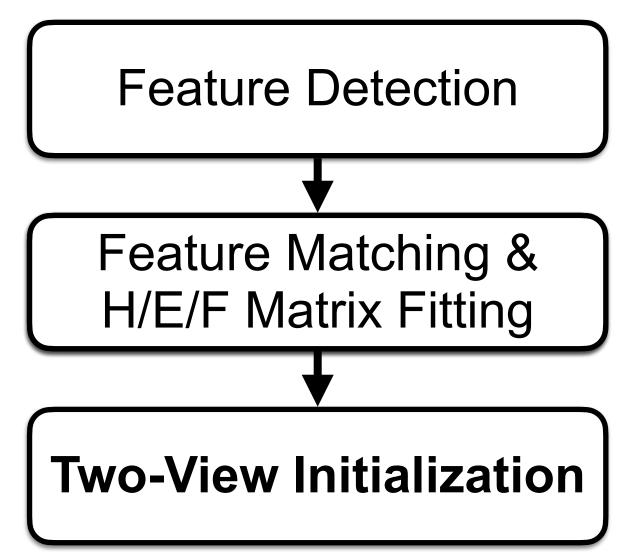
- How to select a good initial pair?
- Criteria:
 - Accurate relative pose ≈ many inlier matches



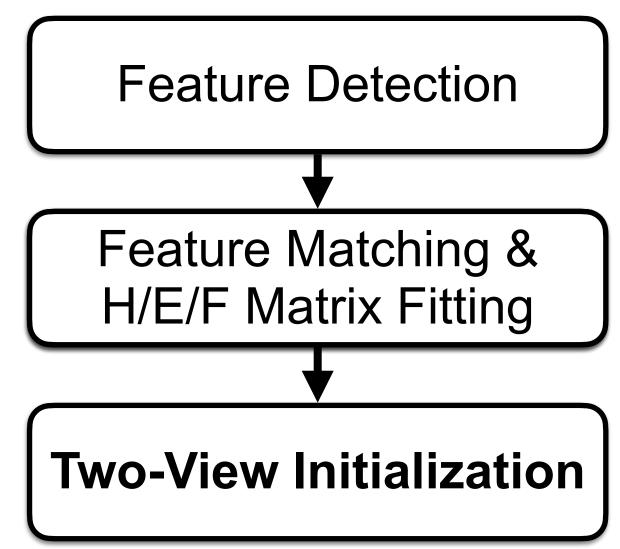
- How to select a good initial pair?
- Criteria:
 - Accurate relative pose ≈ many inlier matches
 - Non-planar scene (planar scenes are degeneracy for F-matrix fitting)



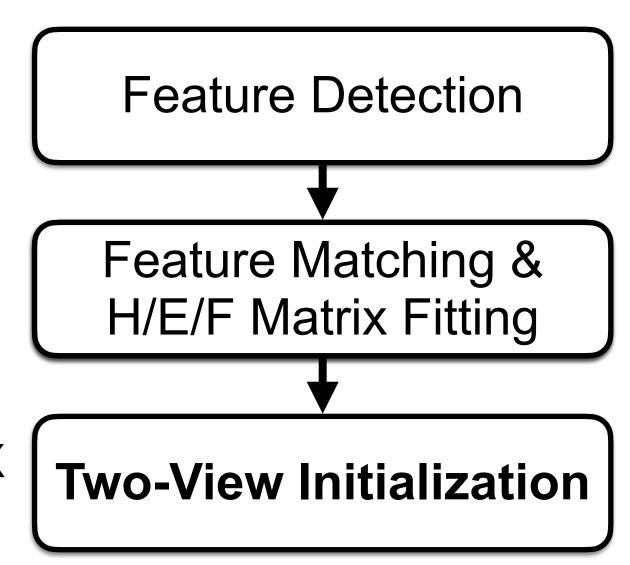
- How to select a good initial pair?
- Criteria:
 - Accurate relative pose ≈ many inlier matches
 - Non-planar scene (planar scenes are degeneracy for F-matrix fitting)
 - Compute both H and E/F matrix



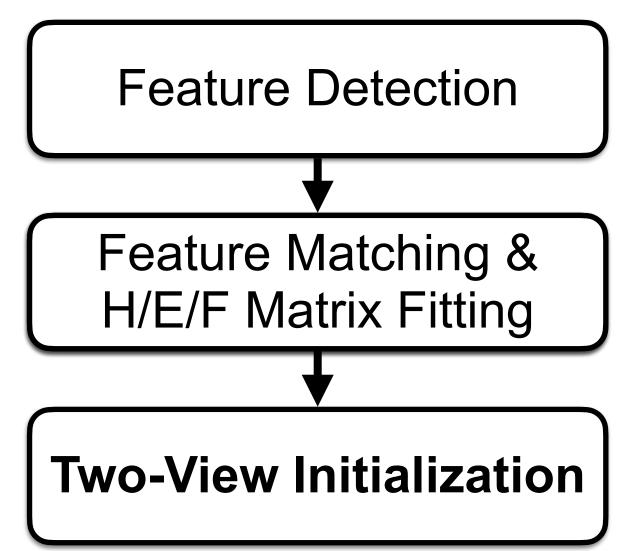
- How to select a good initial pair?
- Criteria:
 - Accurate relative pose ≈ many inlier matches
 - Non-planar scene (planar scenes are degeneracy for F-matrix fitting)
 - Compute both H and E/F matrix
 - Select pair with large ratio #inliers(E/F) / #inliers(H)

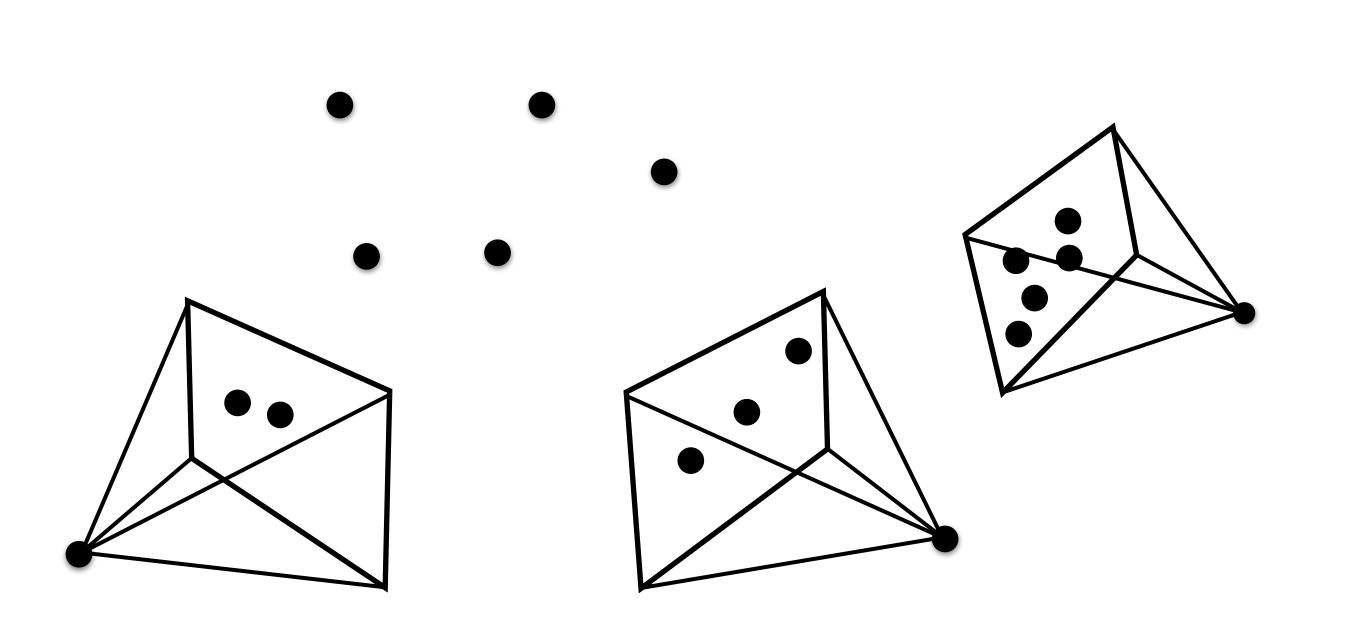


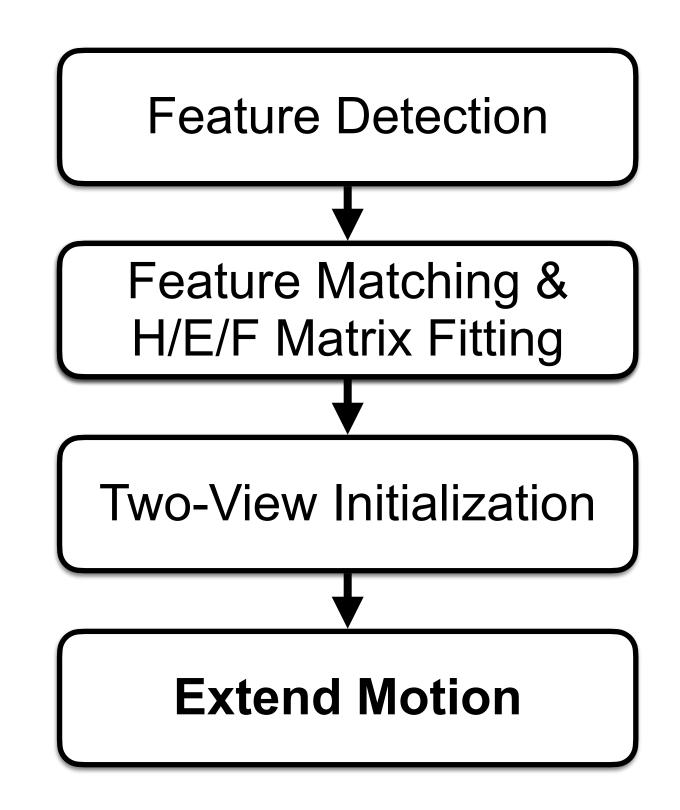
- How to select a good initial pair?
- Criteria:
 - Accurate relative pose ≈ many inlier matches
 - Non-planar scene (planar scenes are degeneracy for F-matrix fitting)
 - Compute both H and E/F matrix
 - Select pair with large ratio #inliers(E/F) / #inliers(H)
 - No pure forward motion (triangulation inaccurate / impossible)



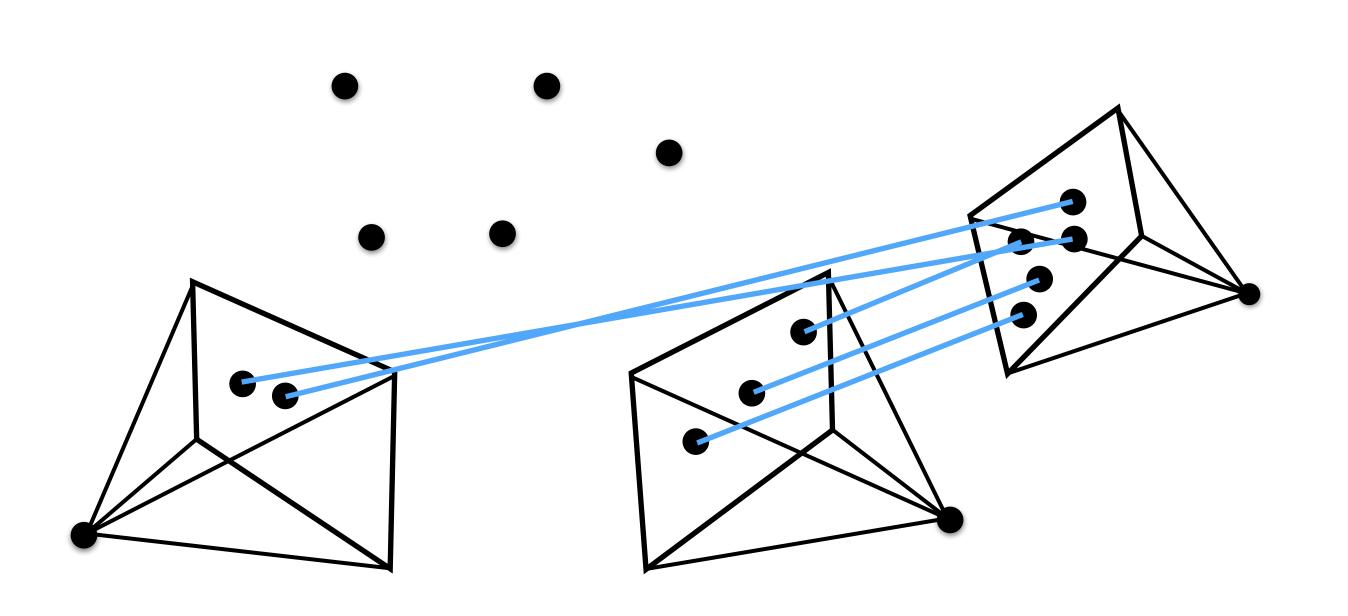
- How to select a good initial pair?
- Criteria:
 - Accurate relative pose ≈ many inlier matches
 - Non-planar scene (planar scenes are degeneracy for F-matrix fitting)
 - Compute both H and E/F matrix
 - Select pair with large ratio #inliers(E/F) / #inliers(H)
 - No pure forward motion (triangulation inaccurate / impossible)
- In practice, try out multiple initial pairs

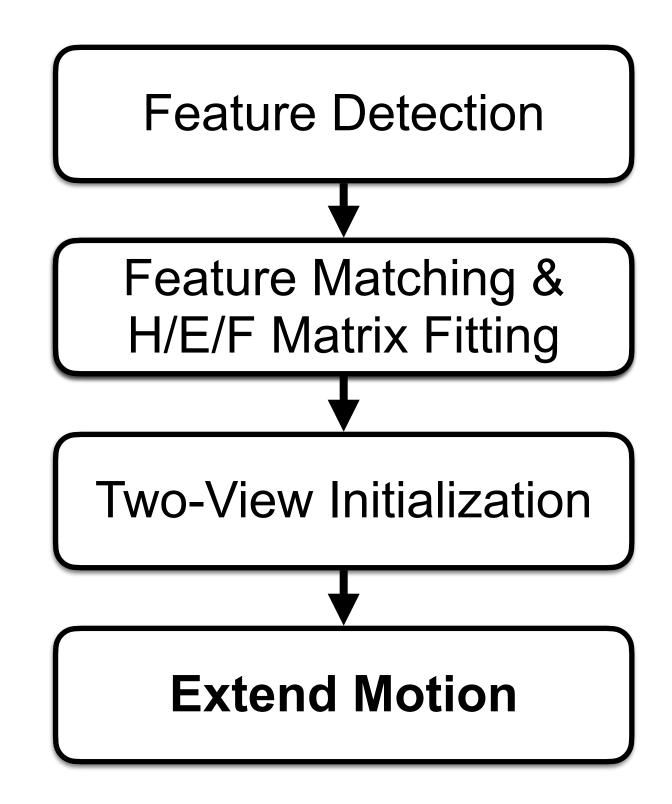




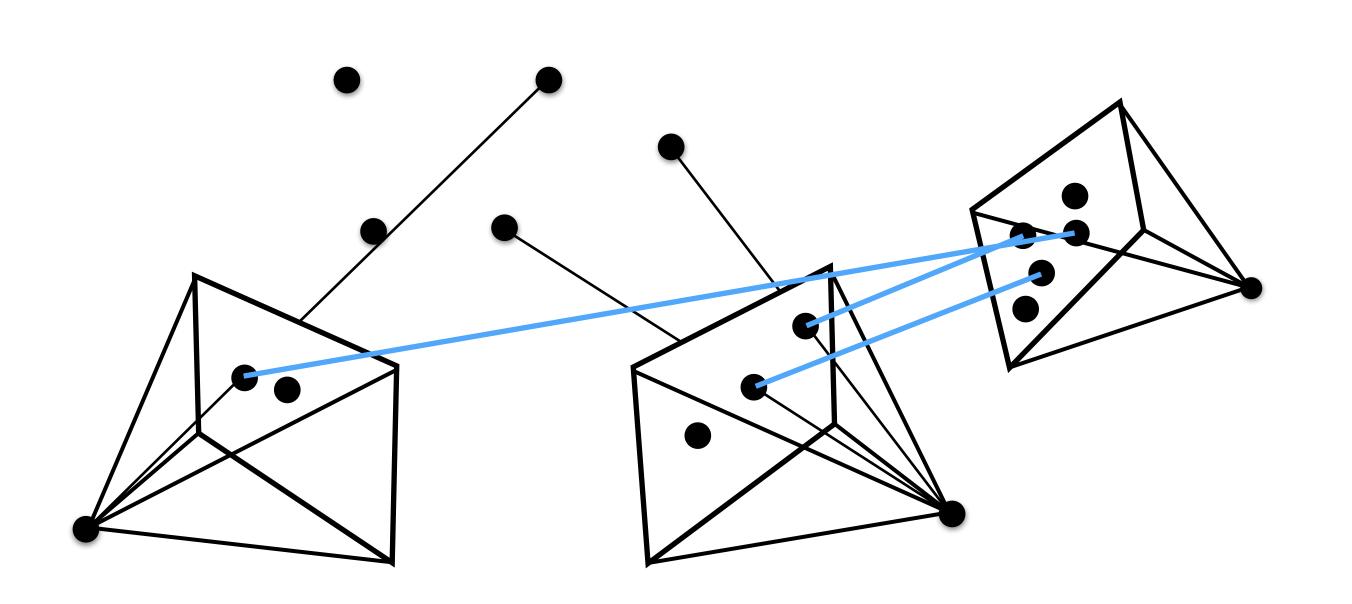


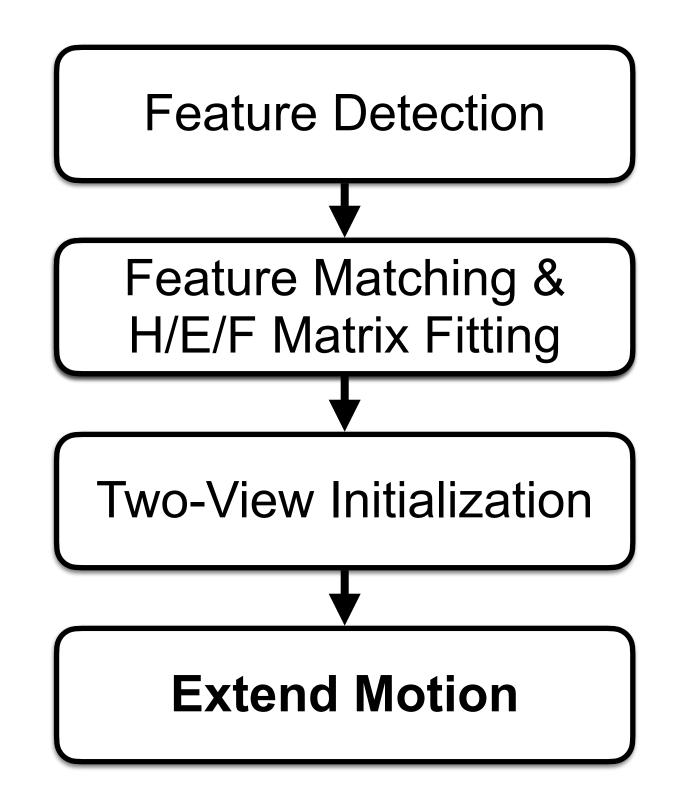
- Pick image(s) with large number of matches to existing cameras
- Obtain 2D-3D matches from 2D-2D matches
- Estimate absolute pose of new image



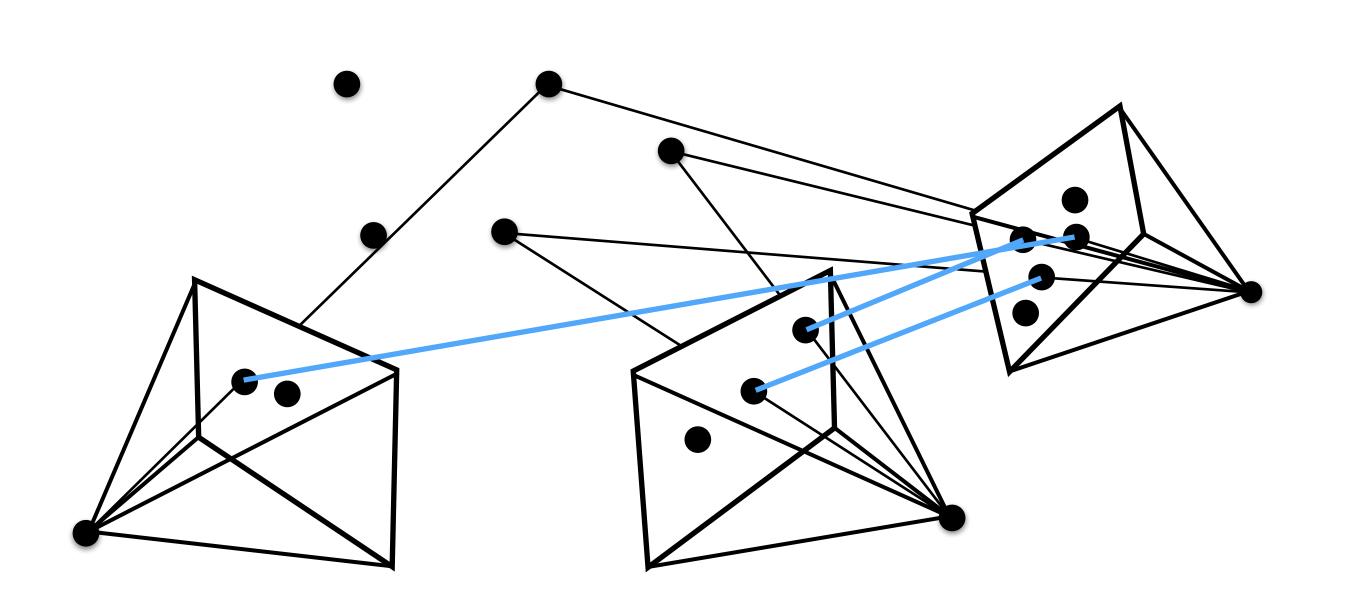


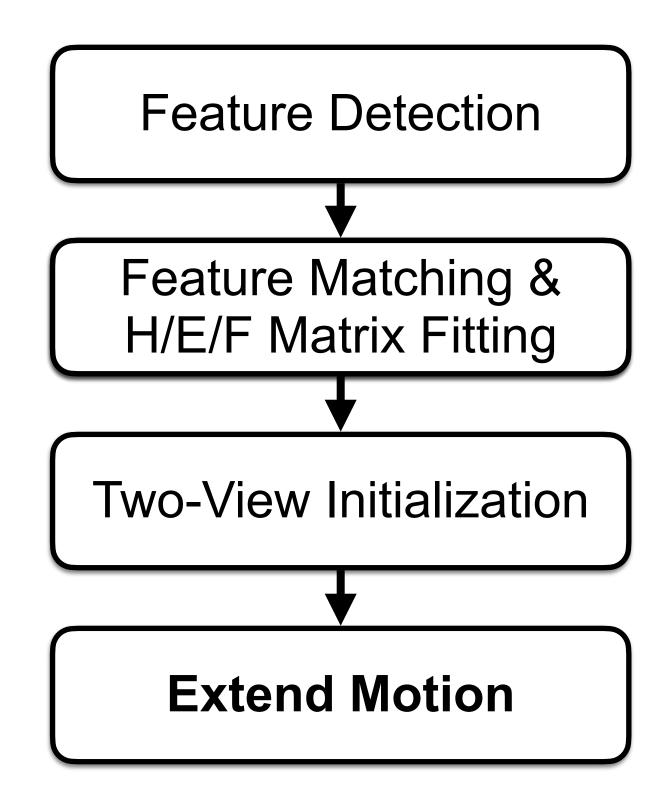
- Pick image(s) with large number of matches to existing cameras
- Obtain 2D-3D matches from 2D-2D matches
- Estimate absolute pose of new image



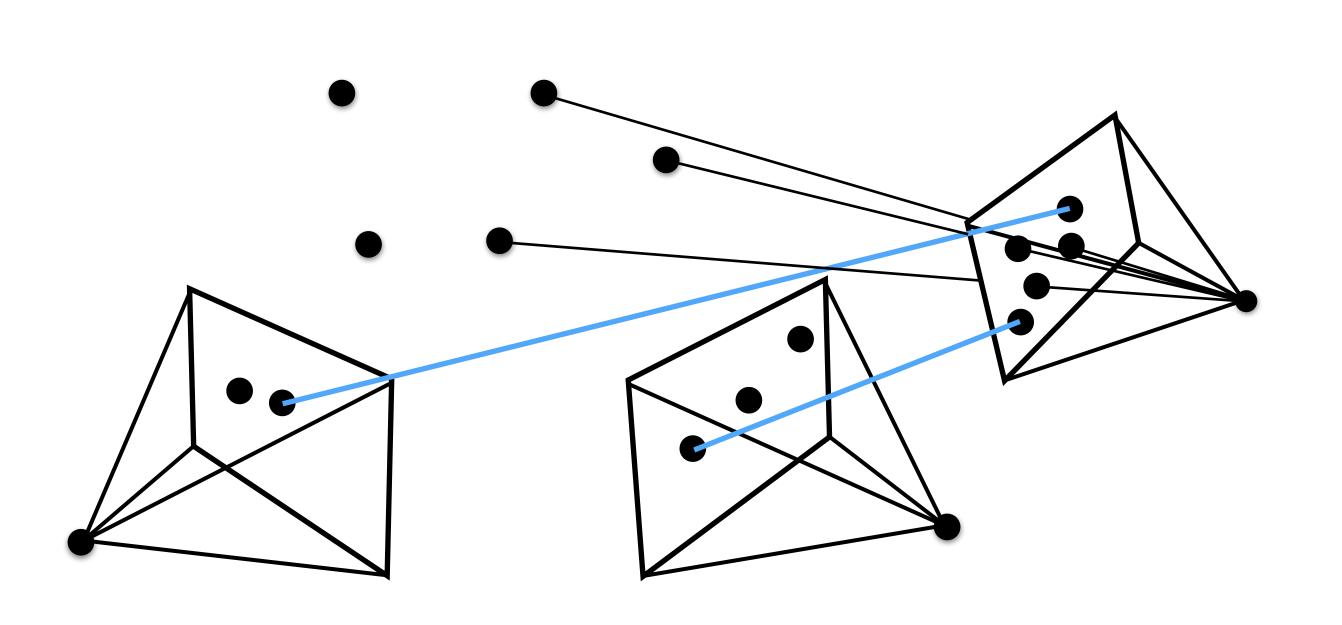


- Pick image(s) with large number of matches to existing cameras
- Obtain 2D-3D matches from 2D-2D matches
- Estimate absolute pose of new image



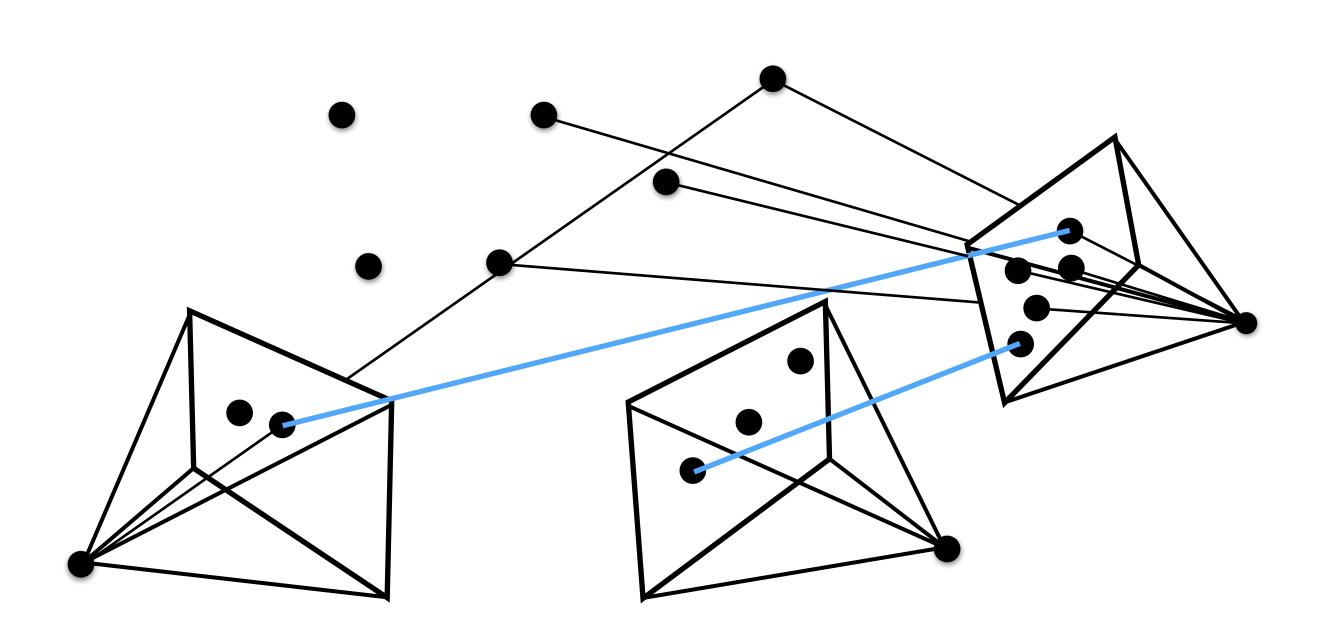


- Pick image(s) with large number of matches to existing cameras
- Obtain 2D-3D matches from 2D-2D matches
- Estimate absolute pose of new image



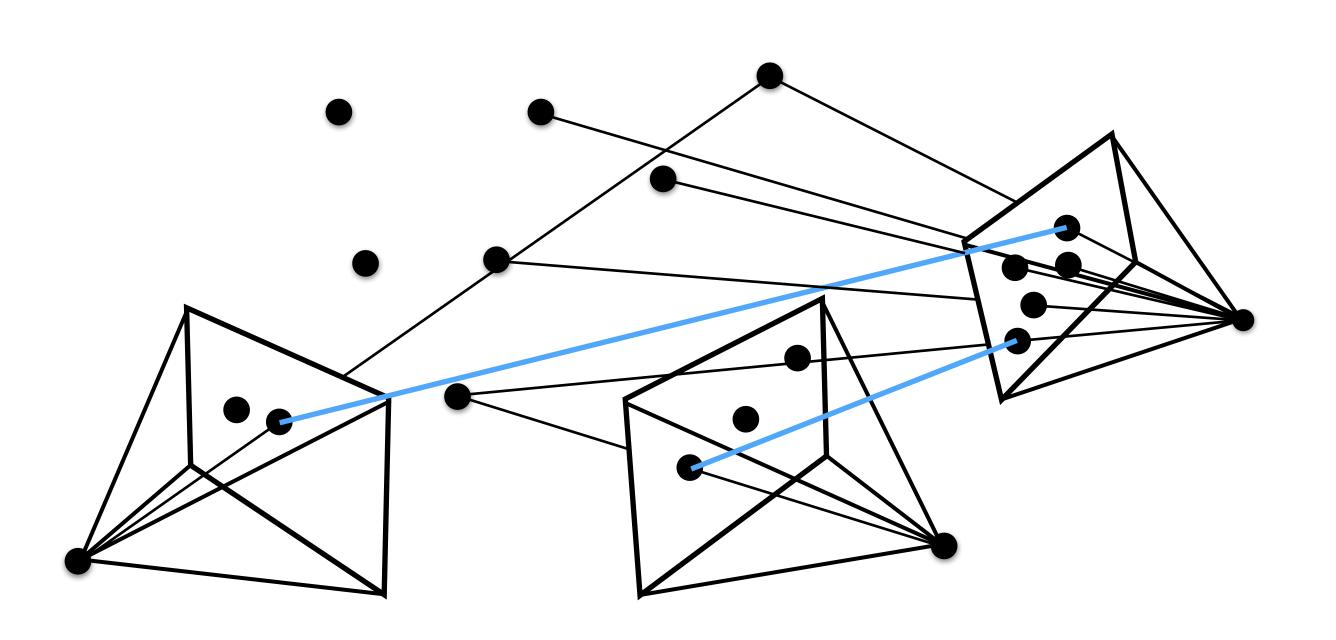
Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure**

- Associate existing 3D points with new features
- Triangulate new 3D points for features without associated 3D points



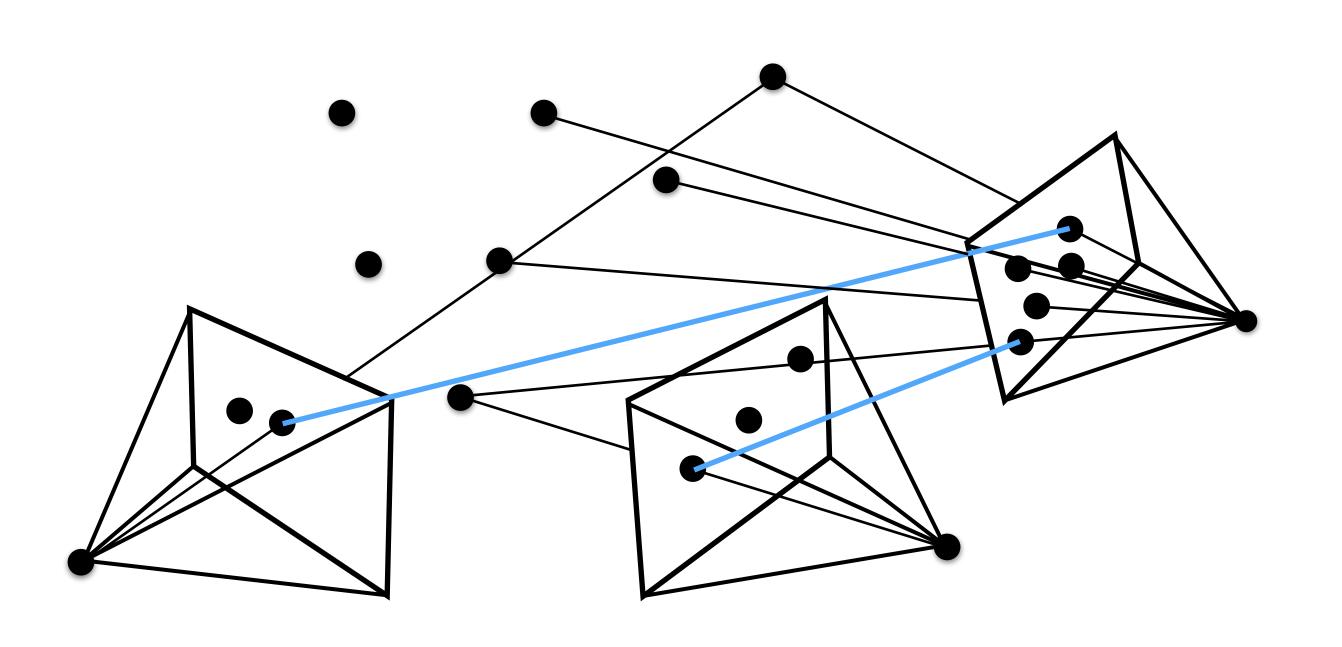
Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure**

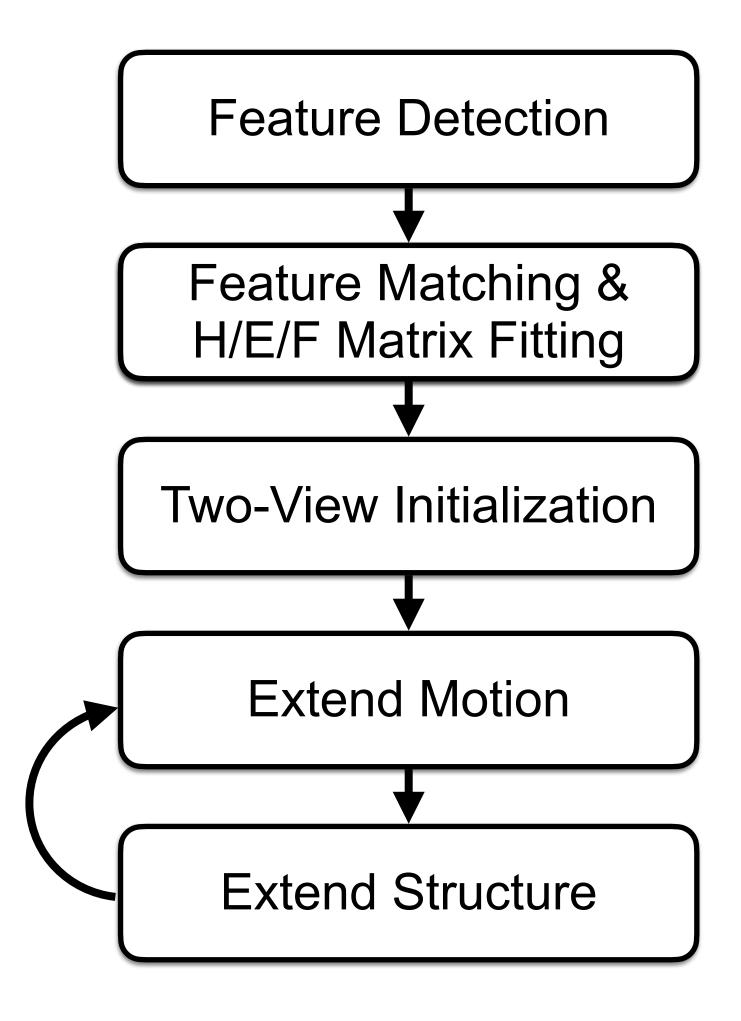
- Associate existing 3D points with new features
- Triangulate new 3D points for features without associated 3D points



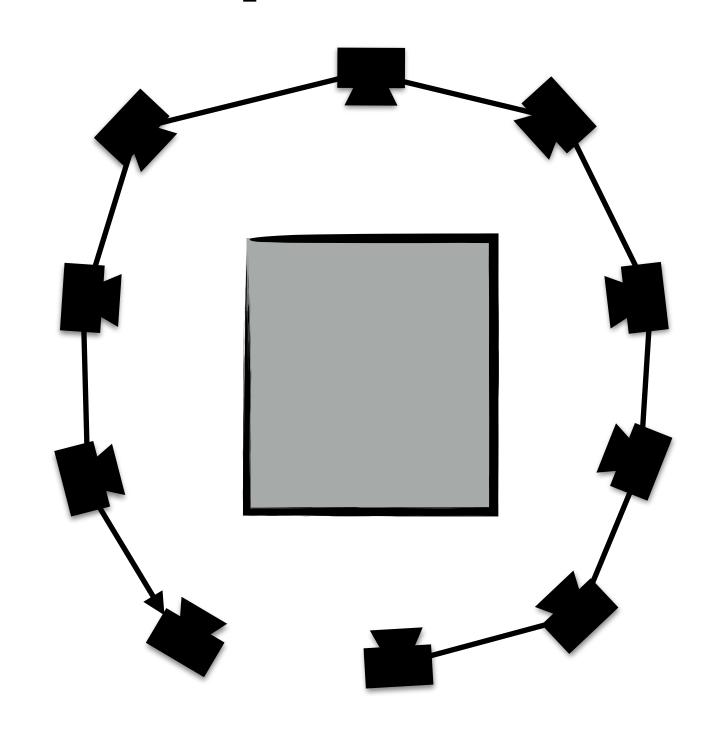
Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure**

- Associate existing 3D points with new features
- Triangulate new 3D points for features without associated 3D points

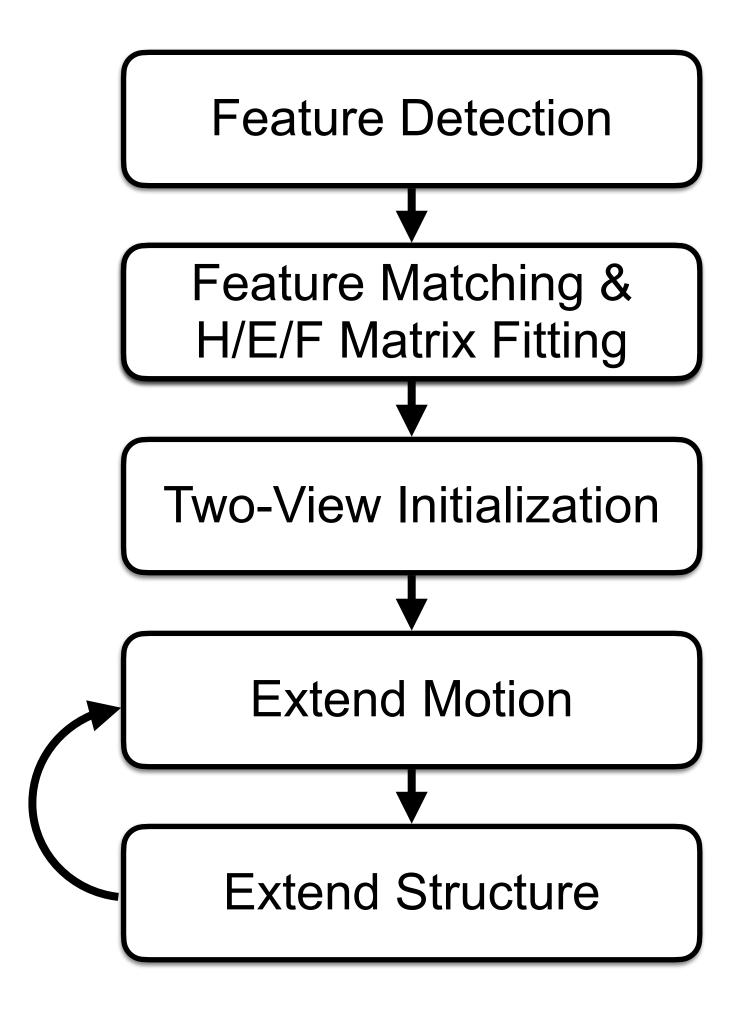


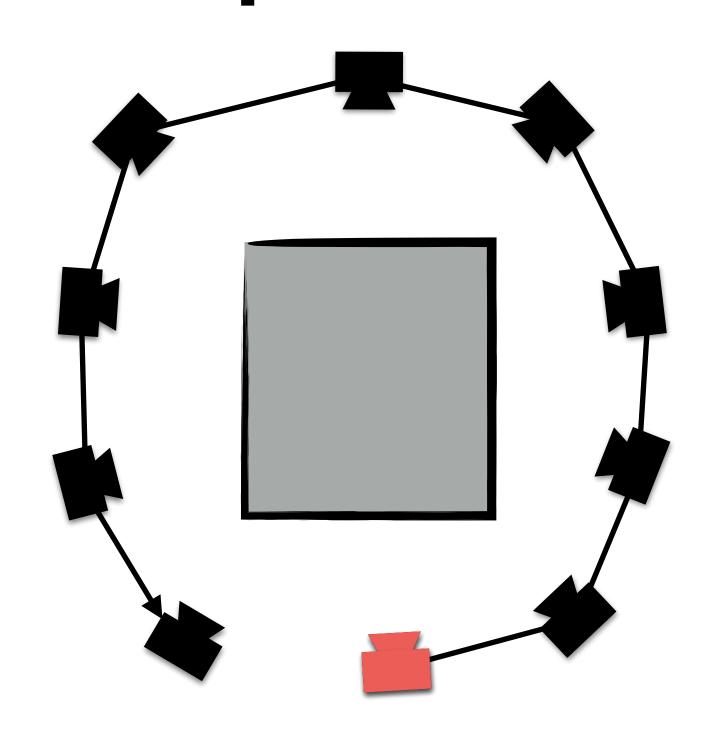


- Associate existing 3D points with new features
- Triangulate new 3D points for features without associated 3D points

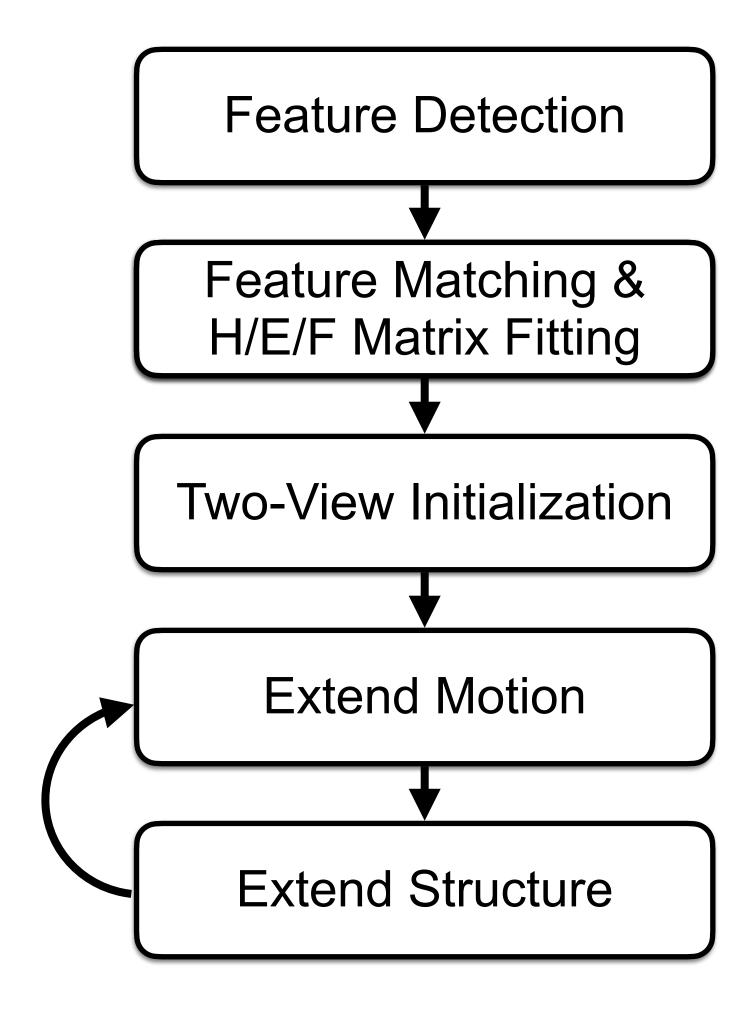


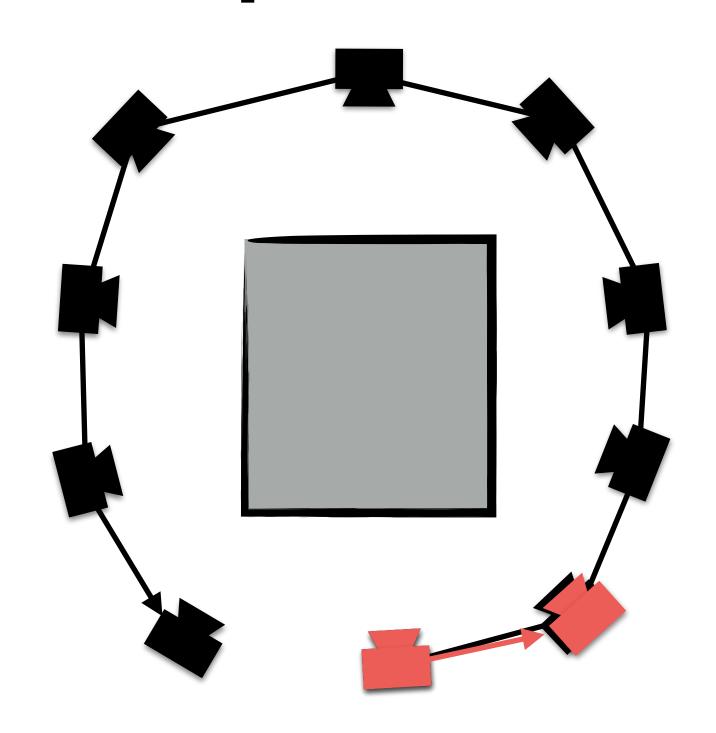
True trajectory



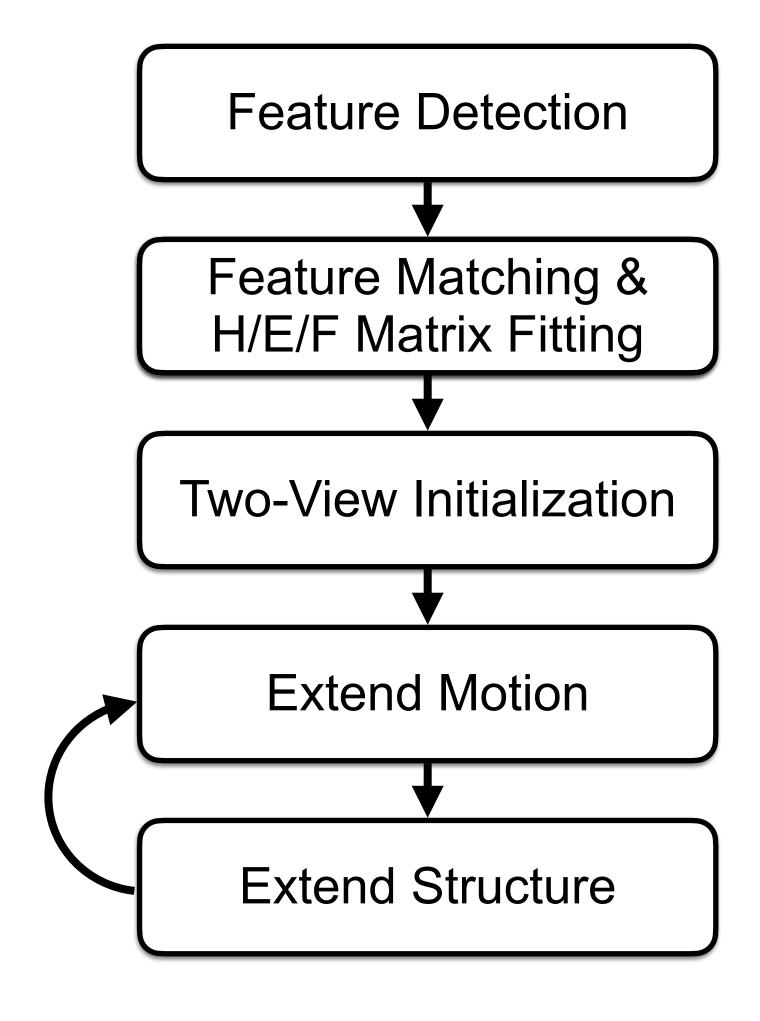


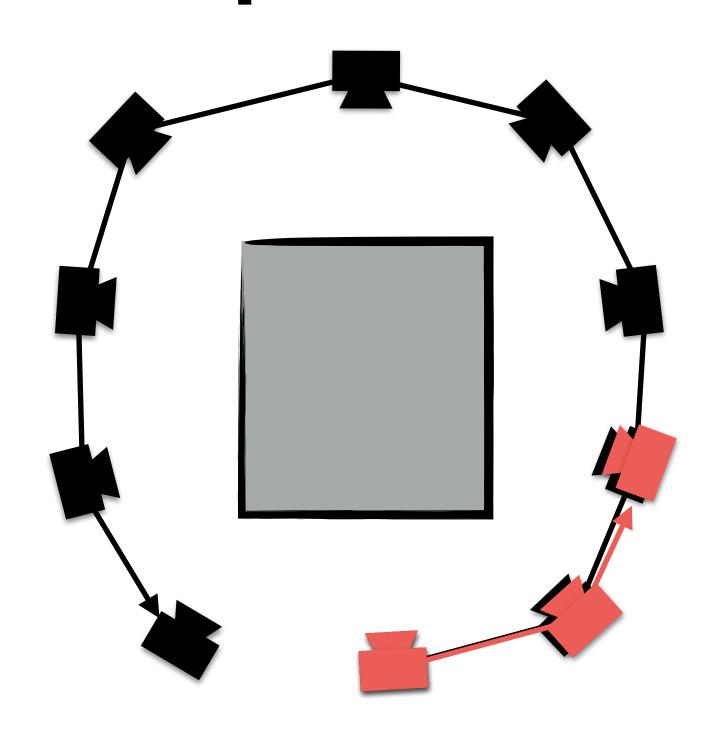
True trajectory
Estimated trajectory



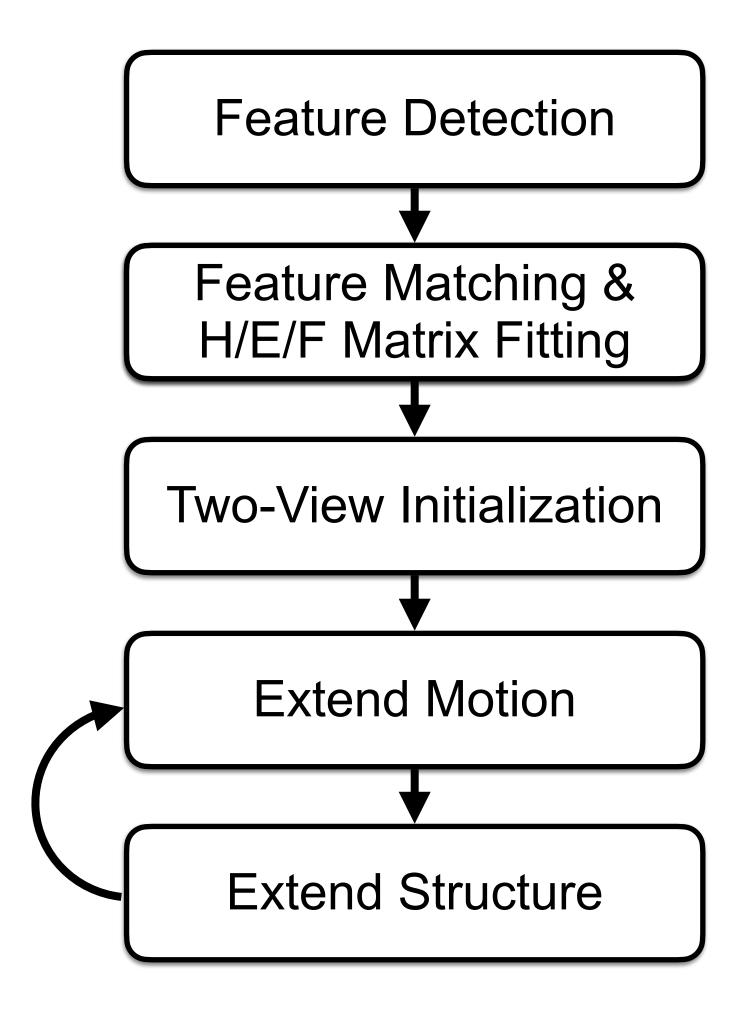


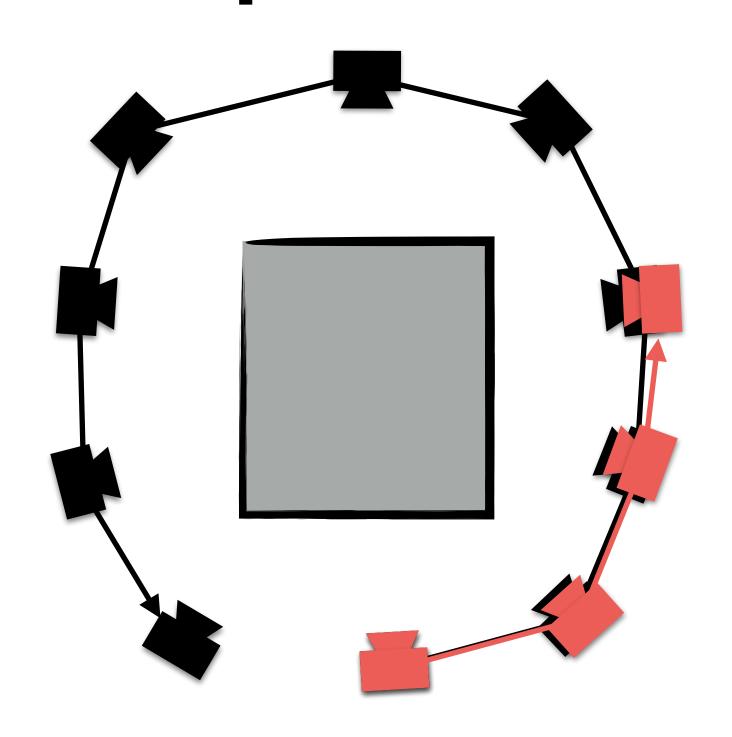
True trajectory
Estimated trajectory



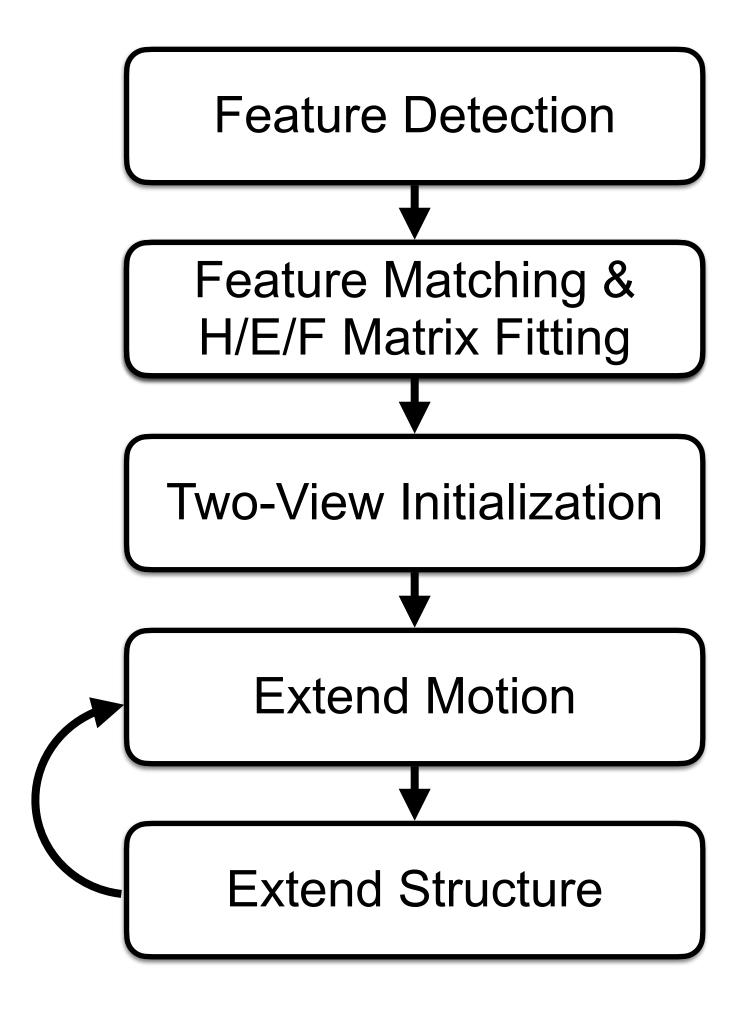


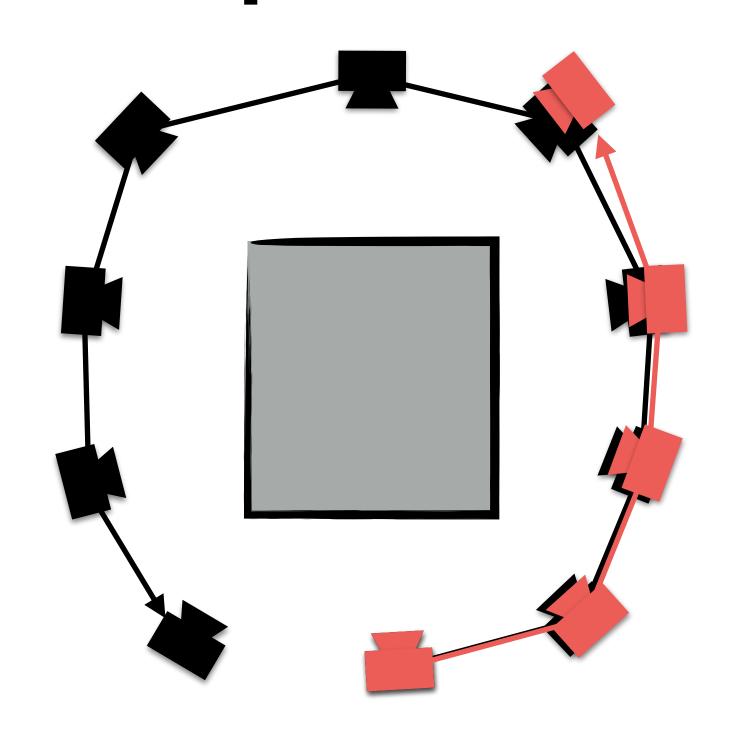
True trajectory
Estimated trajectory



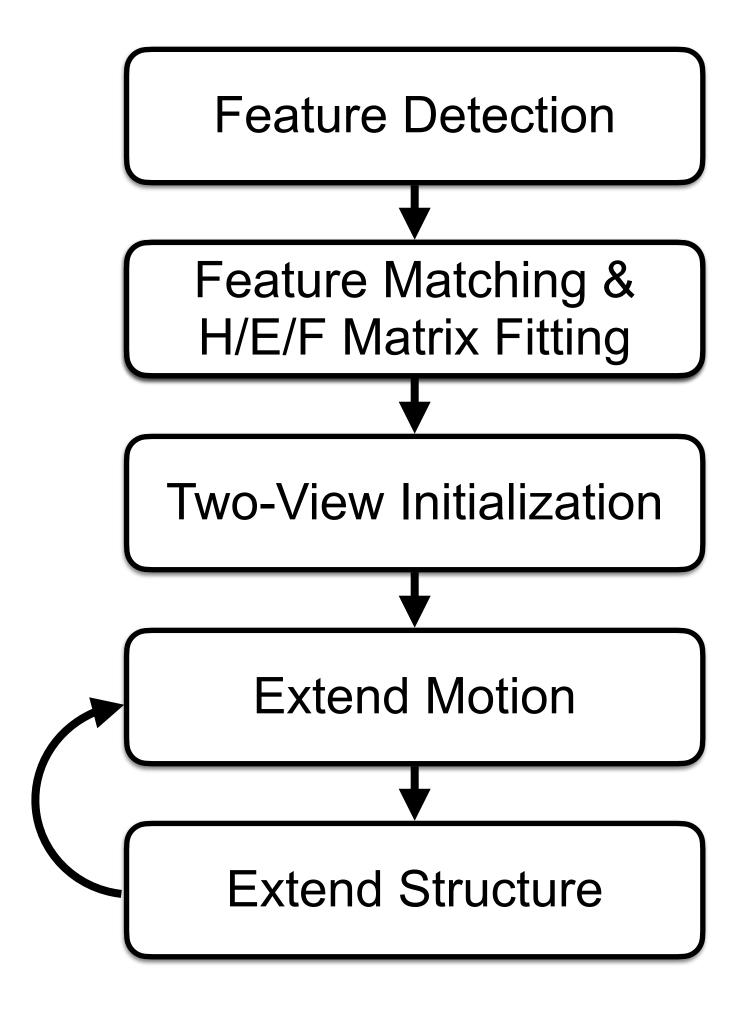


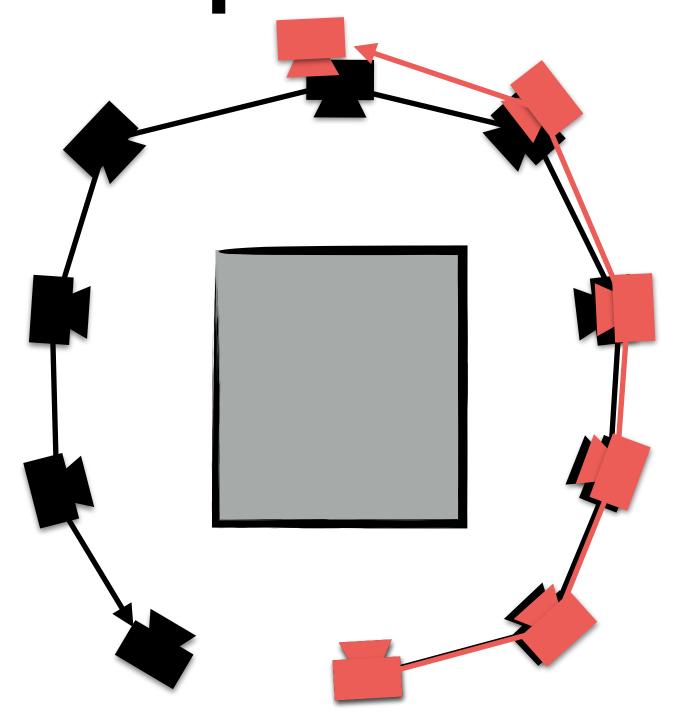
True trajectory
Estimated trajectory



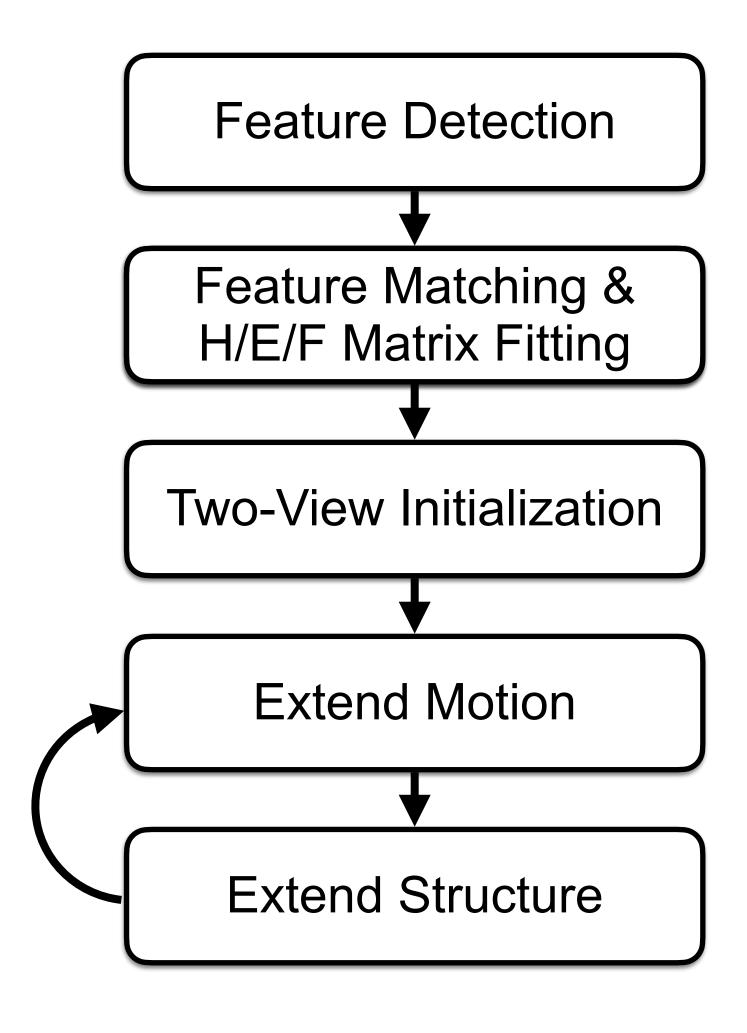


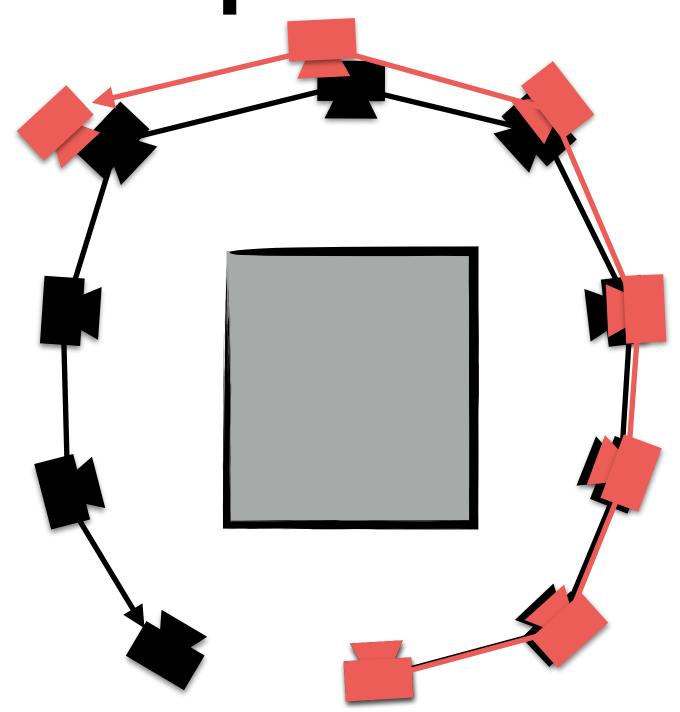
True trajectory
Estimated trajectory



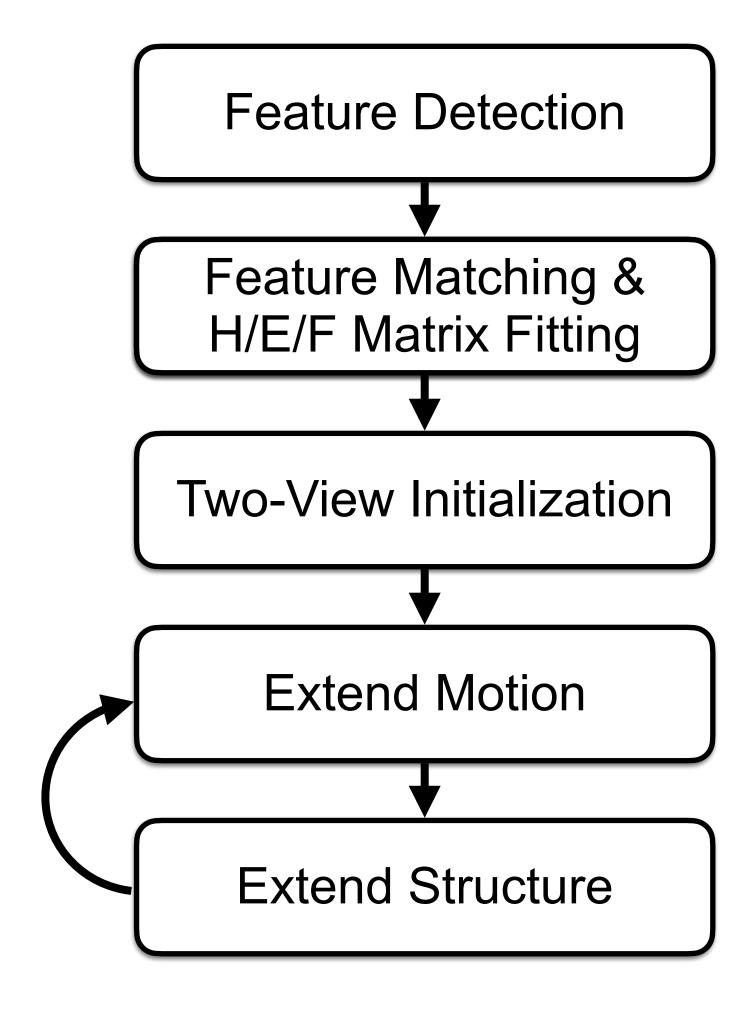


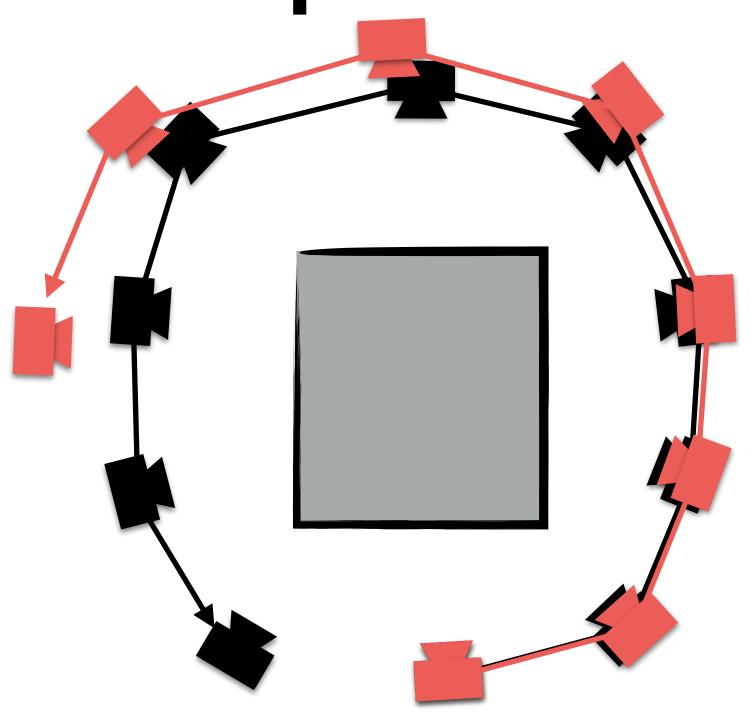
True trajectory
Estimated trajectory



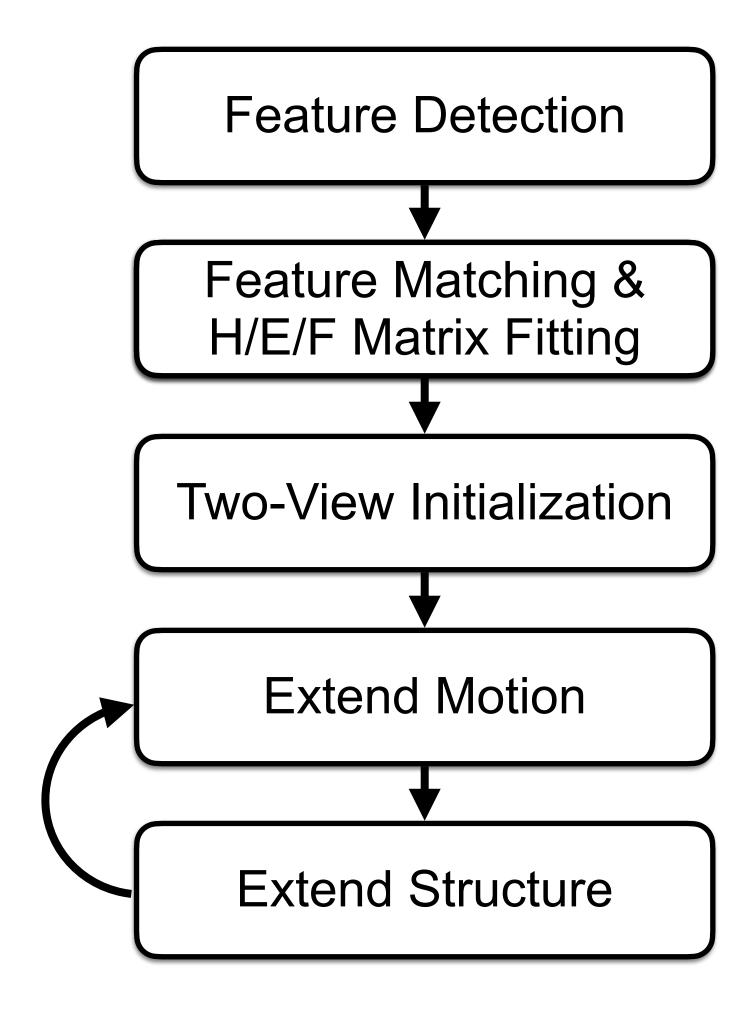


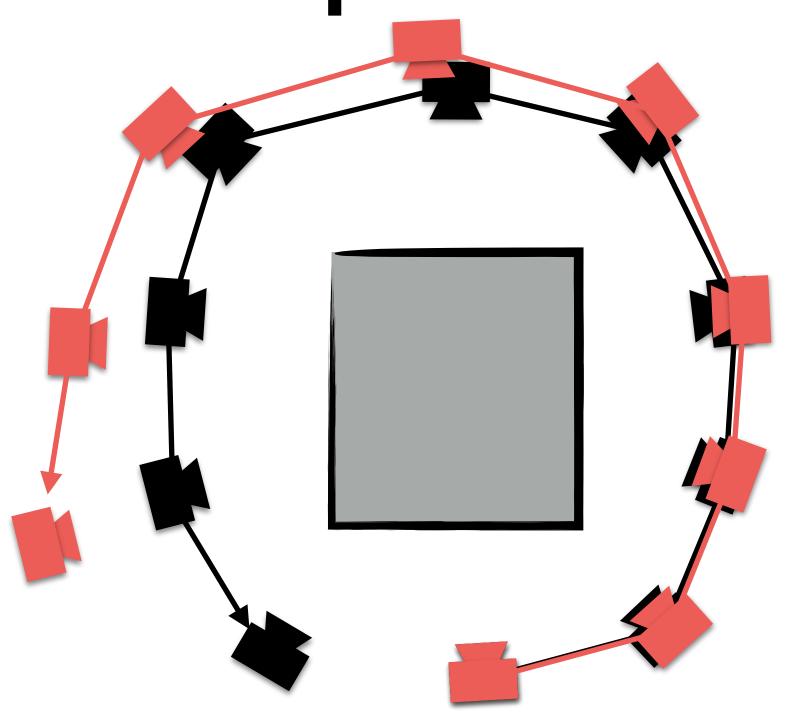
True trajectory
Estimated trajectory



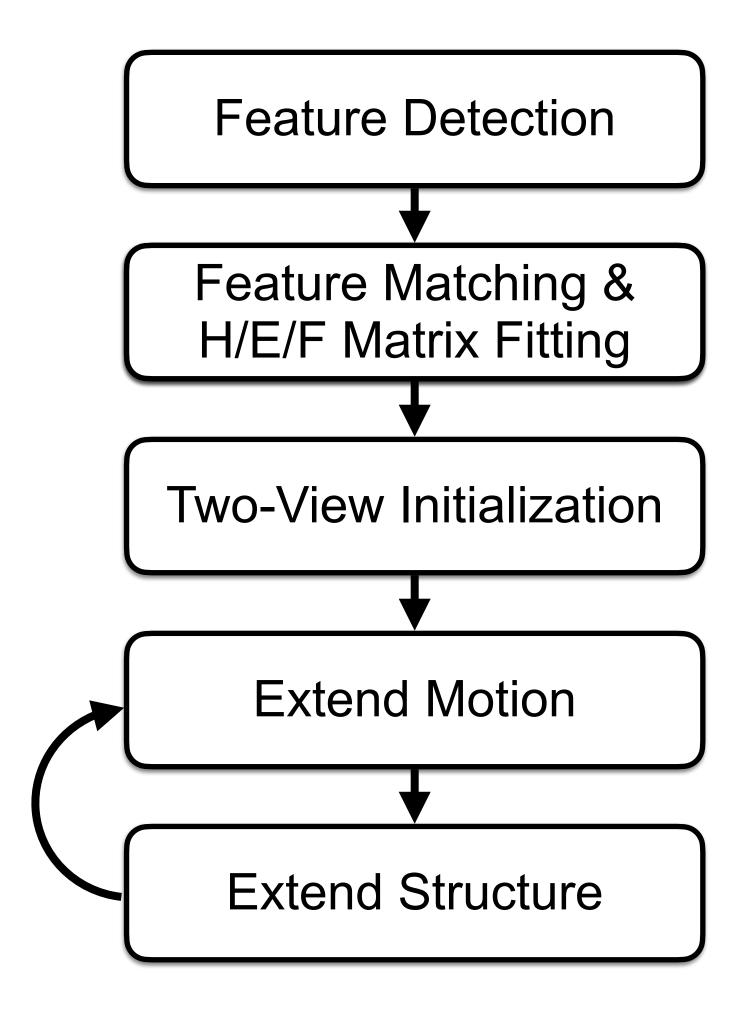


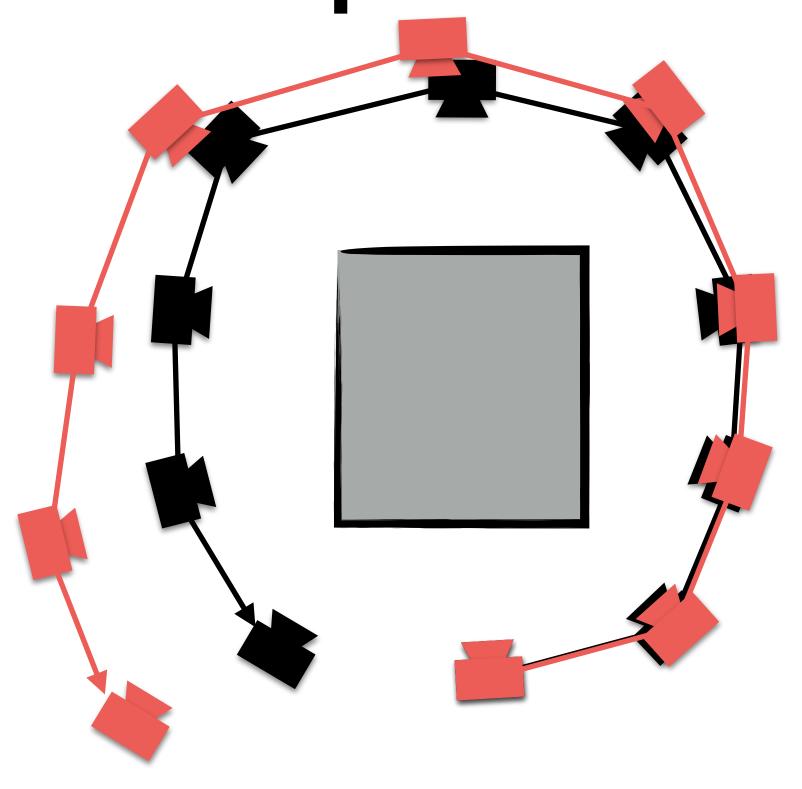
True trajectory
Estimated trajectory



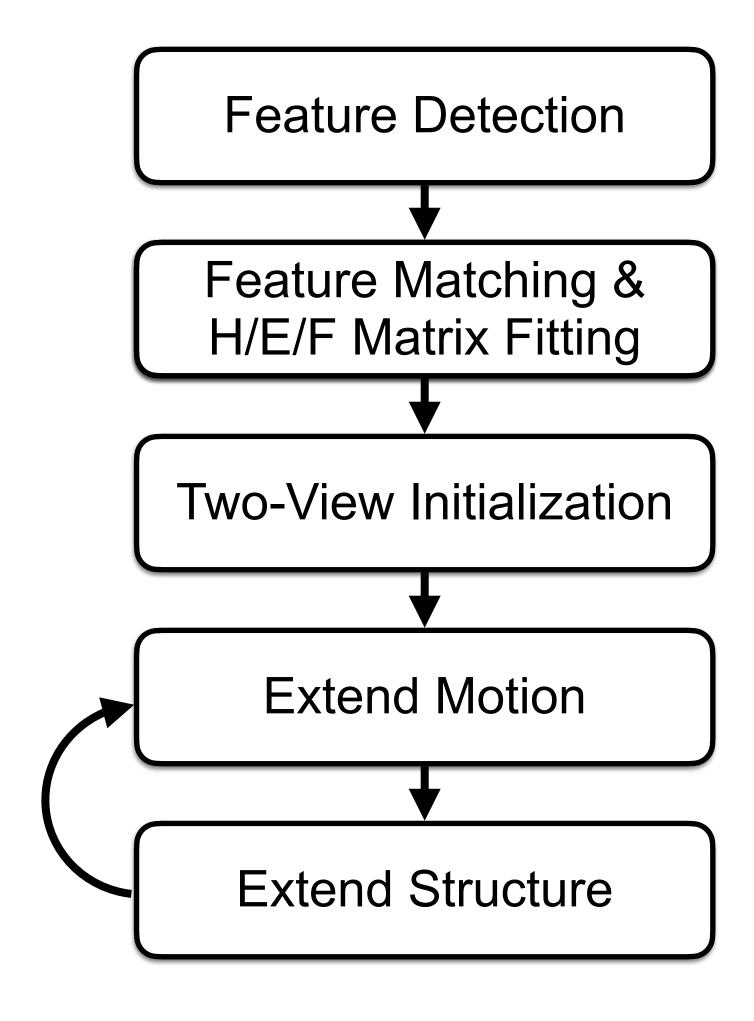


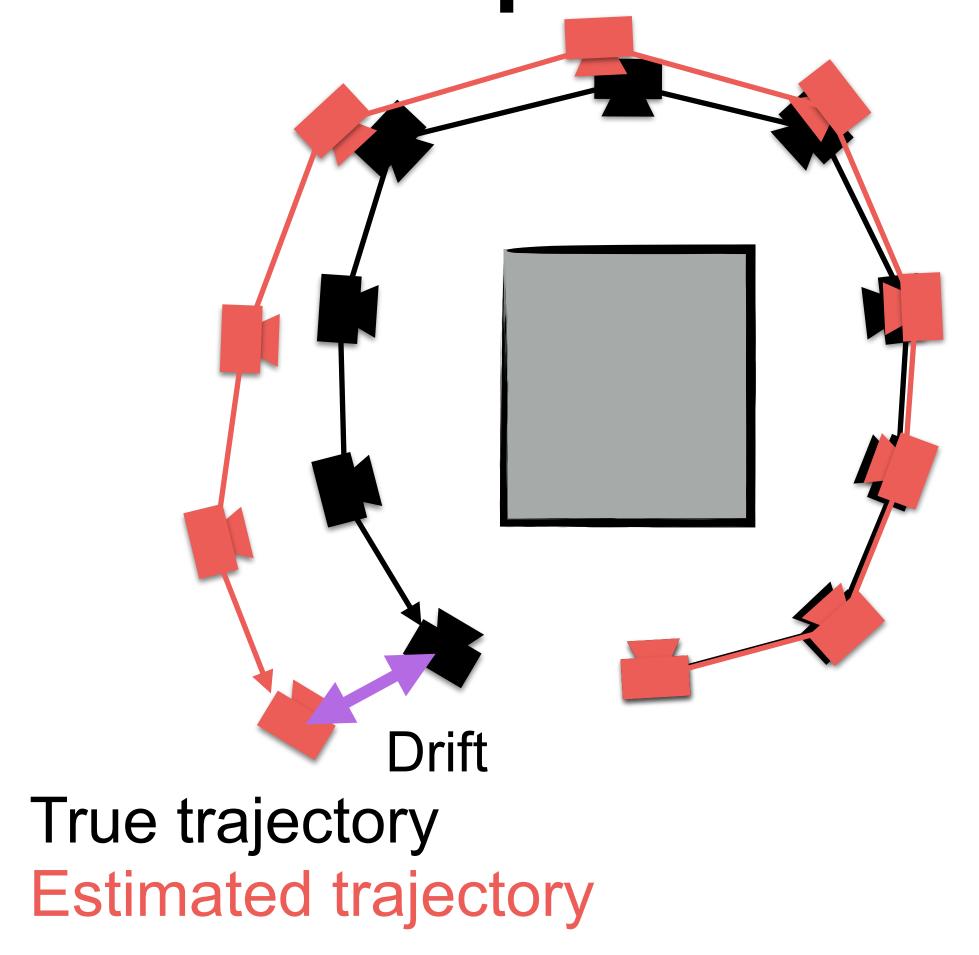
True trajectory
Estimated trajectory



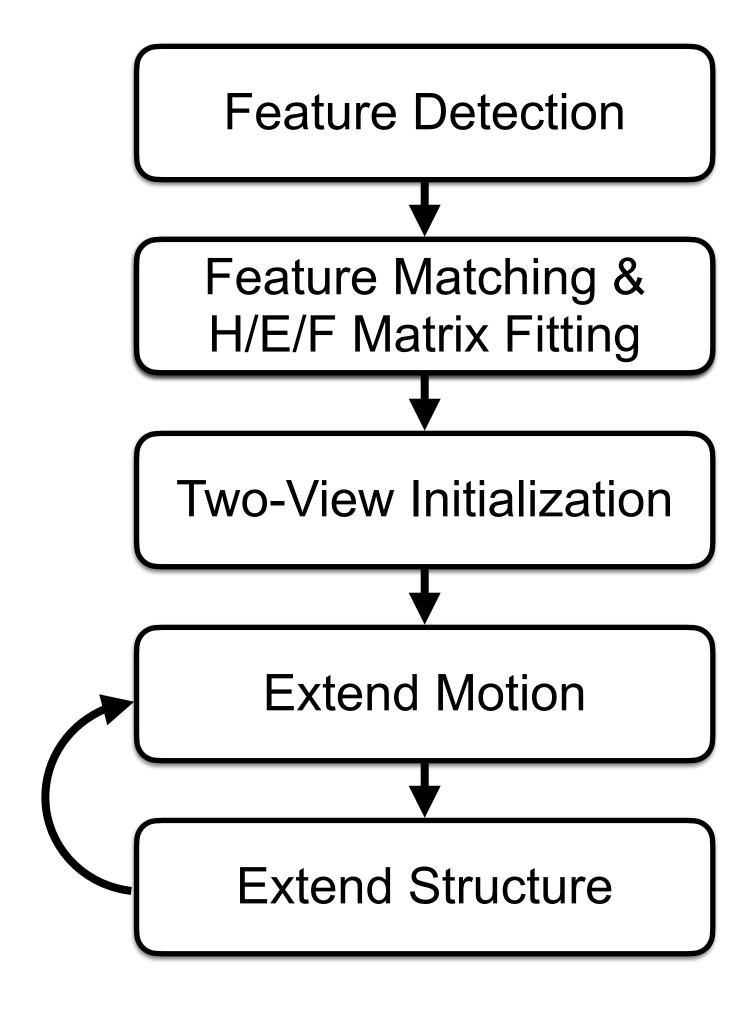


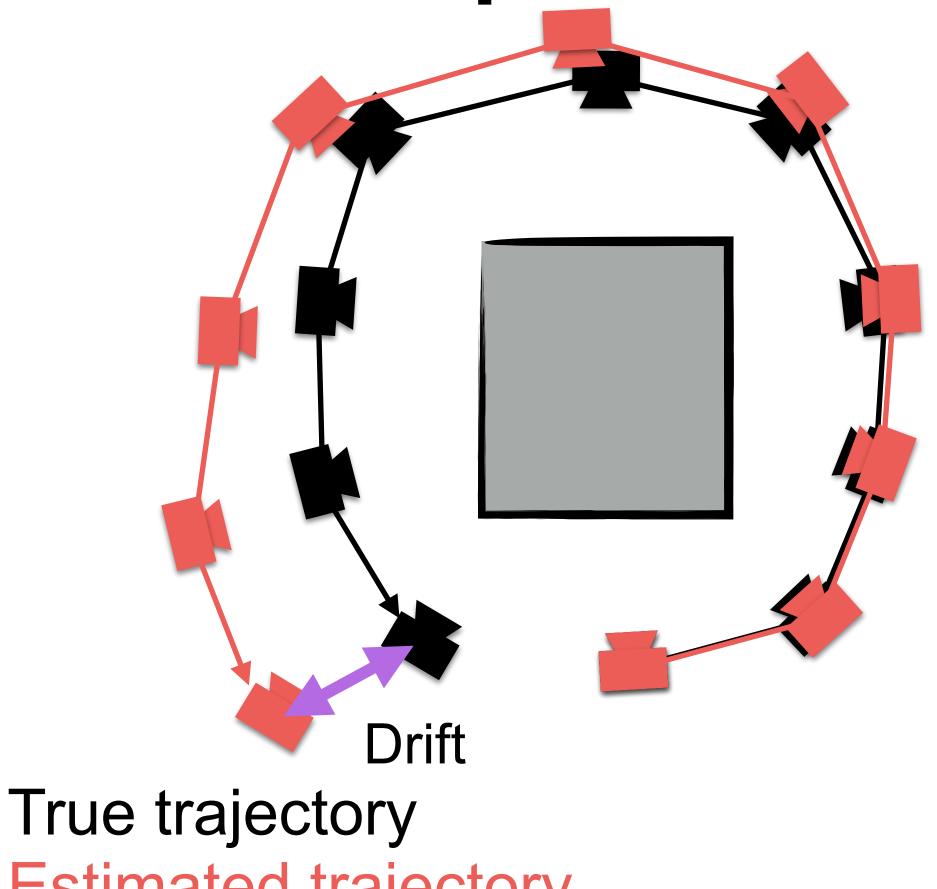
True trajectory
Estimated trajectory



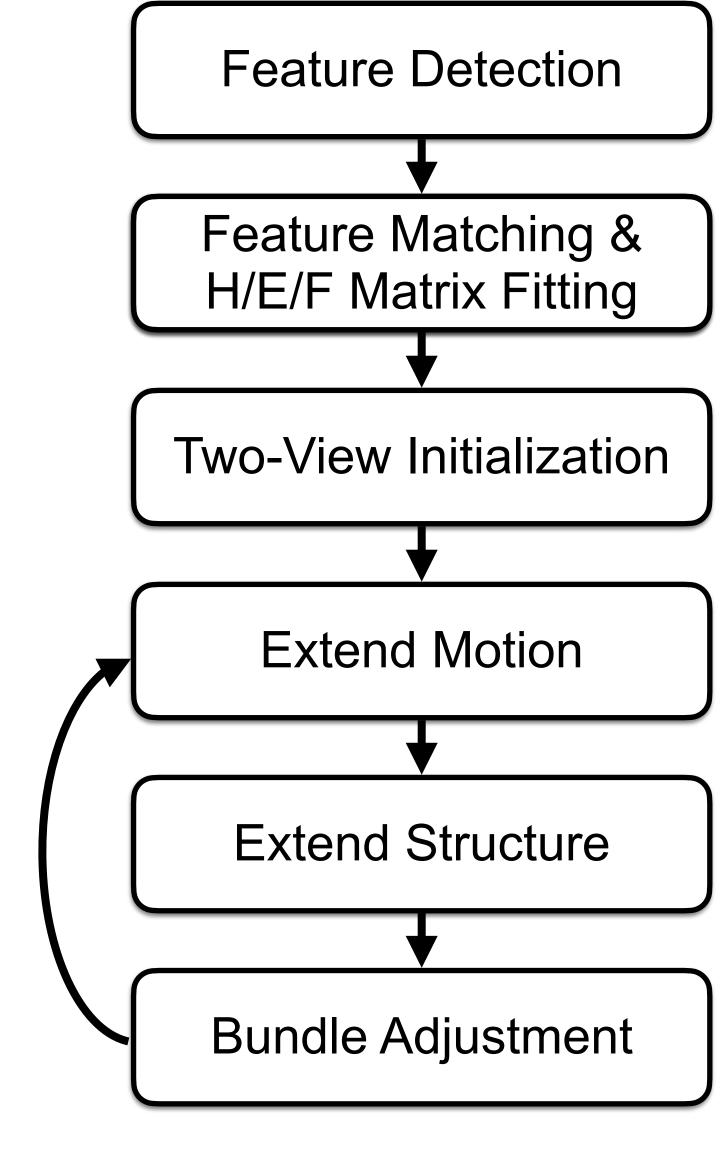


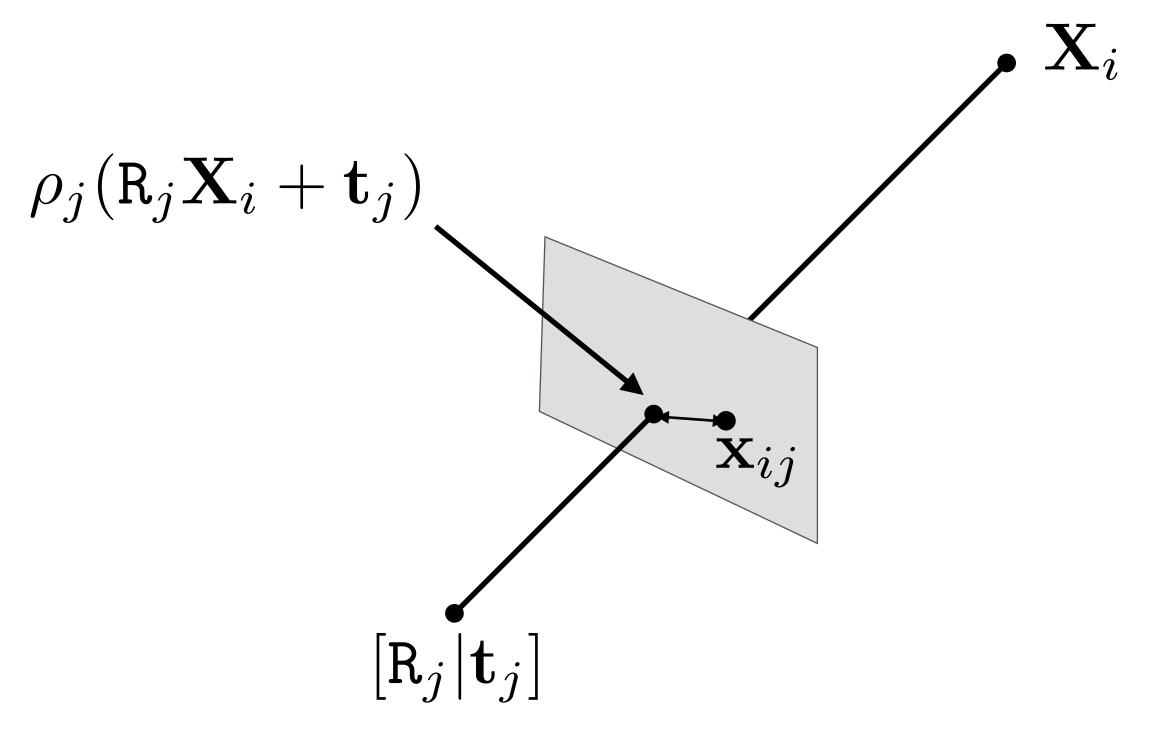
- Errors accumulate, leading to drift over time
- Adjust motion and structure frequently

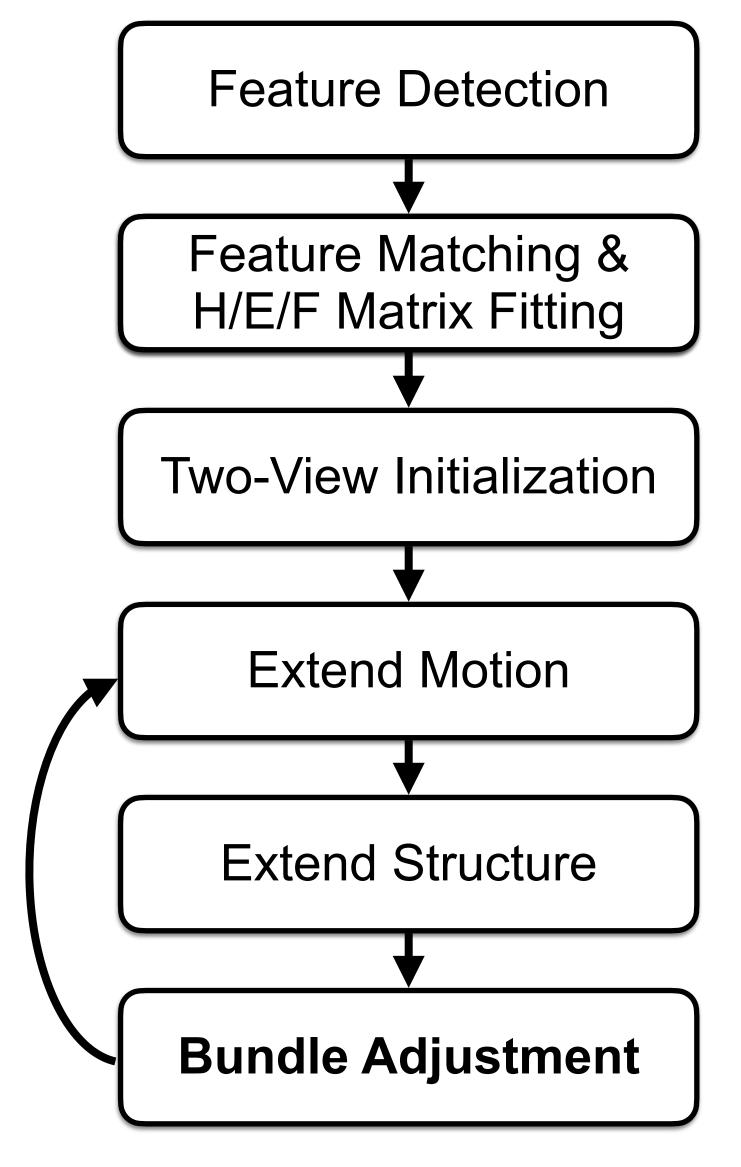


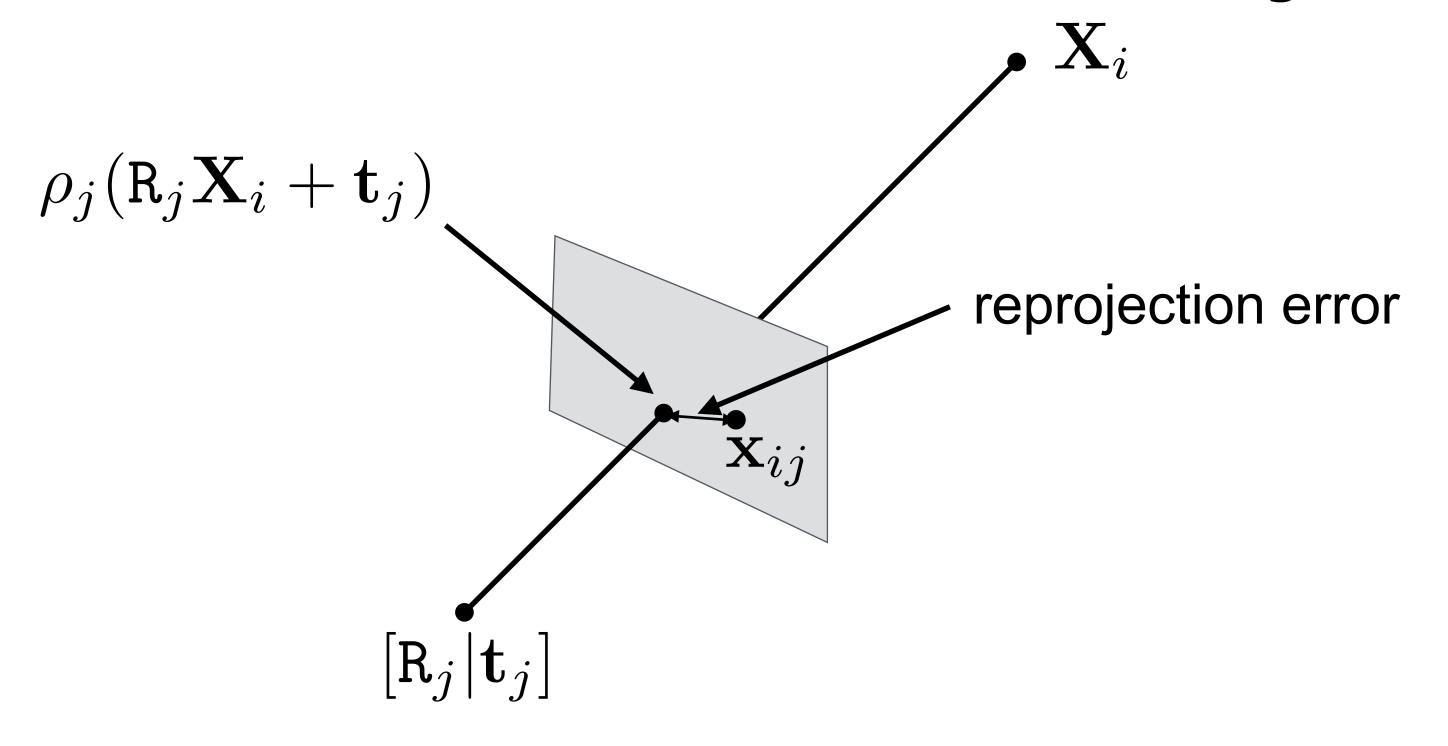


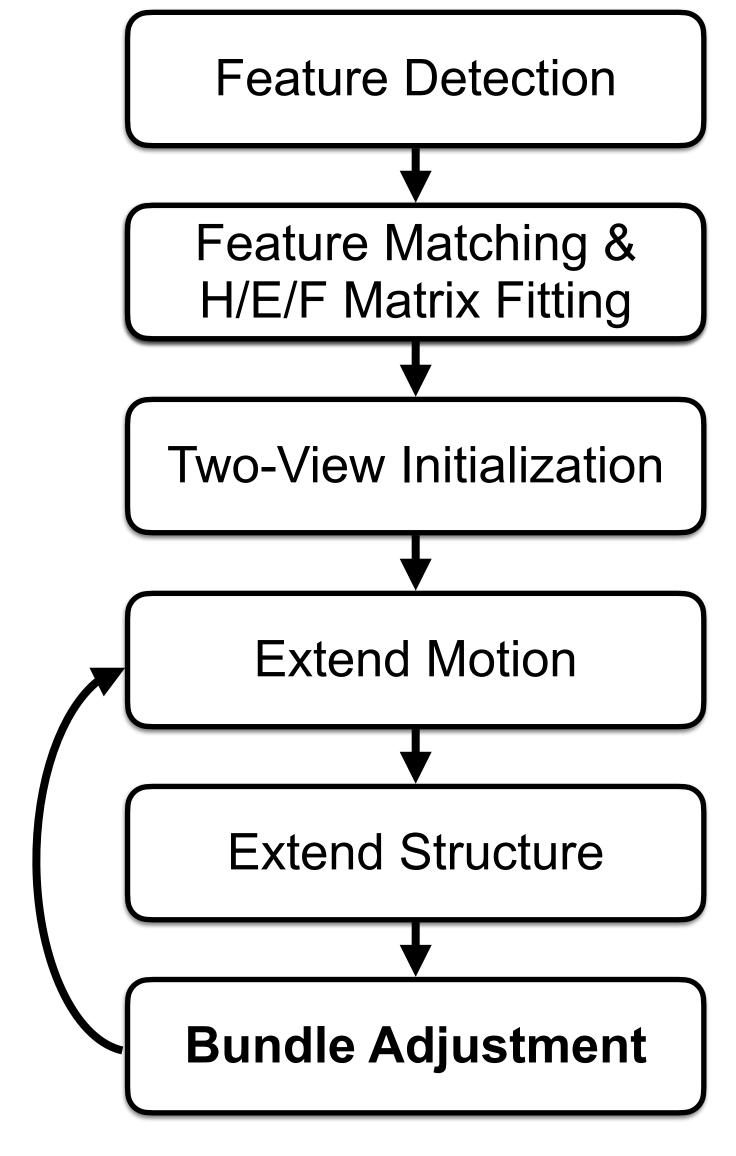
- Estimated trajectory
 - Errors accumulate, leading to drift over time
 - Adjust motion and structure frequently

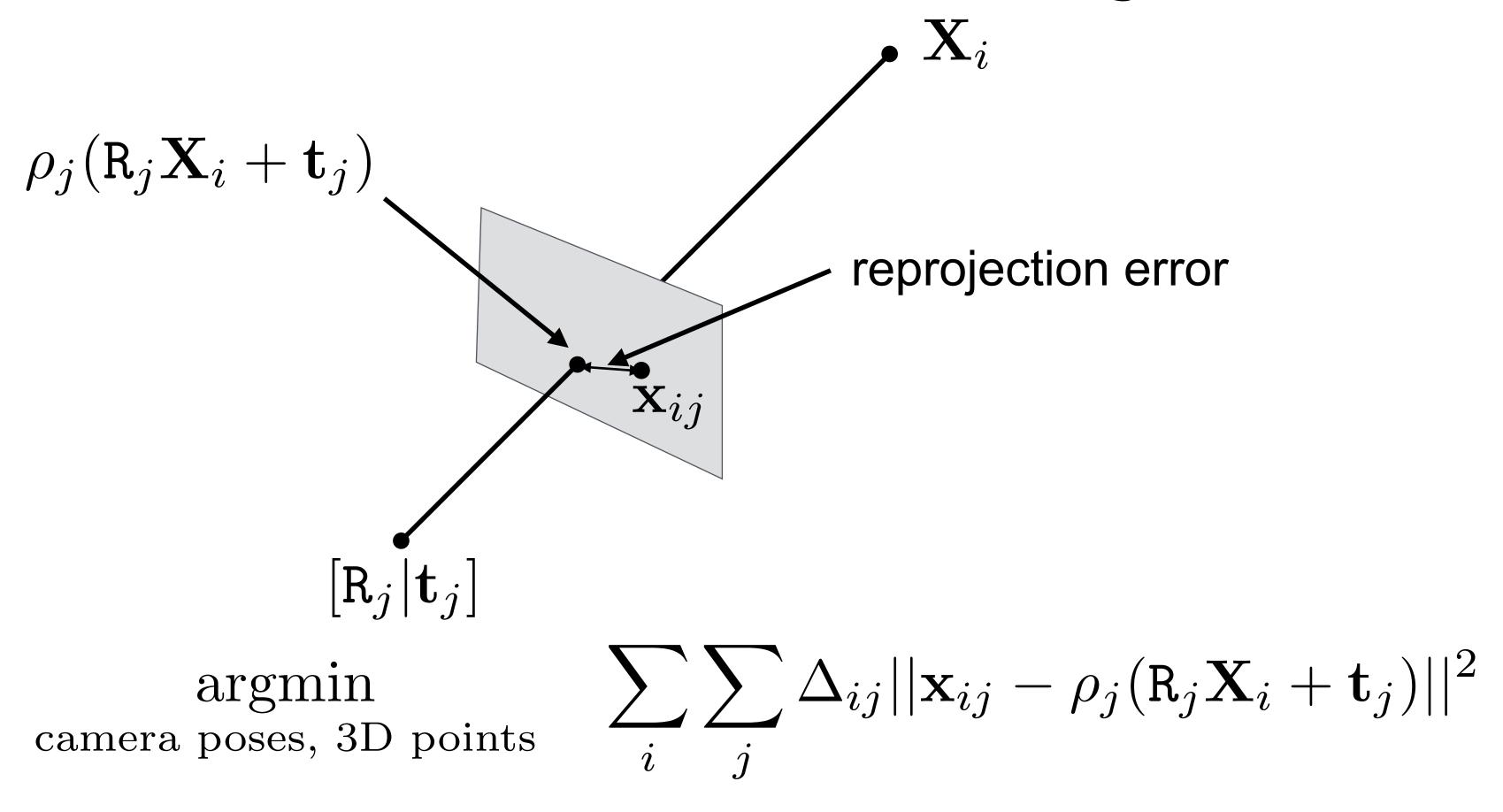


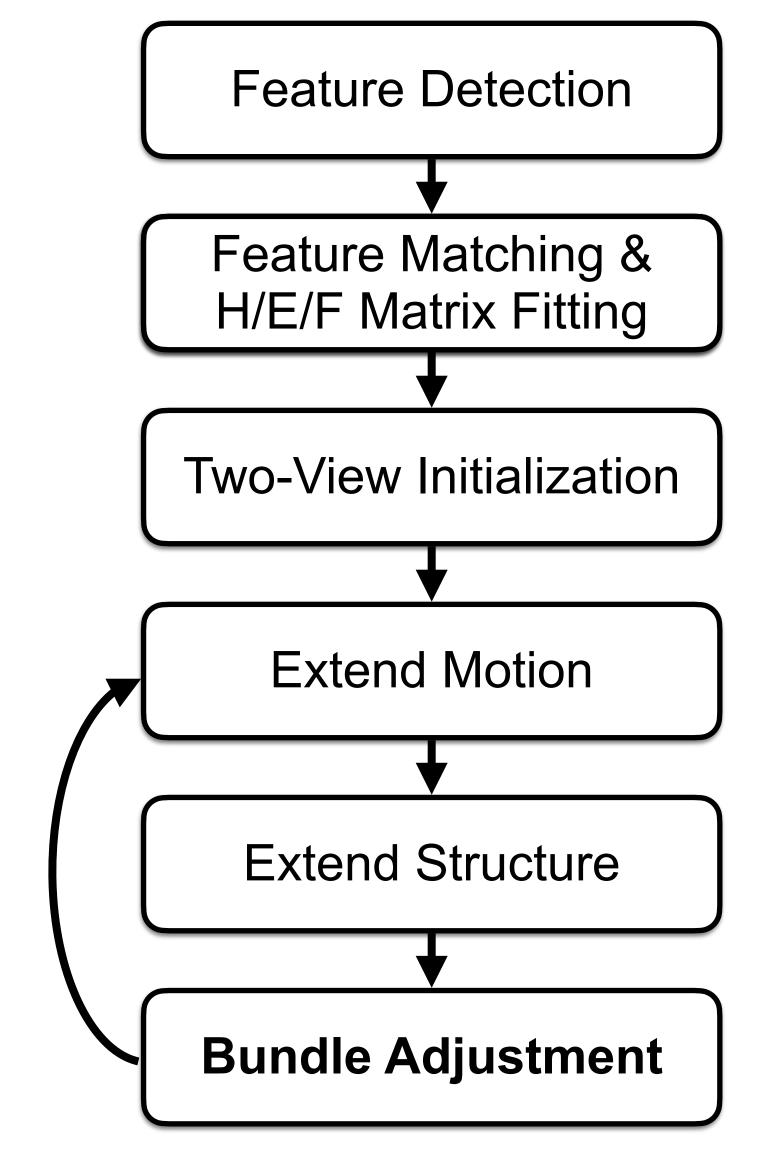


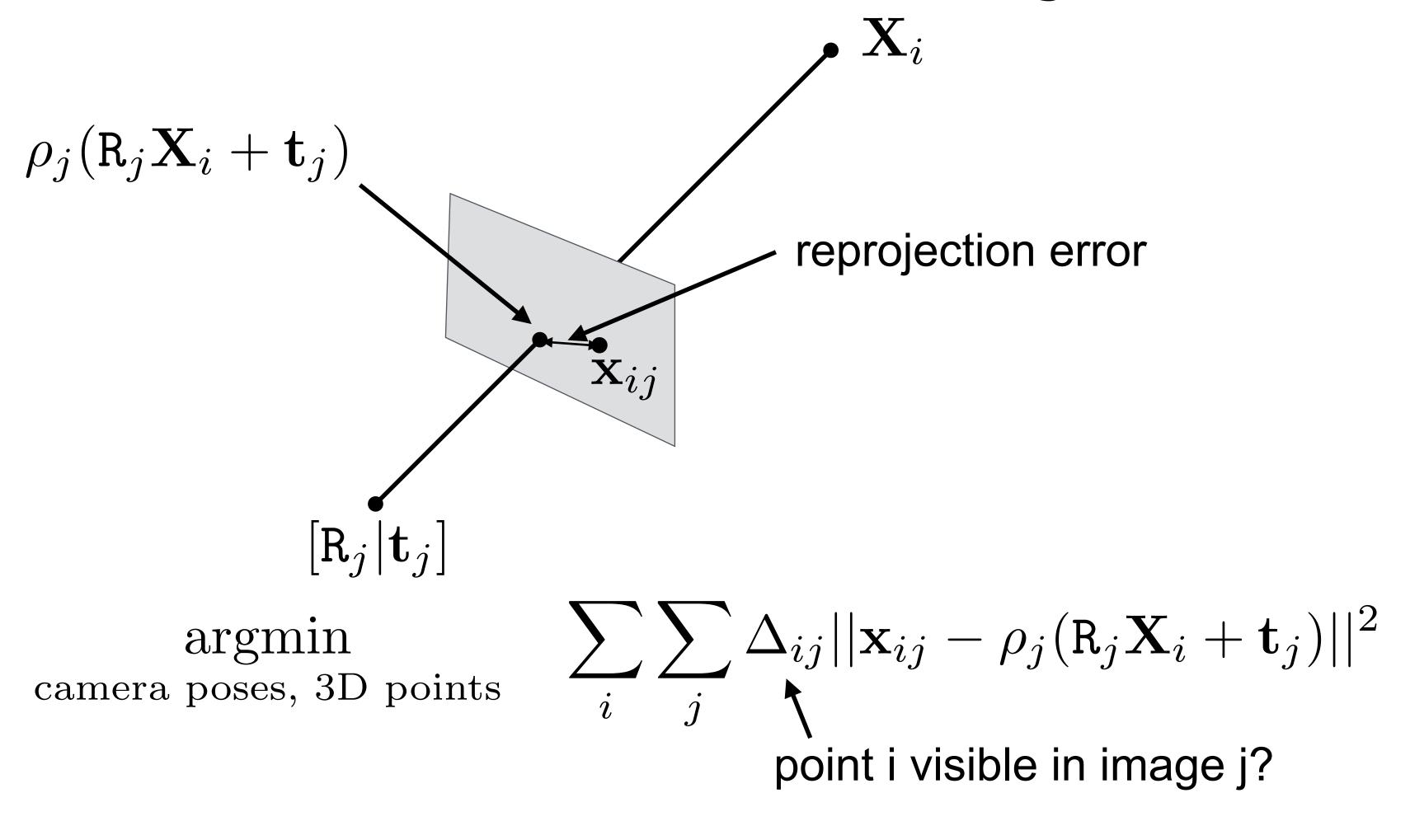


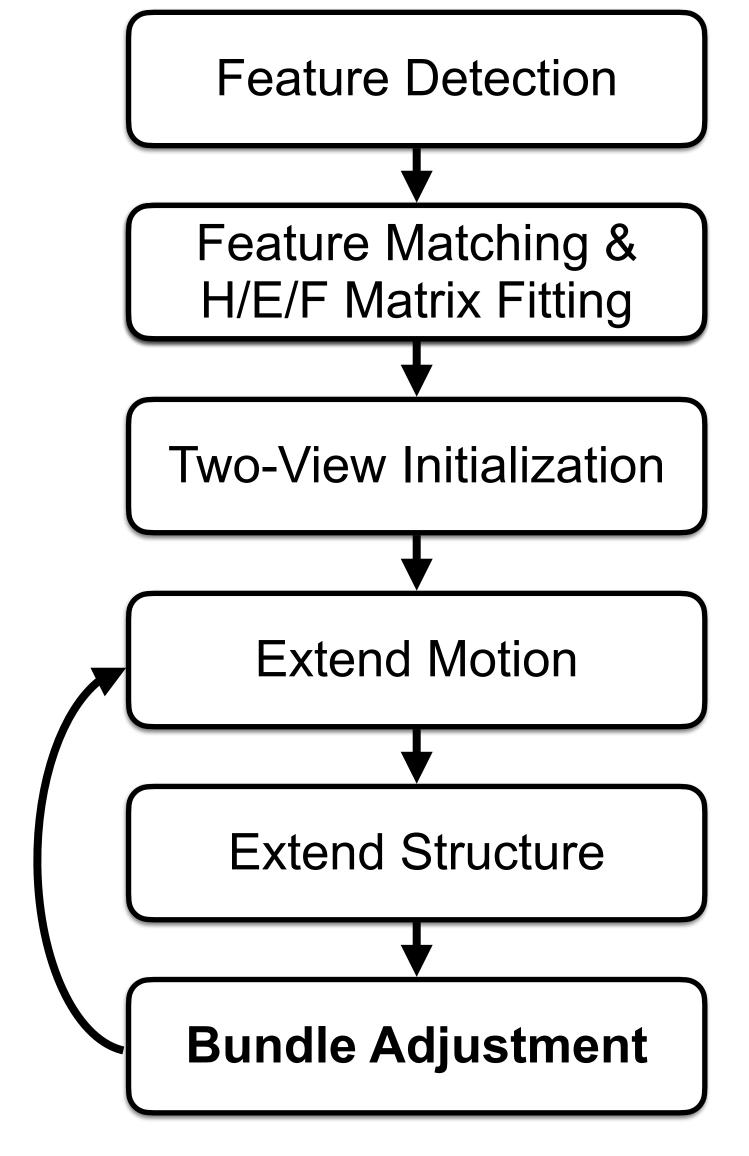


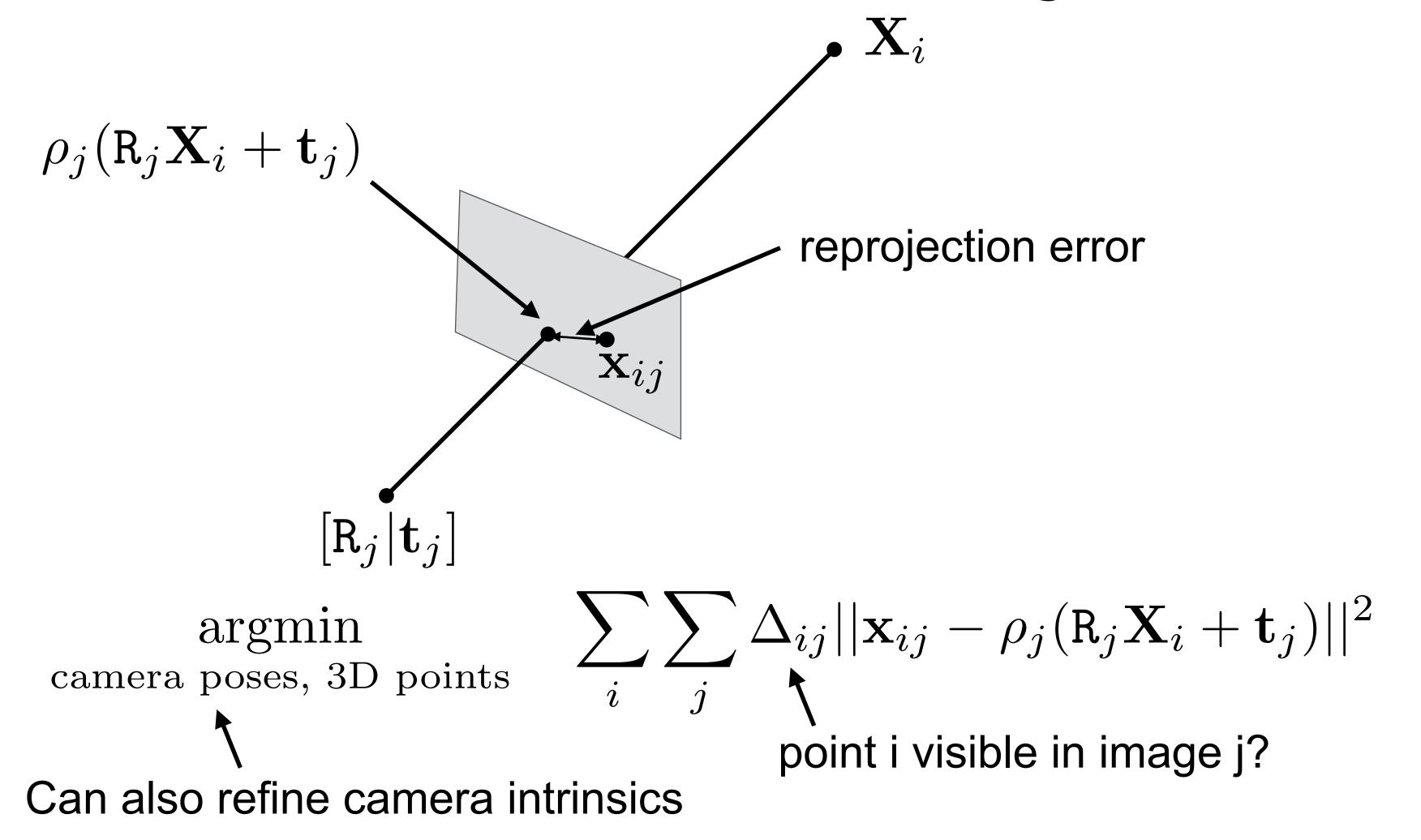


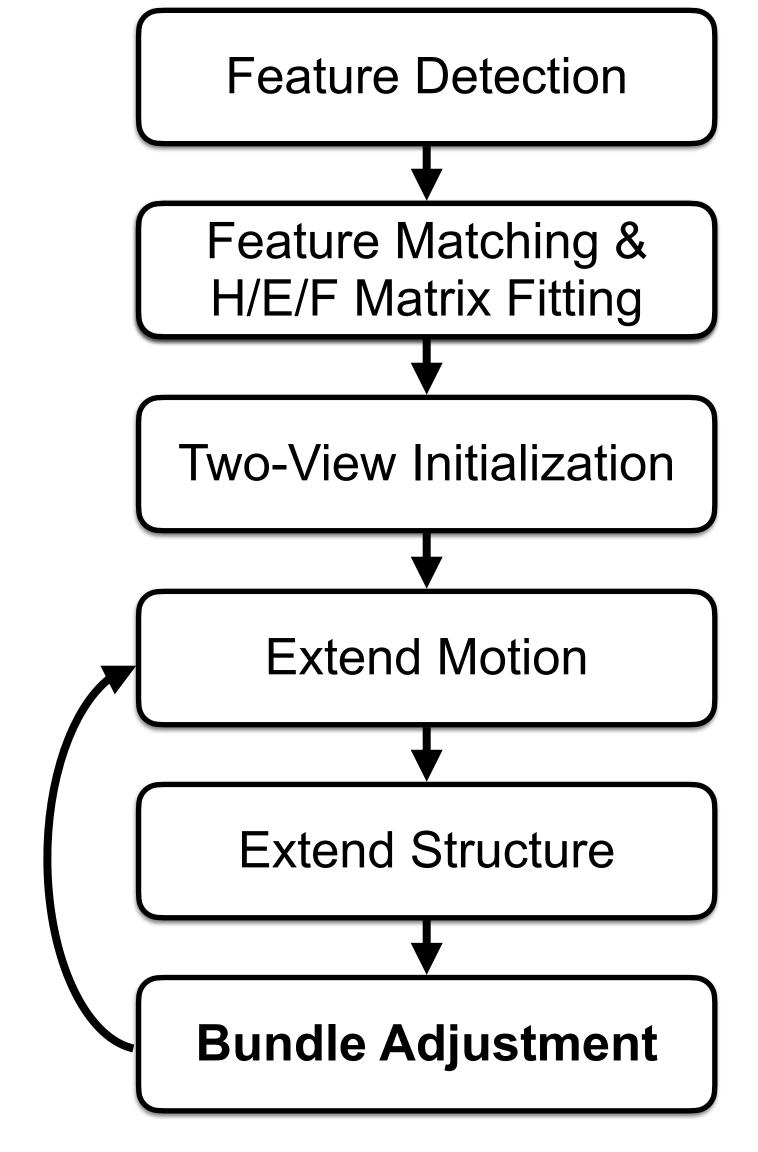


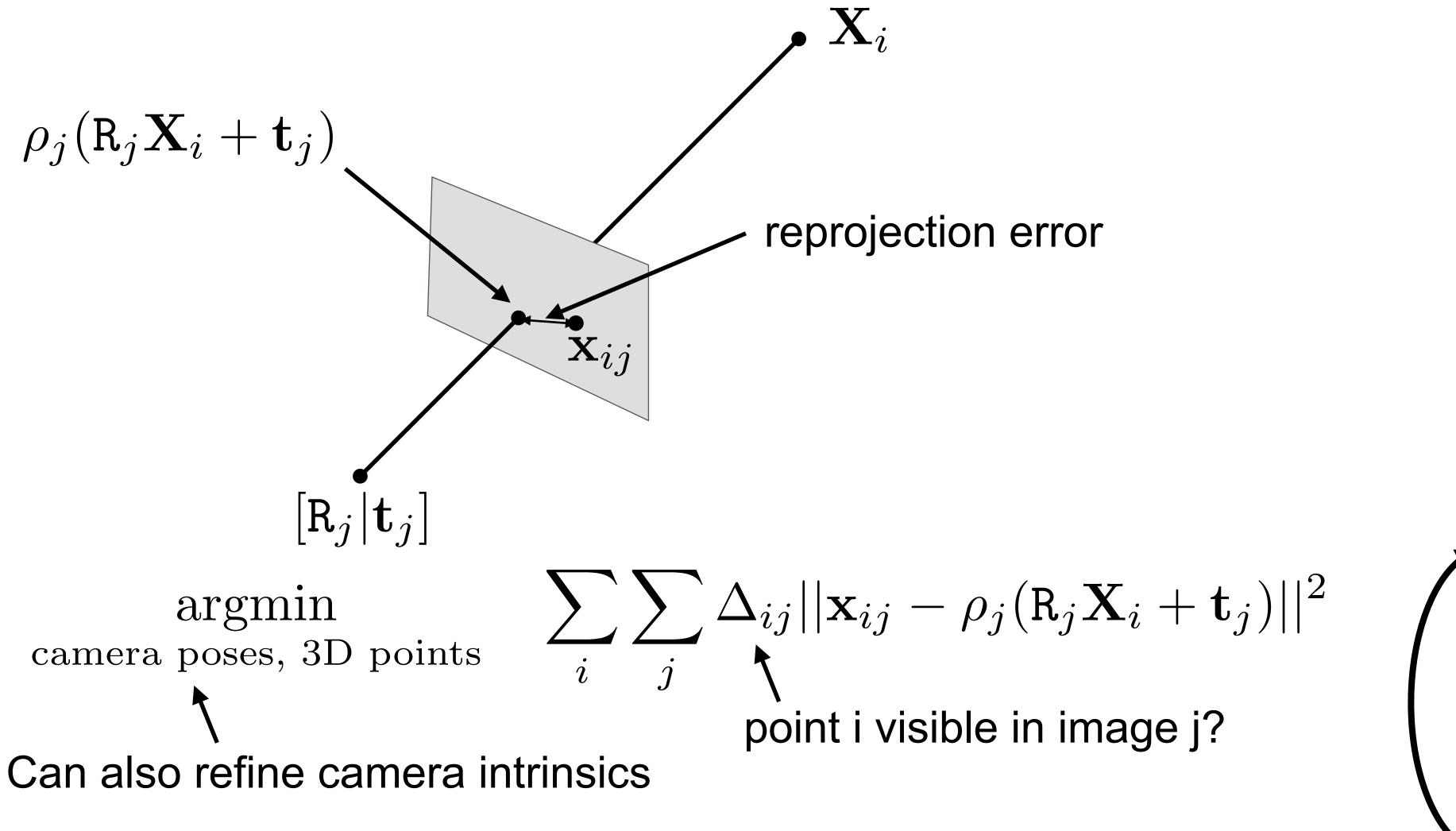




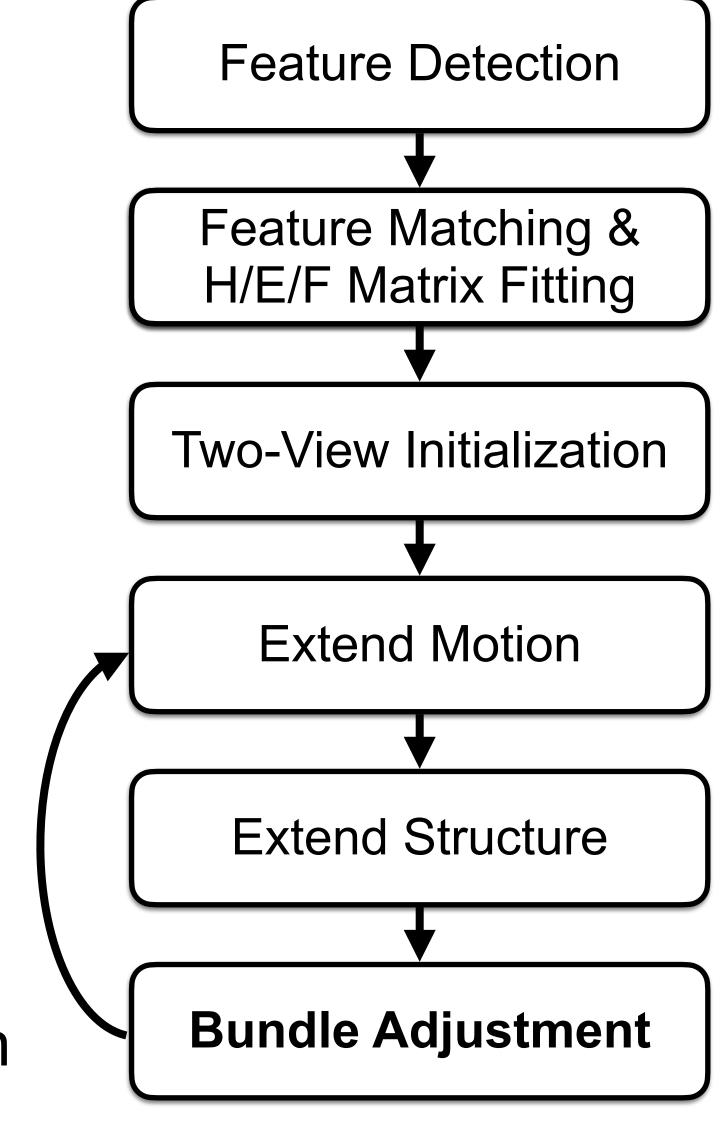






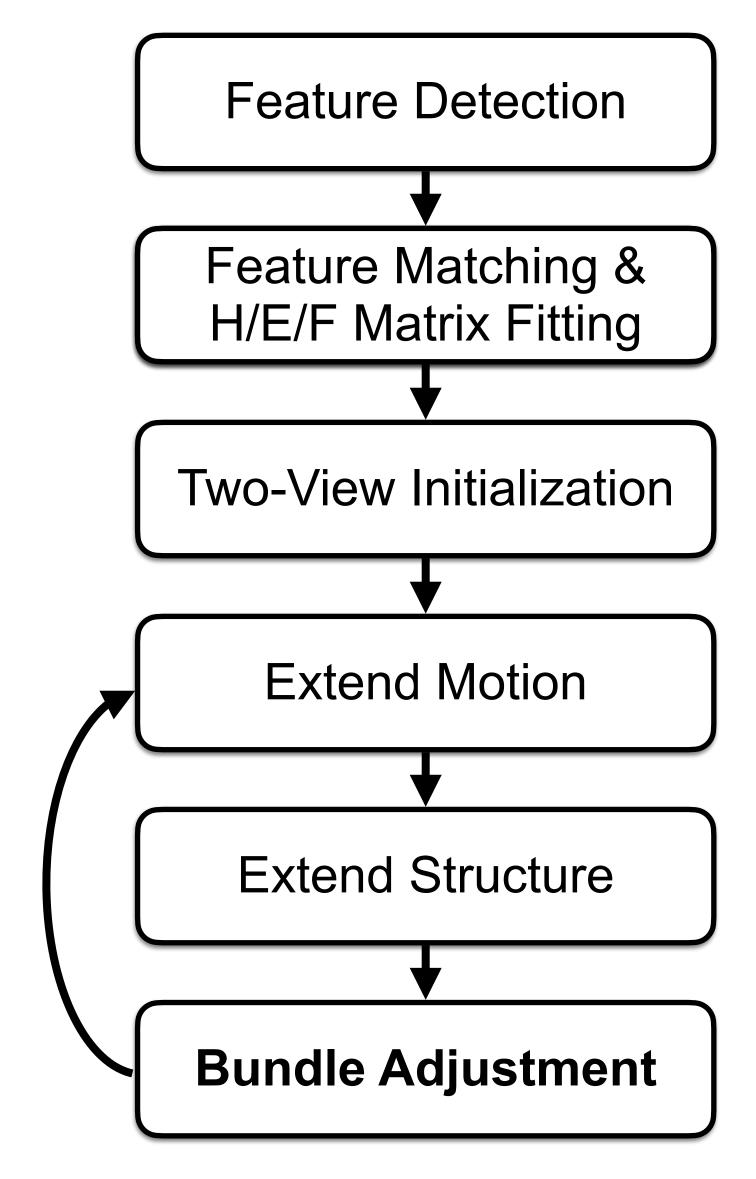


Cost function is highly non-linear → refine from initialization



Gradient descent

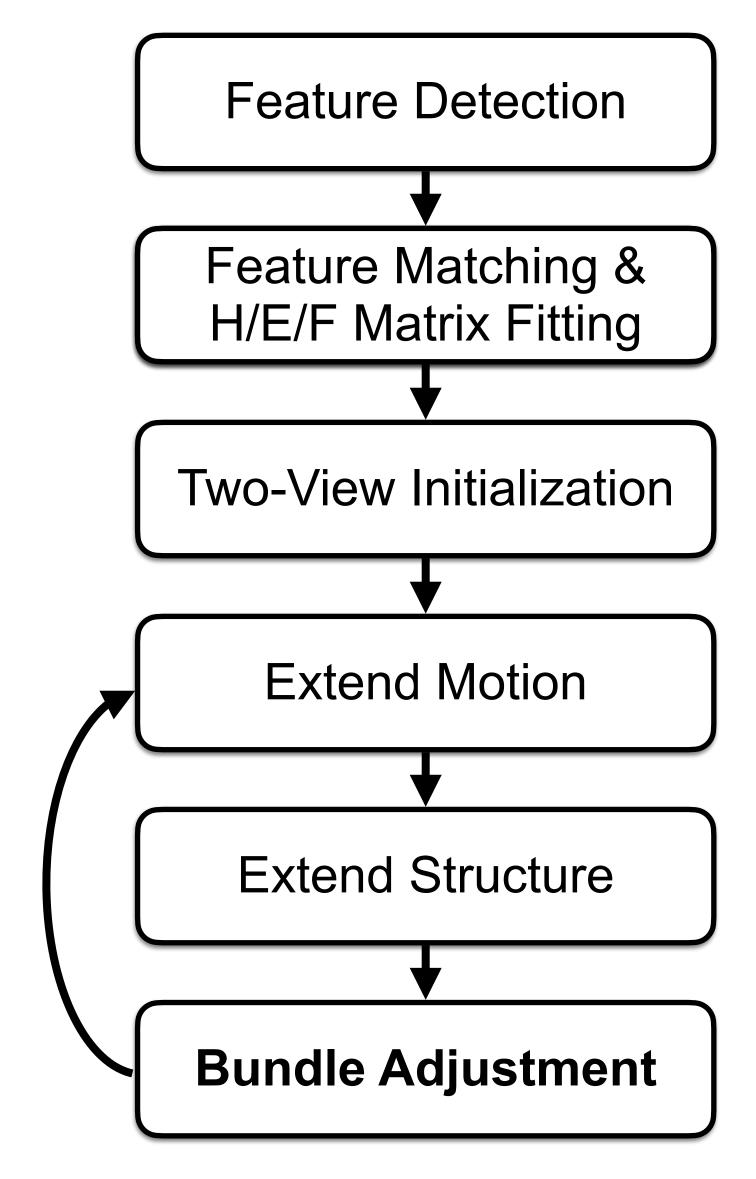
$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix},$$



slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{t} \mathbf{X}}{\mathbf{P}_{3}^{t} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{t} \mathbf{X}}{\mathbf{P}_{3}^{t} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$



slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

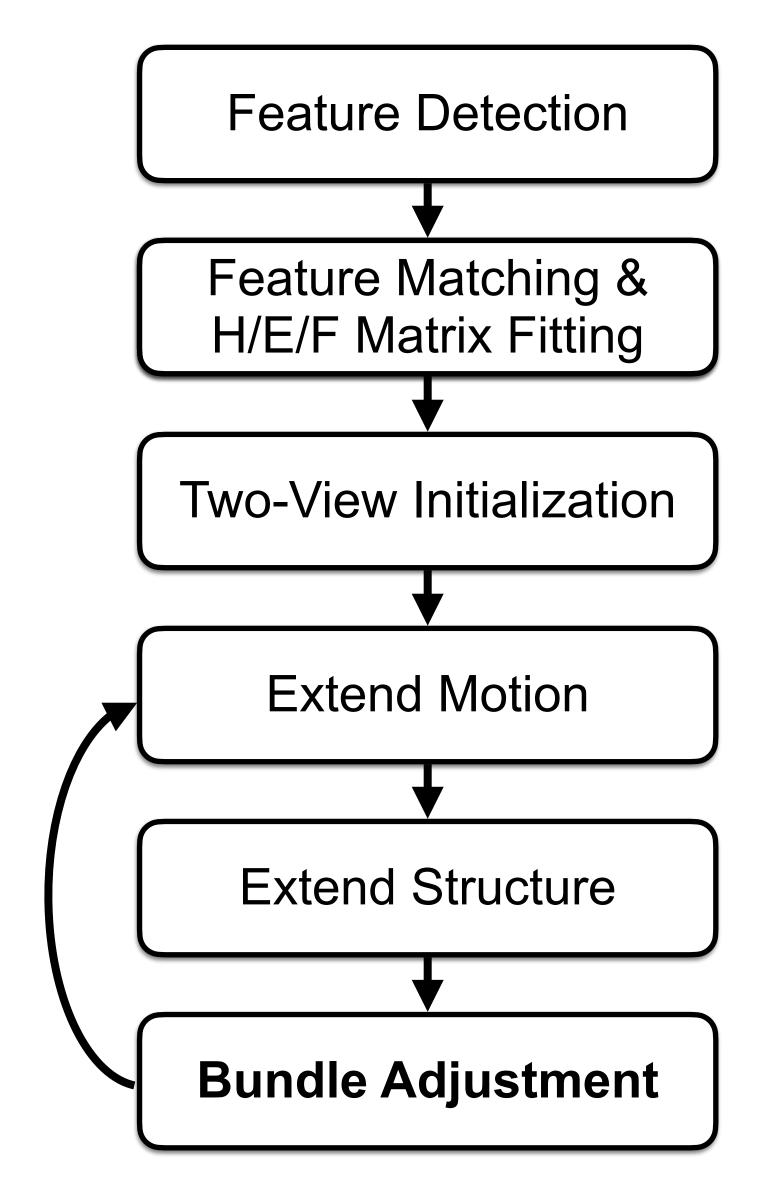
slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{t} \mathbf{X}}{\mathbf{P}_{3}^{t} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{t} \mathbf{X}}{\mathbf{P}_{3}^{t} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Compute gradient: $\nabla f(\mathbf{X}_k) = \mathbf{J}^T \Delta$



slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Compute gradient: $\nabla f(\mathbf{X}_k) = \mathbf{J}^T \Delta$

$$\mathtt{J} = rac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$$
 : Jacobian

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Compute gradient: $\nabla f(\mathbf{X}_k) = \mathbf{J}^T \Delta$

Update: $\mathbf{X}_{k+1} = \mathbf{X}_k - \eta \nabla f(\mathbf{X}_k)$

$$\mathtt{J} = rac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$$
 : Jacobian

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Compute gradient: $\nabla f(\mathbf{X}_k) = \mathbf{J}^T \Delta$

Update: $\mathbf{X}_{k+1} = \mathbf{X}_k - \eta \nabla f(\mathbf{X}_k)$

$$\mathtt{J} = rac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$$
: Jacobian η : Step size

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Iterate until convergence or for fixed number of iterations

ullet Compute gradient: $abla f(\mathbf{X}_k) = \mathtt{J}^T \Delta$

-Update: $\mathbf{X}_{k+1} = \mathbf{X}_k - \eta \nabla f(\mathbf{X}_k)$

$$\mathtt{J} = rac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$$
: Jacobian η : Step size

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Iterate until convergence or for fixed number of iterations

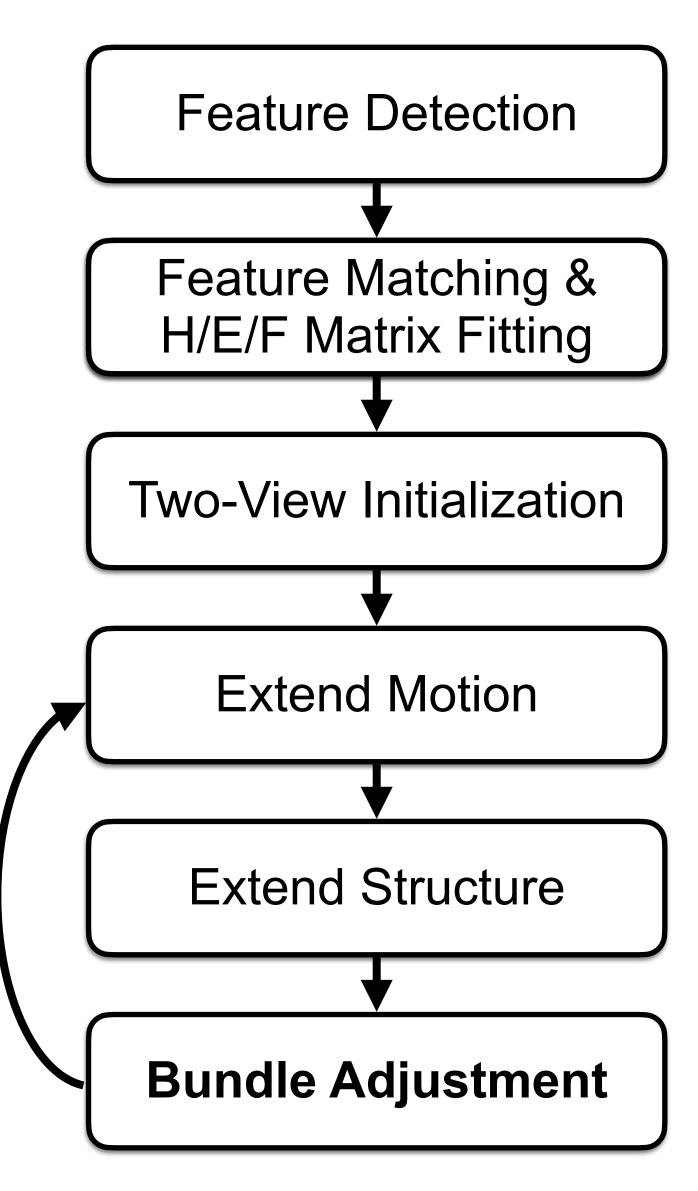
ightharpoonup Compute gradient: $abla f(\mathbf{X}_k) = \mathbf{J}^T \Delta$

-Update: $\mathbf{X}_{k+1} = \mathbf{X}_k - \eta \nabla f(\mathbf{X}_k)$

$$\mathtt{J} = rac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$$
: Jacobian η : Step size

Slow convergence near minimum point!

slide credit: Gim Hee Lee



Newton's method

2nd order approximation (quadratic Taylor expansion):

$$f(\mathbf{X} + \delta)|_{\mathbf{X} = \mathbf{X}_k} = f(\mathbf{X}) + \nabla f(\mathbf{X})^T \delta + \frac{1}{2} \delta^T \mathbf{H} \delta \Big|_{\mathbf{X} = \mathbf{X}_k}$$

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

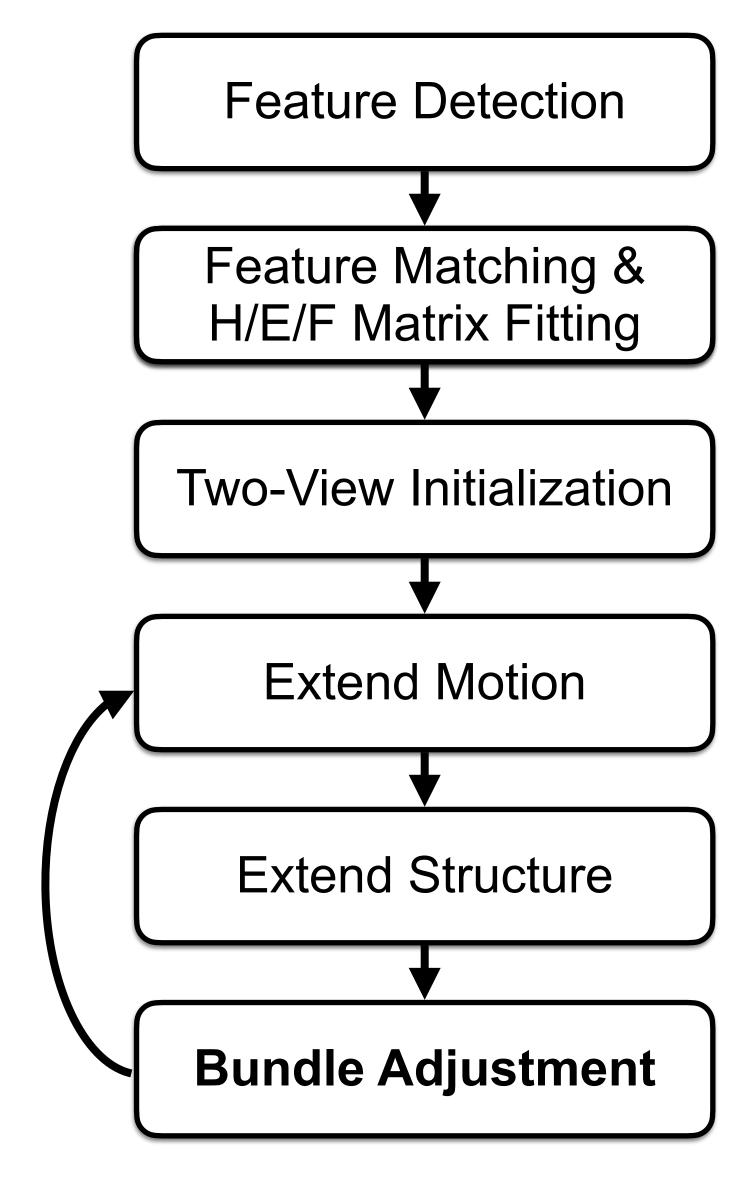
slide credit: Gim Hee Lee

Newton's method

2nd order approximation (quadratic Taylor expansion):

$$f(\mathbf{X} + \delta)|_{\mathbf{X} = \mathbf{X}_k} = f(\mathbf{X}) + \nabla f(\mathbf{X})^T \delta + \frac{1}{2} \delta^T \mathbf{H} \delta \Big|_{\mathbf{X} = \mathbf{X}_k}$$

Hessian matrix:
$$\mathbf{H} = \left. \frac{\partial^2 f(\mathbf{X} + \delta)}{\partial^2 \delta} \right|_{\mathbf{X} = \mathbf{X}_k}$$



slide credit: Gim Hee Lee

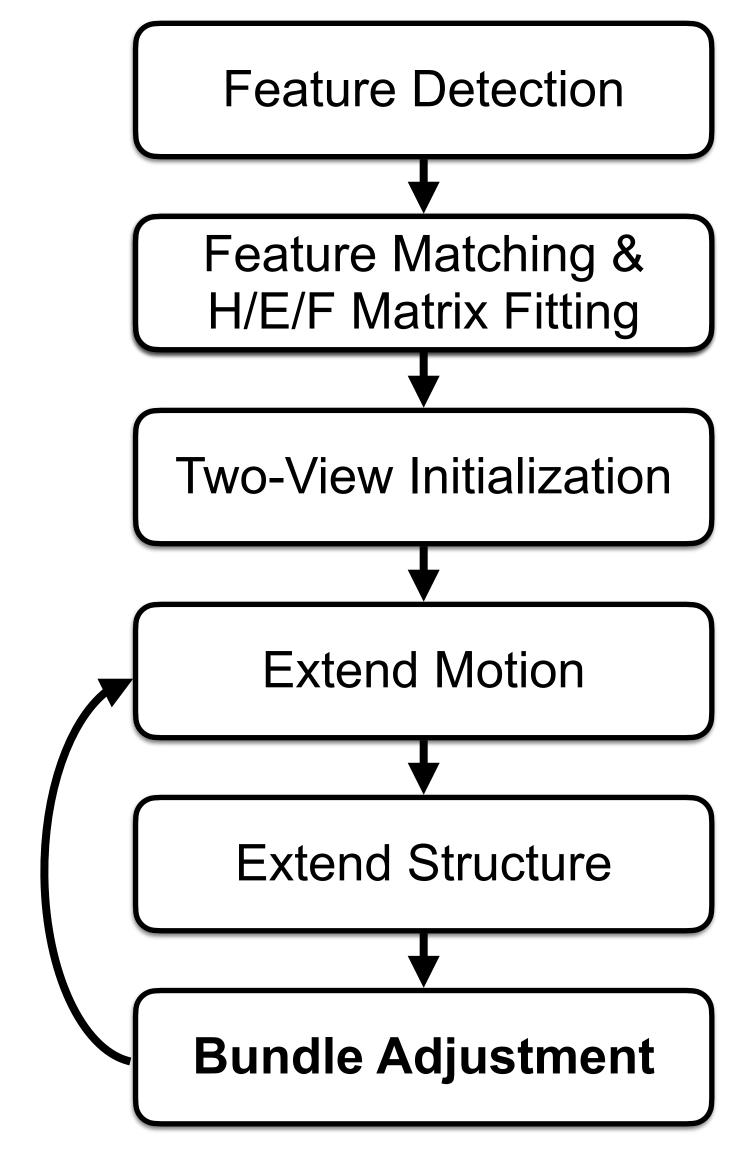
Newton's method

2nd order approximation (quadratic Taylor expansion):

$$f(\mathbf{X} + \delta)|_{\mathbf{X} = \mathbf{X}_k} = f(\mathbf{X}) + \nabla f(\mathbf{X})^T \delta + \frac{1}{2} \delta^T \mathbf{H} \delta \Big|_{\mathbf{X} = \mathbf{X}_k}$$

Hessian matrix:
$$\mathbf{H} = \left. \frac{\partial^2 f(\mathbf{X} + \delta)}{\partial^2 \delta} \right|_{\mathbf{X} = \mathbf{X}_k}$$

Find δ that minimizes $f(\mathbf{X} + \delta)|_{\mathbf{X} = \mathbf{X}_k}!$



slide credit: Gim Hee Lee

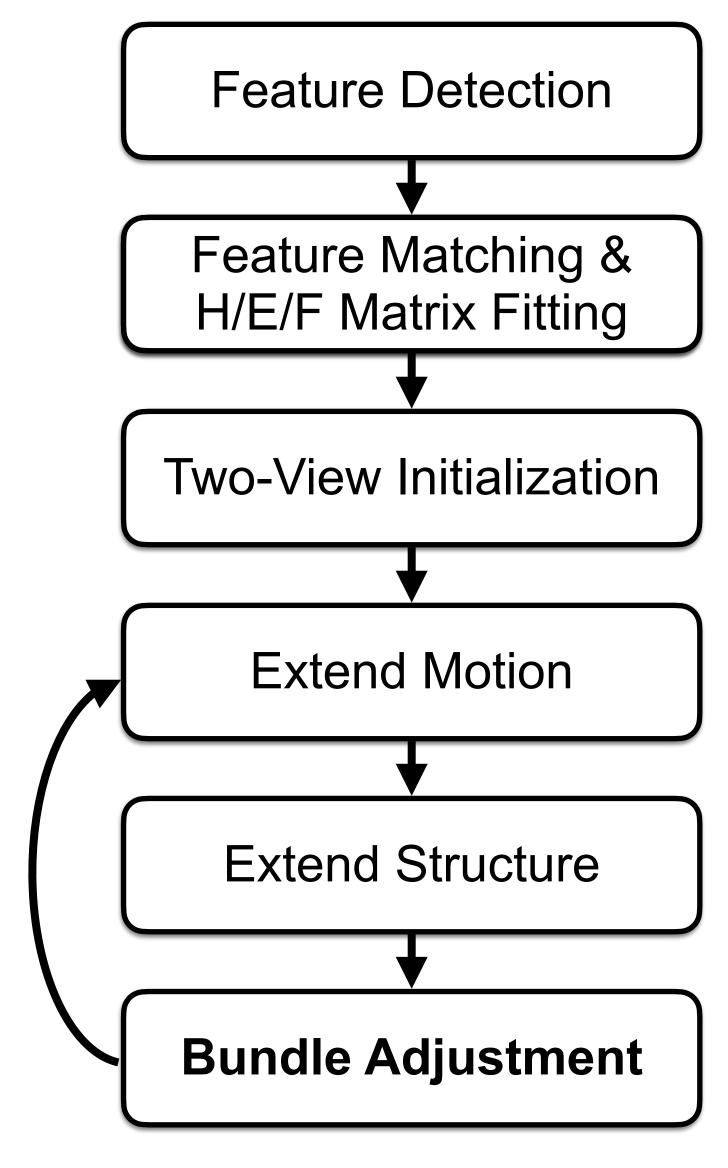
Newton's method

Differentiate and set to 0 gives:

$$\delta = -\mathbf{H}^{-1} \nabla f(\mathbf{X}_k)$$

Update:

$$\mathbf{X}_{k+1} = \mathbf{X}_k + \delta$$



slide credit: Gim Hee Lee

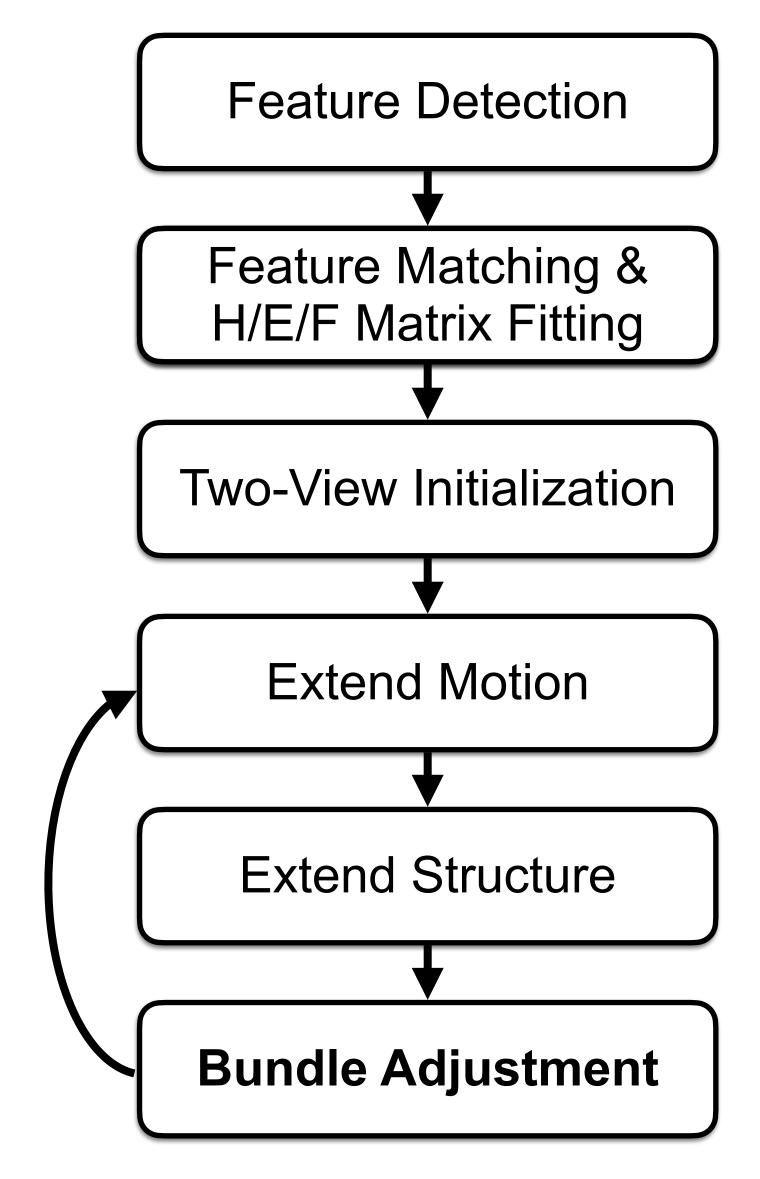
Newton's method

Differentiate and set to 0 gives:

$$\delta = -\mathbf{H}^{-1} \nabla f(\mathbf{X}_k)$$

Update: $\mathbf{X}_{k+1} = \mathbf{X}_k + \delta$

Computation of H is not trivial (2nd order derivatives) and optimization might get stuck at saddle point!

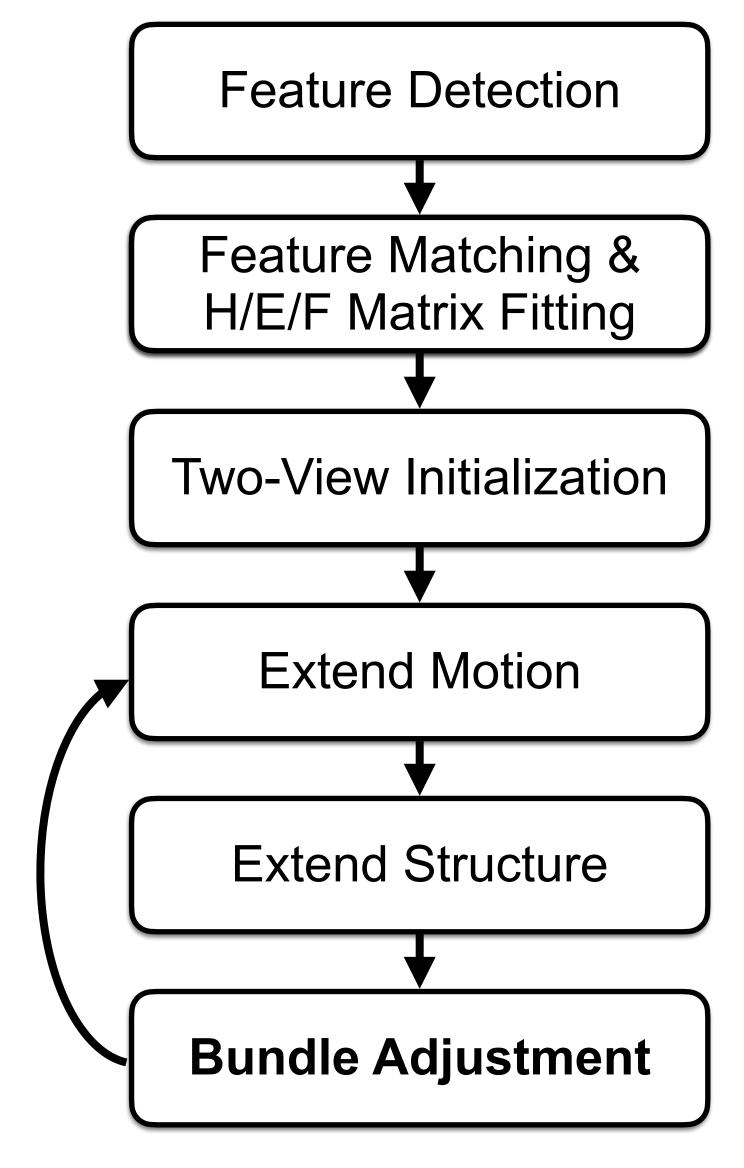


slide credit: Gim Hee Lee

Gauss-Newton

Approximate Hessian matrix by dropping 2nd order terms:

$$\mathtt{H} pprox \mathtt{J}^T \mathtt{J}$$



slide credit: Gim Hee Lee

Gauss-Newton

Approximate Hessian matrix by dropping 2nd order terms:

$$\mathtt{H} pprox \mathtt{J}^T \mathtt{J}$$

Solve normal equation:

$$\mathbf{J}^T\mathbf{J}\delta = -\mathbf{J}^t\Delta$$

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Gauss-Newton

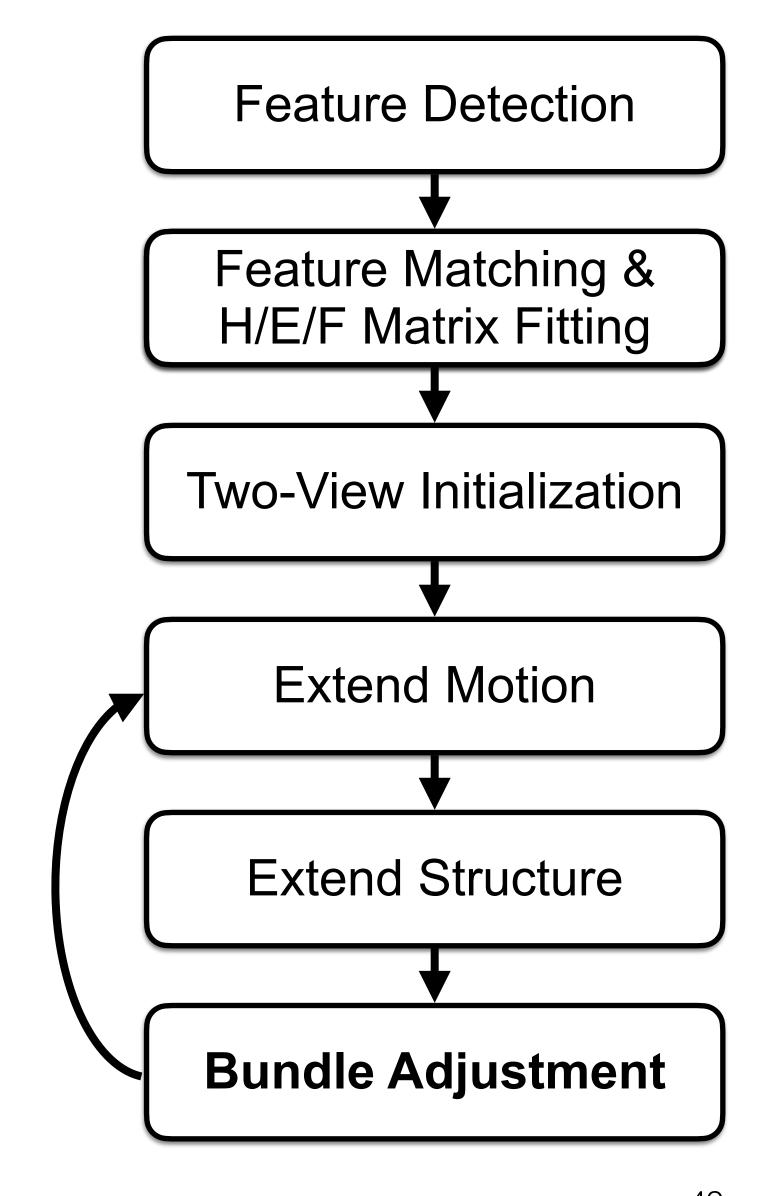
Approximate Hessian matrix by dropping 2nd order terms:

$$\mathtt{H} pprox \mathtt{J}^T \mathtt{J}$$

Solve normal equation:

$$\mathbf{J}^T\mathbf{J}\delta = -\mathbf{J}^t\Delta$$

Might get stuck and slow convergence at saddle point!

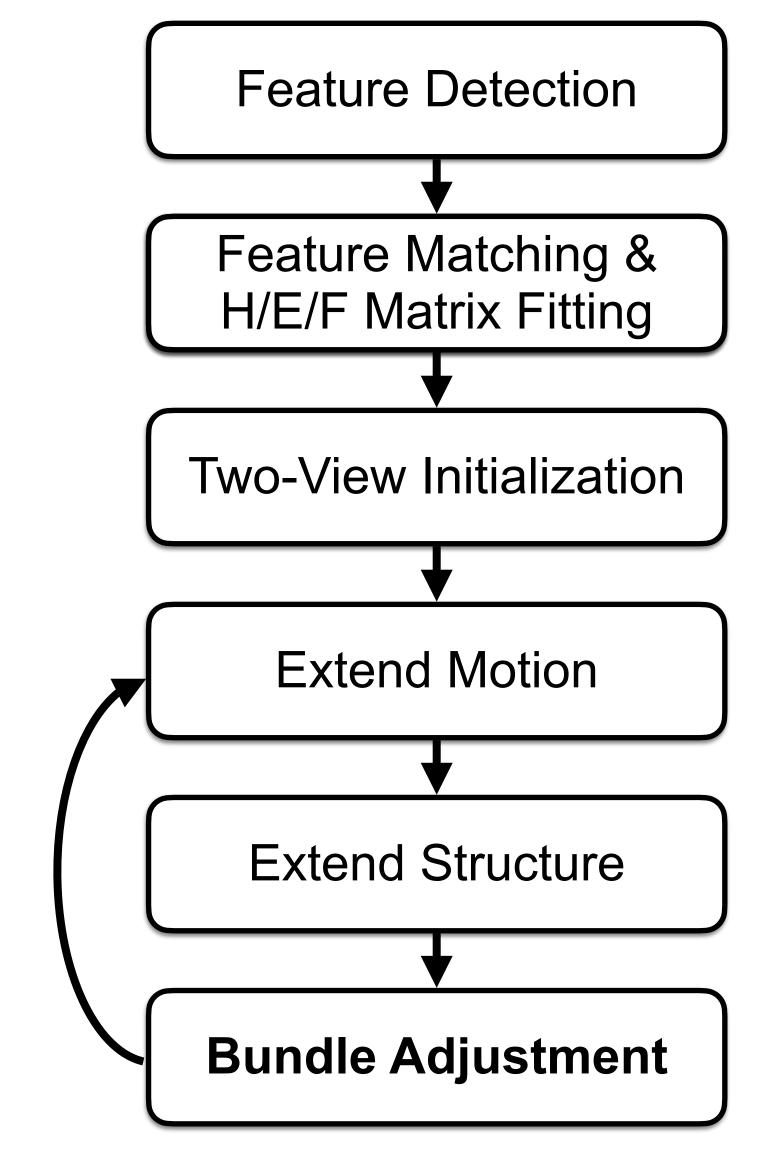


slide credit: Gim Hee Lee

Levenberg-Marquardt

Regularized Gauss-Newton with damping factor

$$(\mathbf{J}^T\mathbf{J} + \lambda \mathbf{I}) \, \delta = -\mathbf{J}^t \Delta$$



slide credit: Gim Hee Lee

Levenberg-Marquardt

Regularized Gauss-Newton with damping factor

$$\left(\mathbf{J}^T\mathbf{J} + \lambda\mathbf{I}\right)\delta = -\mathbf{J}^t\Delta$$

 $\lambda \to 0$: Gauss-Newton (when convergence is rapid)

 $\lambda o \infty$: Gradient descent (when convergence is slow)

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Levenberg-Marquardt

Regularized Gauss-Newton with damping factor

$$\left(\mathbf{J}^T\mathbf{J} + \lambda\mathbf{I}\right)\delta = -\mathbf{J}^t\Delta$$

 $\lambda \to 0$: Gauss-Newton (when convergence is rapid)

 $\lambda \to \infty$: Gradient descent (when convergence is slow)

Adapt λ during optimization:

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Levenberg-Marquardt

Regularized Gauss-Newton with damping factor

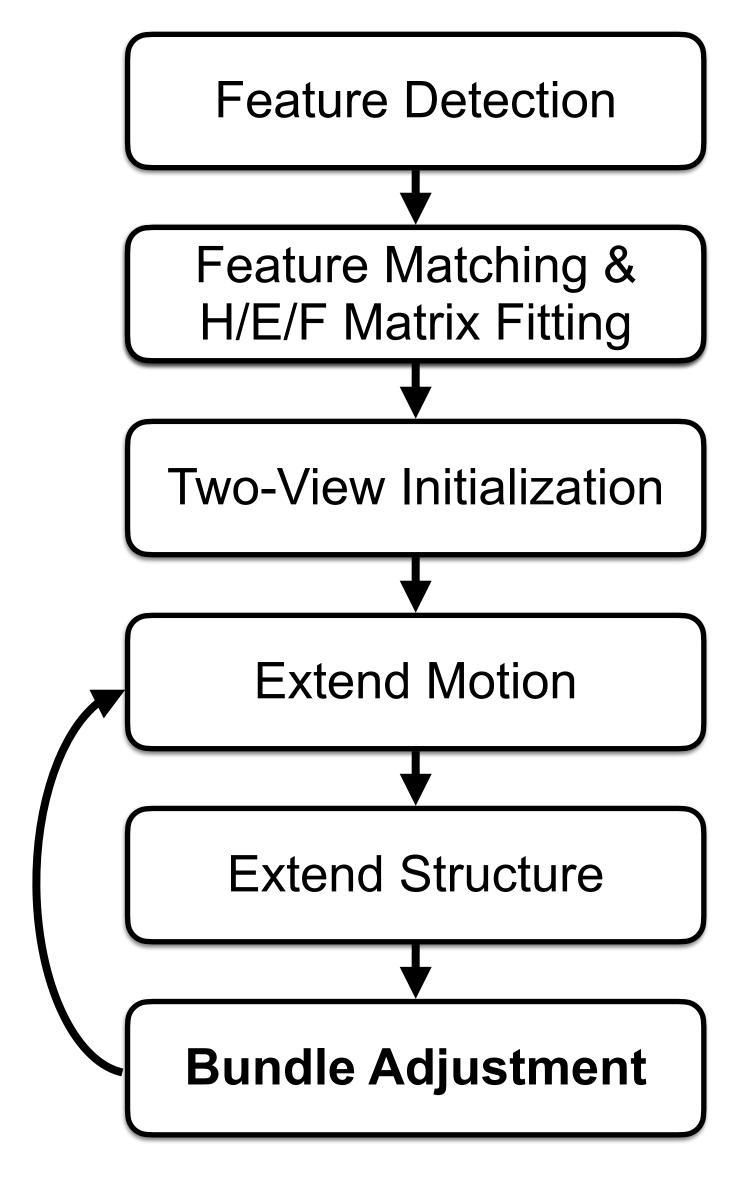
$$\left(\mathbf{J}^T\mathbf{J} + \lambda\mathbf{I}\right)\delta = -\mathbf{J}^t\Delta$$

 $\lambda \to 0$: Gauss-Newton (when convergence is rapid)

 $\lambda o \infty$: Gradient descent (when convergence is slow)

Adapt λ during optimization:

Decrease λ when function value decreases



slide credit: Gim Hee Lee

Levenberg-Marquardt

Regularized Gauss-Newton with damping factor

$$\left(\mathbf{J}^T\mathbf{J} + \lambda\mathbf{I}\right)\delta = -\mathbf{J}^t\Delta$$

 $\lambda \to 0$: Gauss-Newton (when convergence is rapid)

 $\lambda o \infty$: Gradient descent (when convergence is slow)

Adapt λ during optimization:

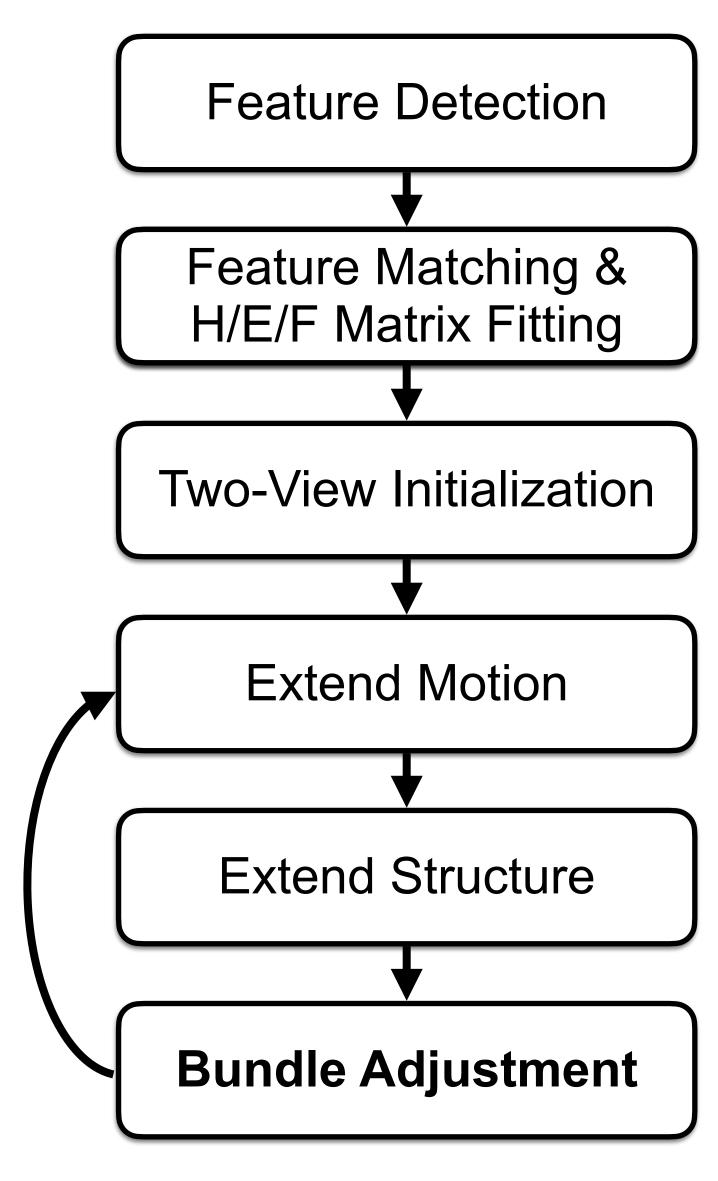
- Decrease λ when function value decreases
- Increase λ otherwise

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

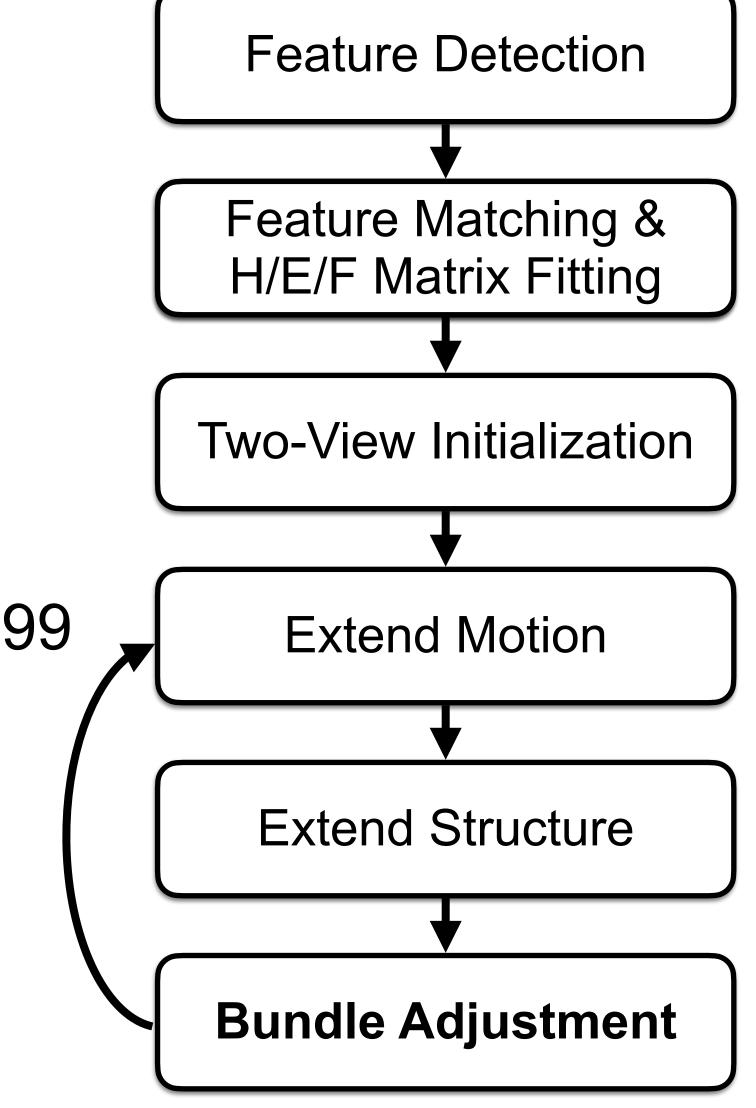
slide credit: Gim Hee Lee

Reconstruction of the old inner city of Aachen, Germany, using the Bundler SfM software

slide credit: Gim Hee Lee



- Not covered here:
 - Sparse structure of the bundle adjustment problem
 - Efficient strategies (e.g., Schur Complement Trick)
 - •
- Recommended reading:
 - Triggs et al., Bundle Adjustment A Modern Synthesis, 1999

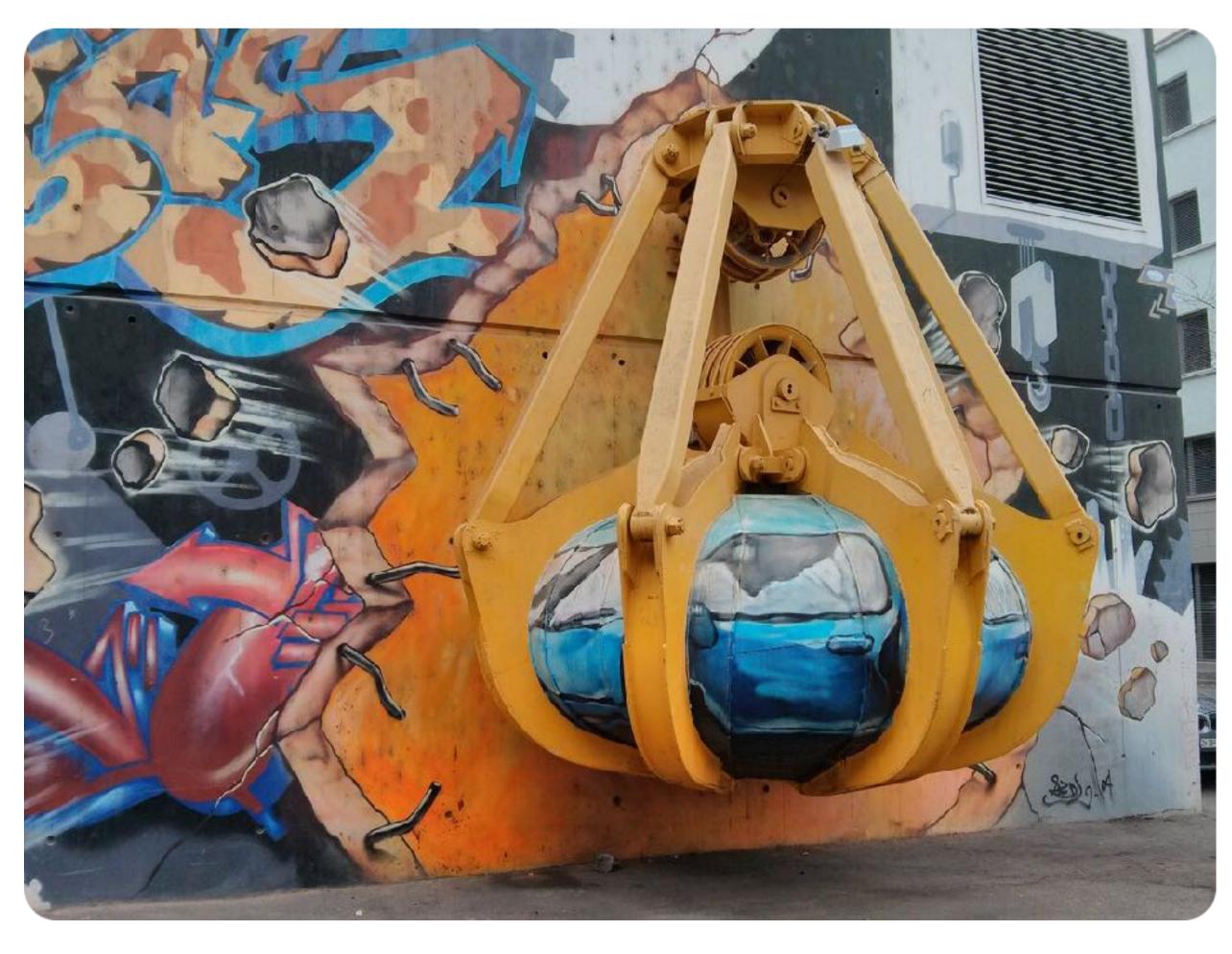


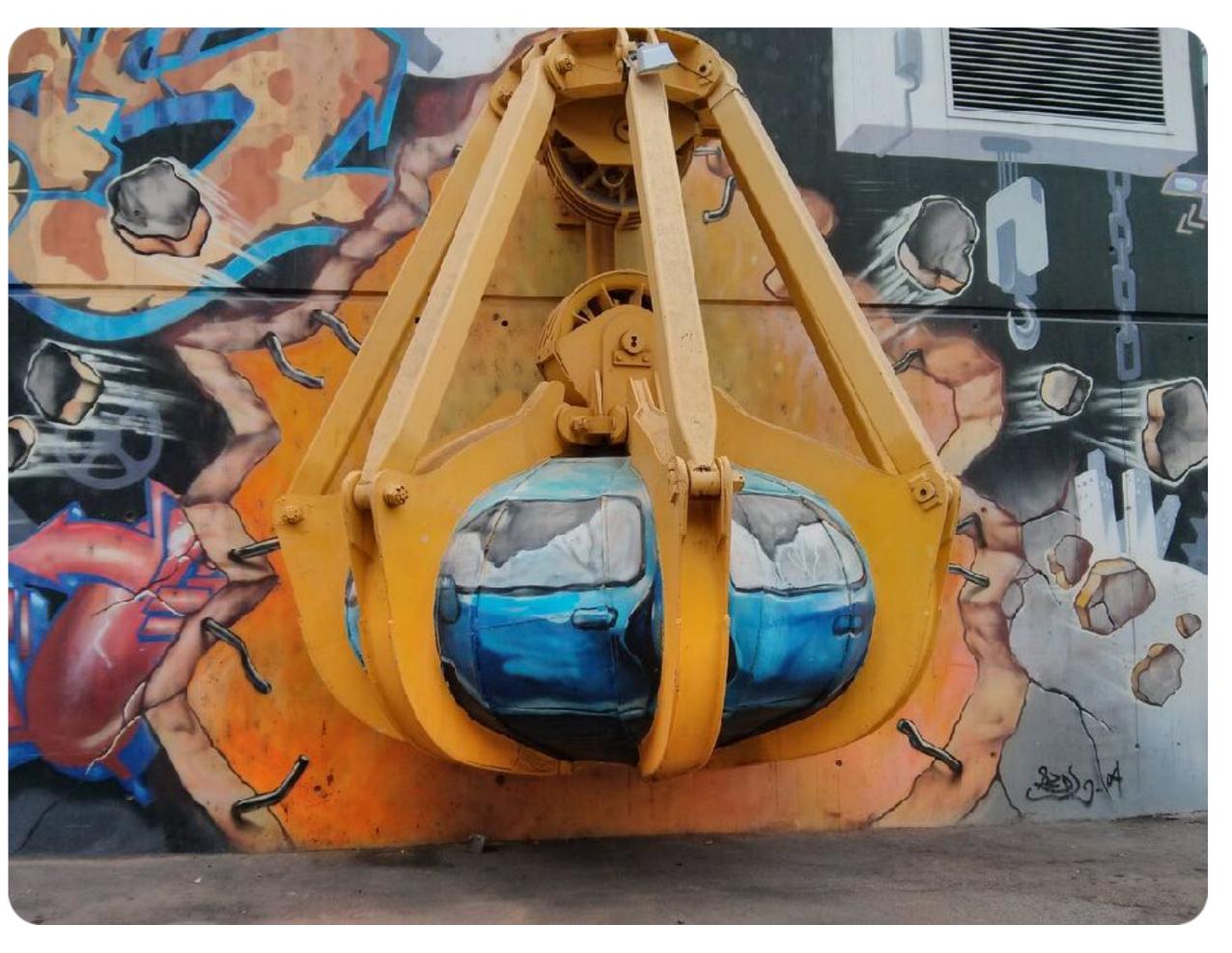
slide credit: Gim Hee Lee

Multi-View Stereo (MVS)

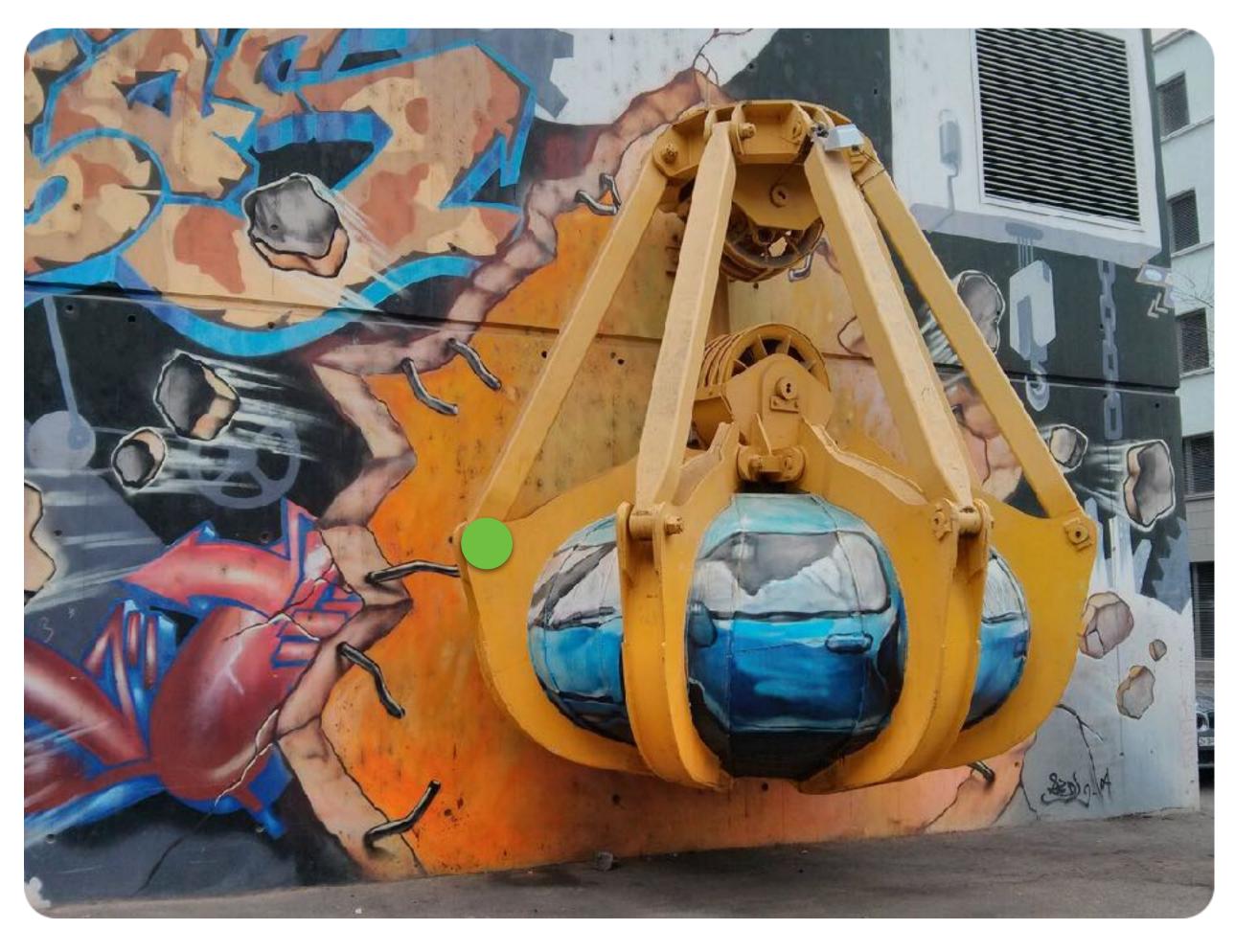
Input: calibrated images, camera poses, SfM model

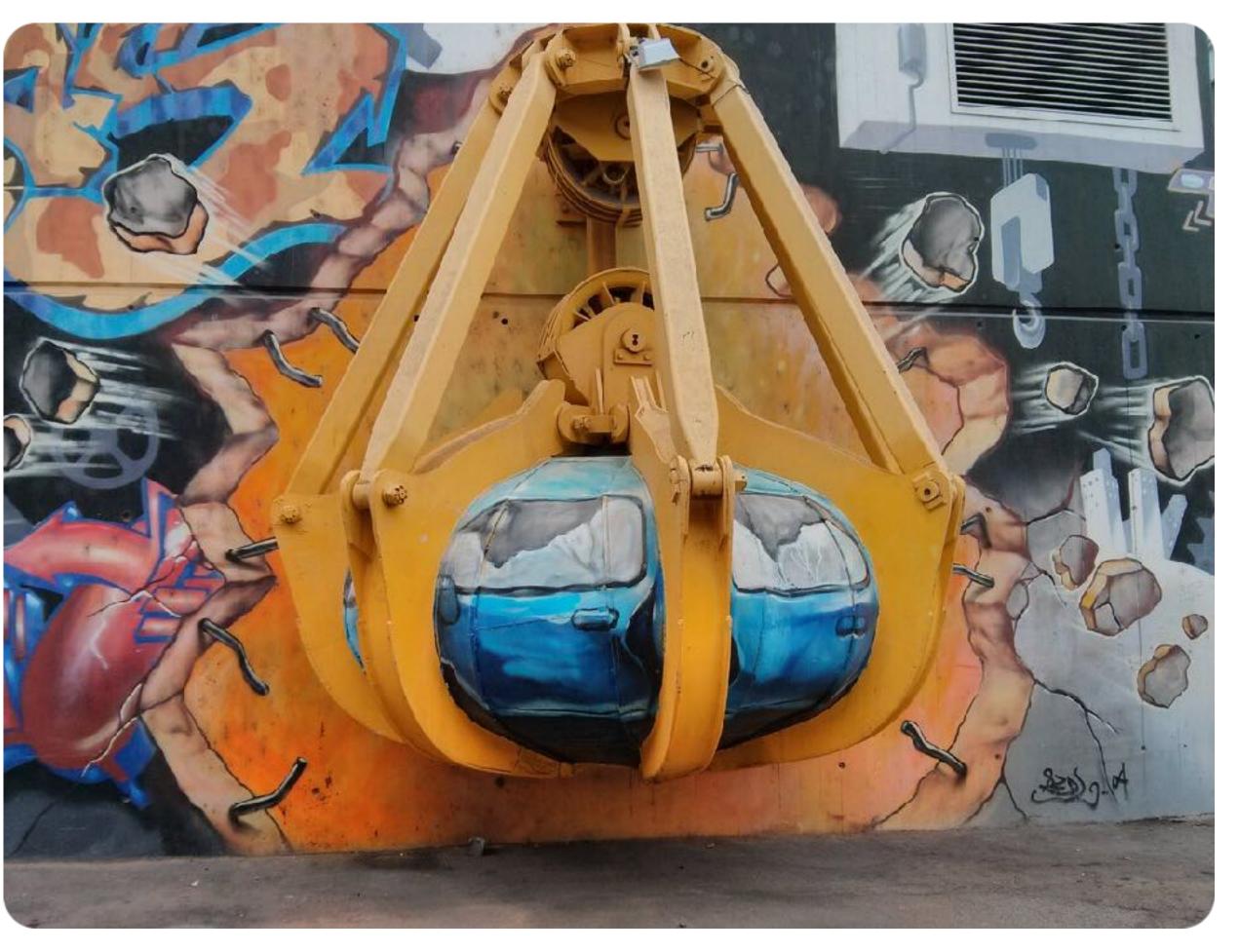
Output: dense 3D point cloud or (textured) 3D mesh



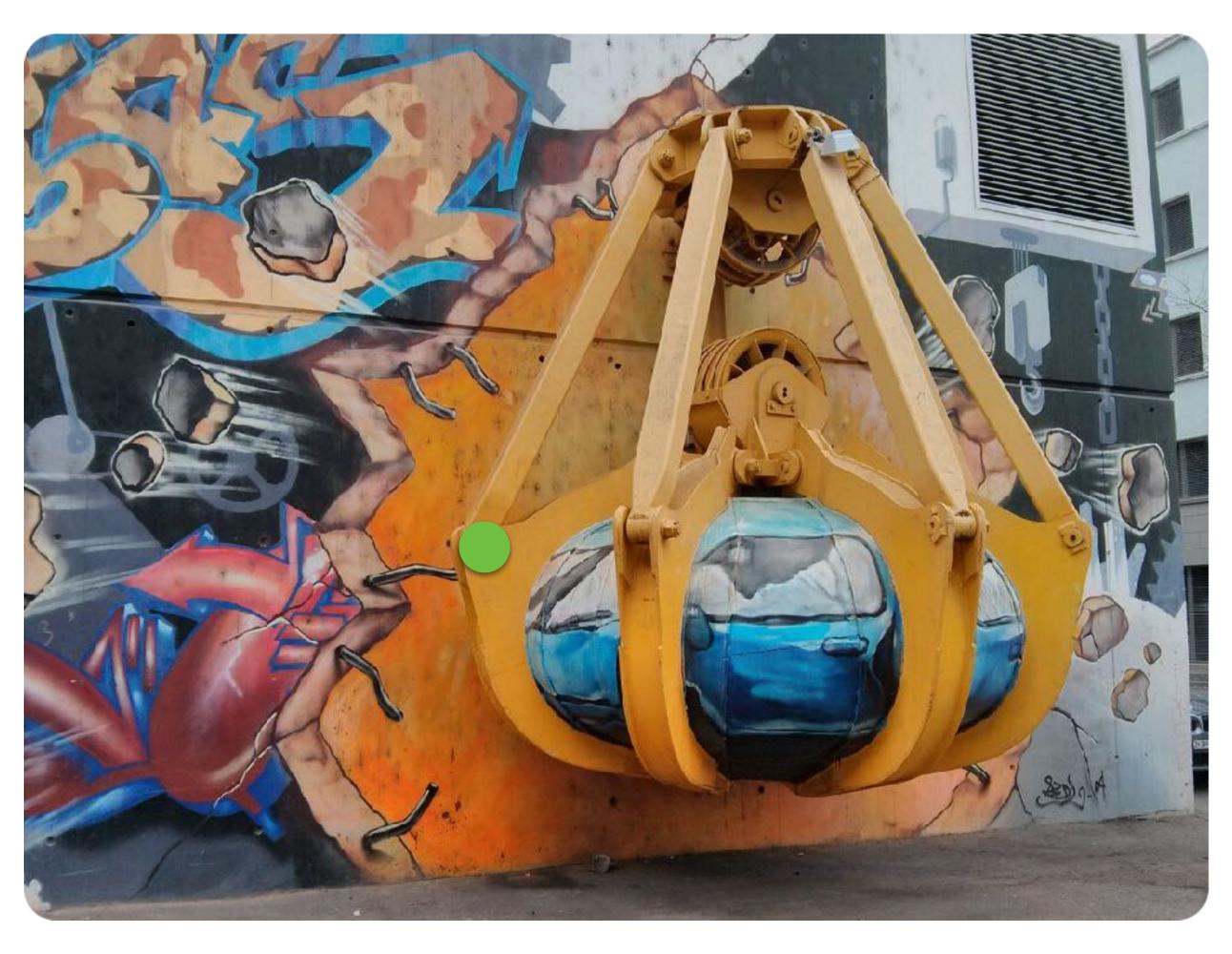


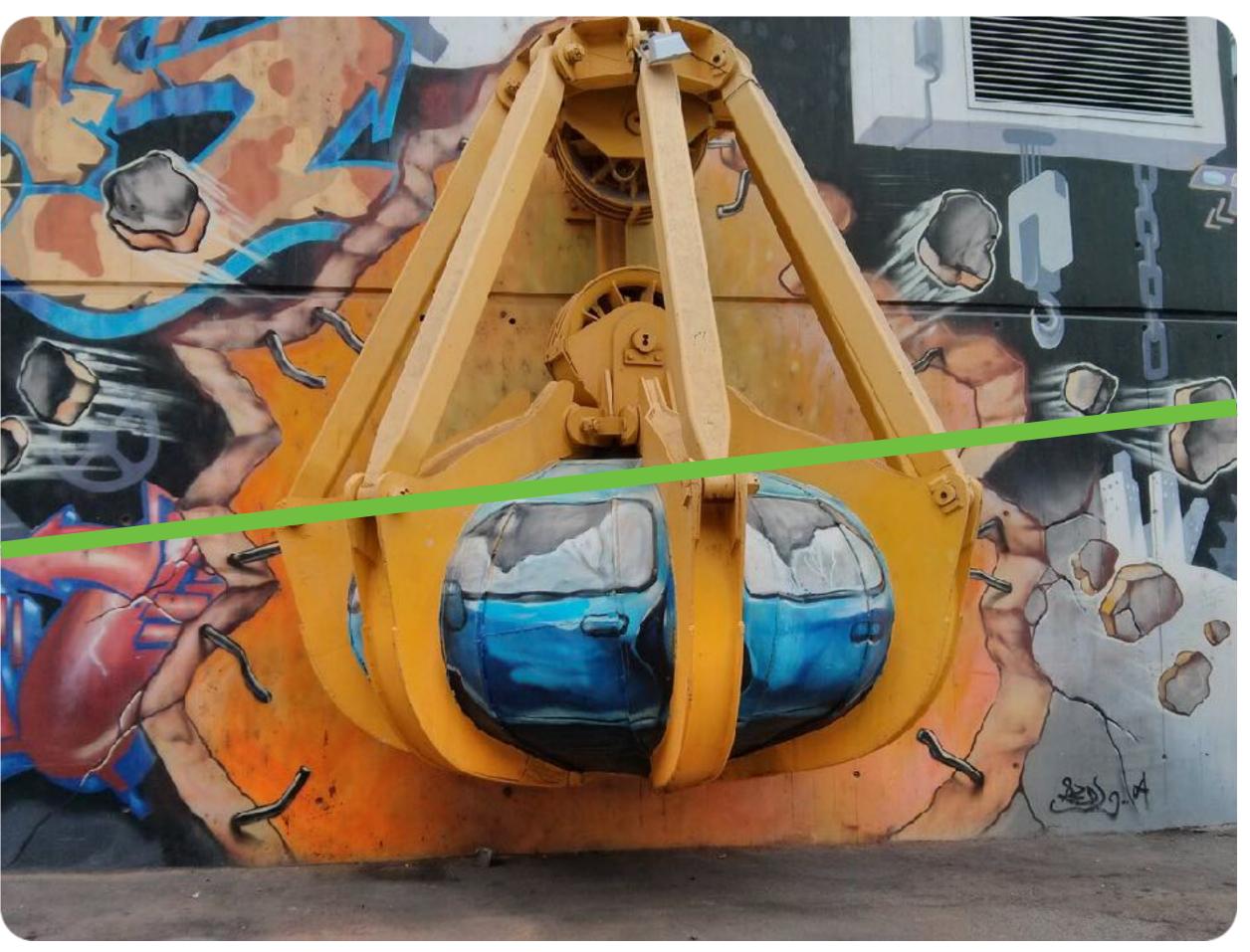
- Use known epipolar relation to find dense matches between images
- Create dense point cloud



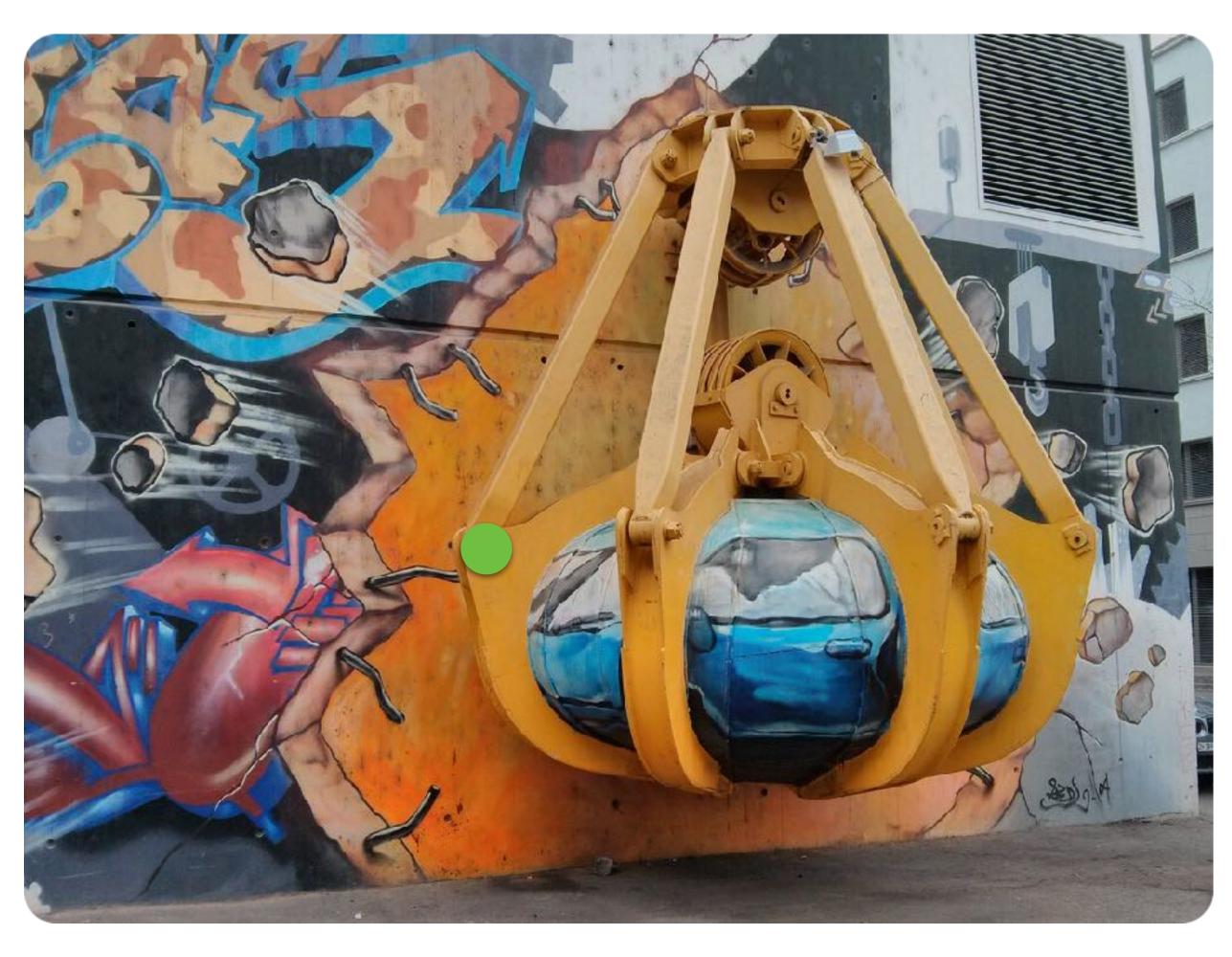


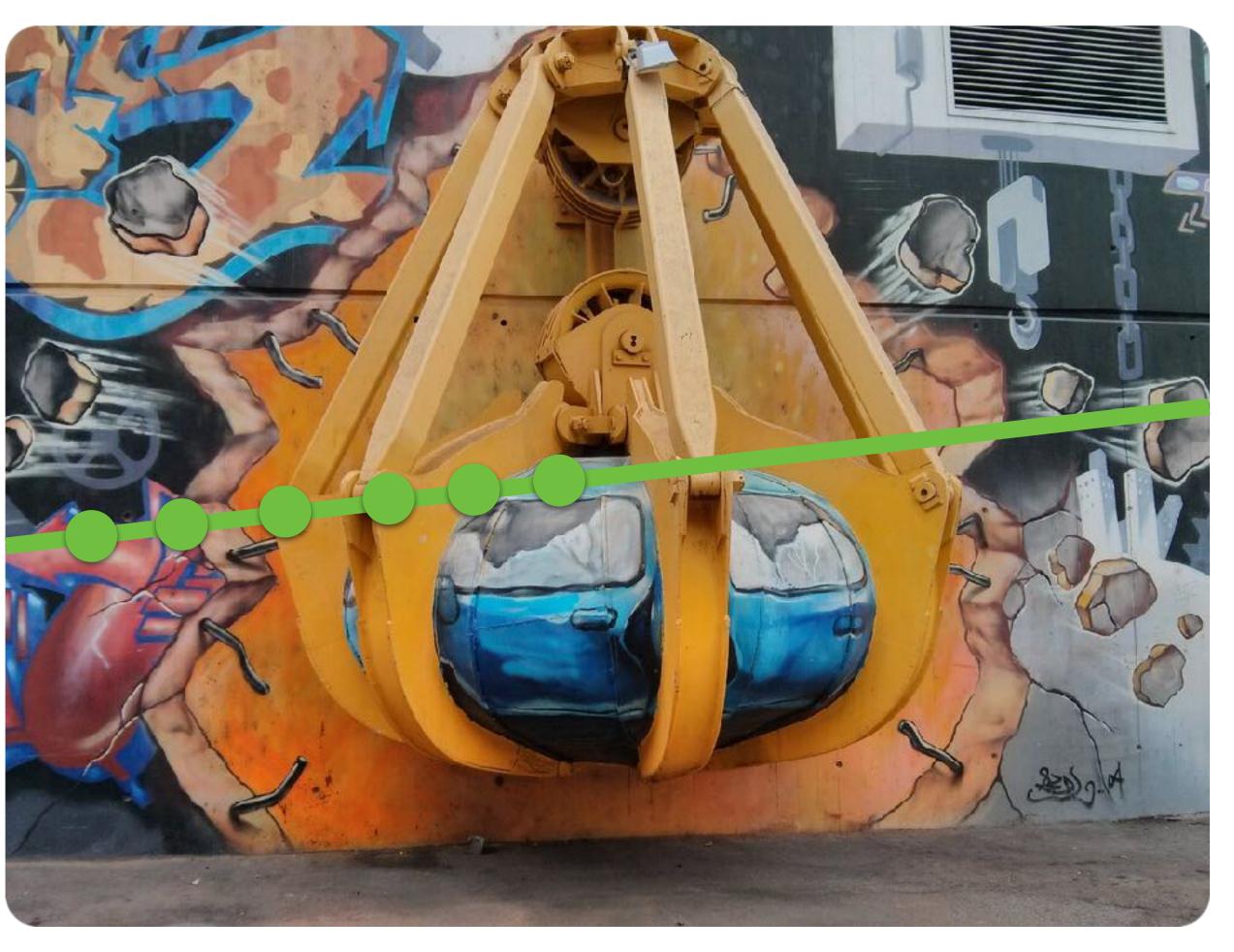
- Use known epipolar relation to find dense matches between images
- Create dense point cloud





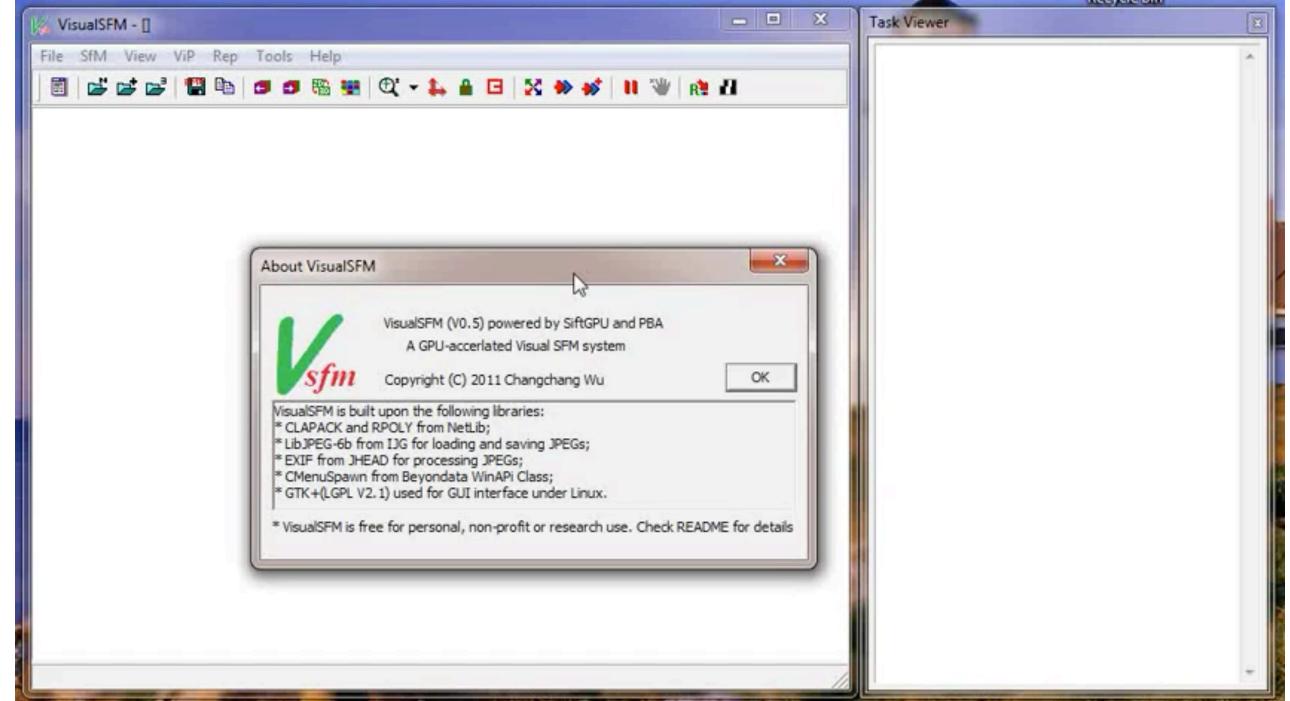
- Use known epipolar relation to find dense matches between images
- Create dense point cloud





- Use known epipolar relation to find dense matches between images
- Create dense point cloud

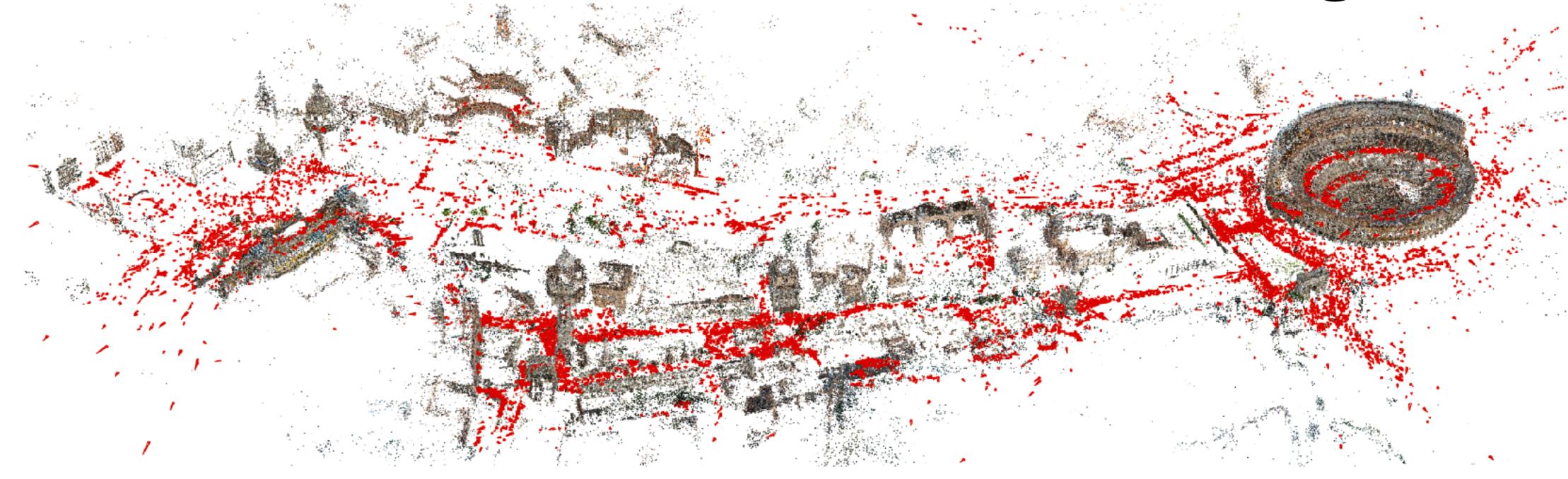
- Bundler (<u>https://github.com/snavely/bundler_sfm</u>)
- Linux (Windows also supported), open source
- SfM pipeline, MVS pipelines can read file format
- Showed nice results on internet photo collections
- Not state-of-the-art anymore



https://www.youtube.com/watch?v=5ceiOd8Yx3g

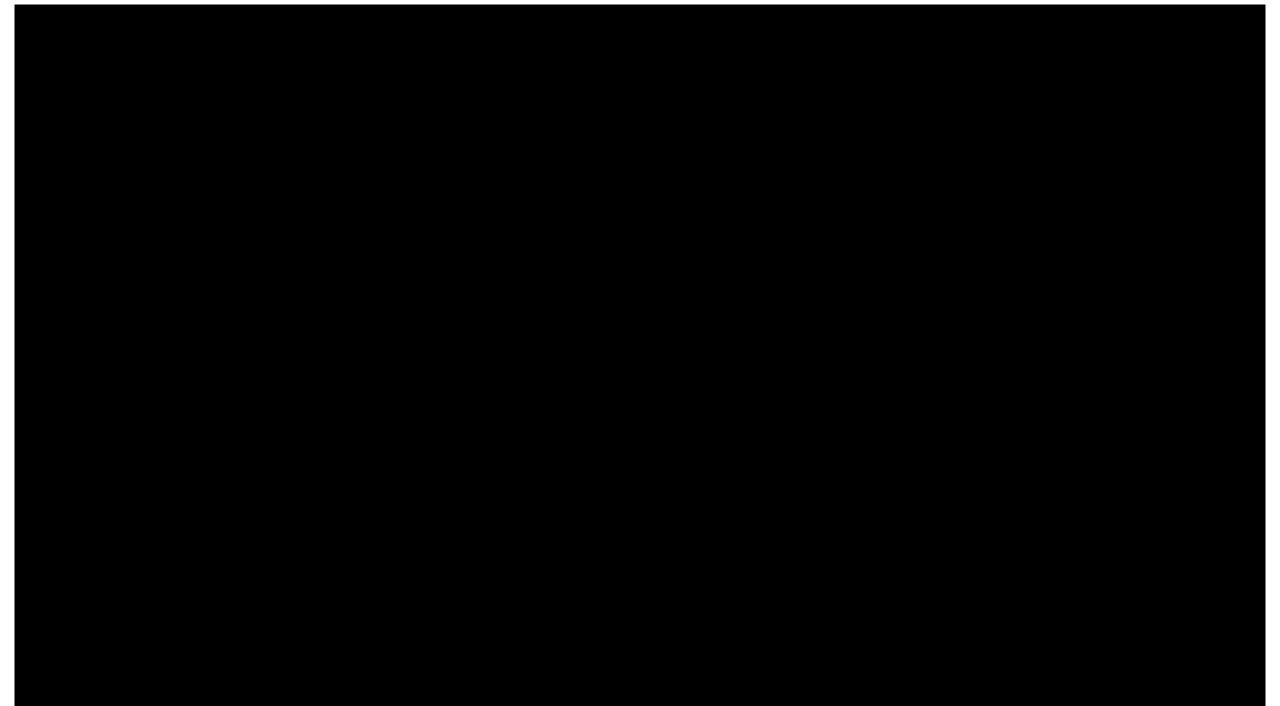
- VisualSFM (http://ccwu.me/vsfm/)
- Linux, Mac OS X, Windows, closed source
- SfM pipeline, interface to external MVS software
- Graphical User Interface
- Very efficient due to use of GPU

- OpenMVG (https://github.com/openMVG/openMVG)
- Linux, Mac OS X, Windows, open source
- SfM pipeline, MVS pipelines can read file format
- Very modular, functionality not in other packages (full multi-camera support)
- Not very efficient, no GUI



- COLMAP (https://colmap.github.io/index.html)
- Linux, Mac OS X, Windows, open source
- SfM and MVS (NVidia GPU required for MVS)
- Efficient pipeline, GUI
- High code quality, very great tool for research!

- COLMAP (https://colmap.github.io/index.html)
- Linux, Mac OS X, Windows, open source
- SfM and MVS (NVidia GPU required for MVS)
- Efficient pipeline, GUI
- High code quality, very great tool for research!



- AliceVision Meshroom (https://alicevision.org/)
- Linux, Windows, open source
- SfM and MVS (NVidia GPU required for both)
- Includes work by Tomas Pajdla and his PhD students
- Have not tried it yet, on my Todo list

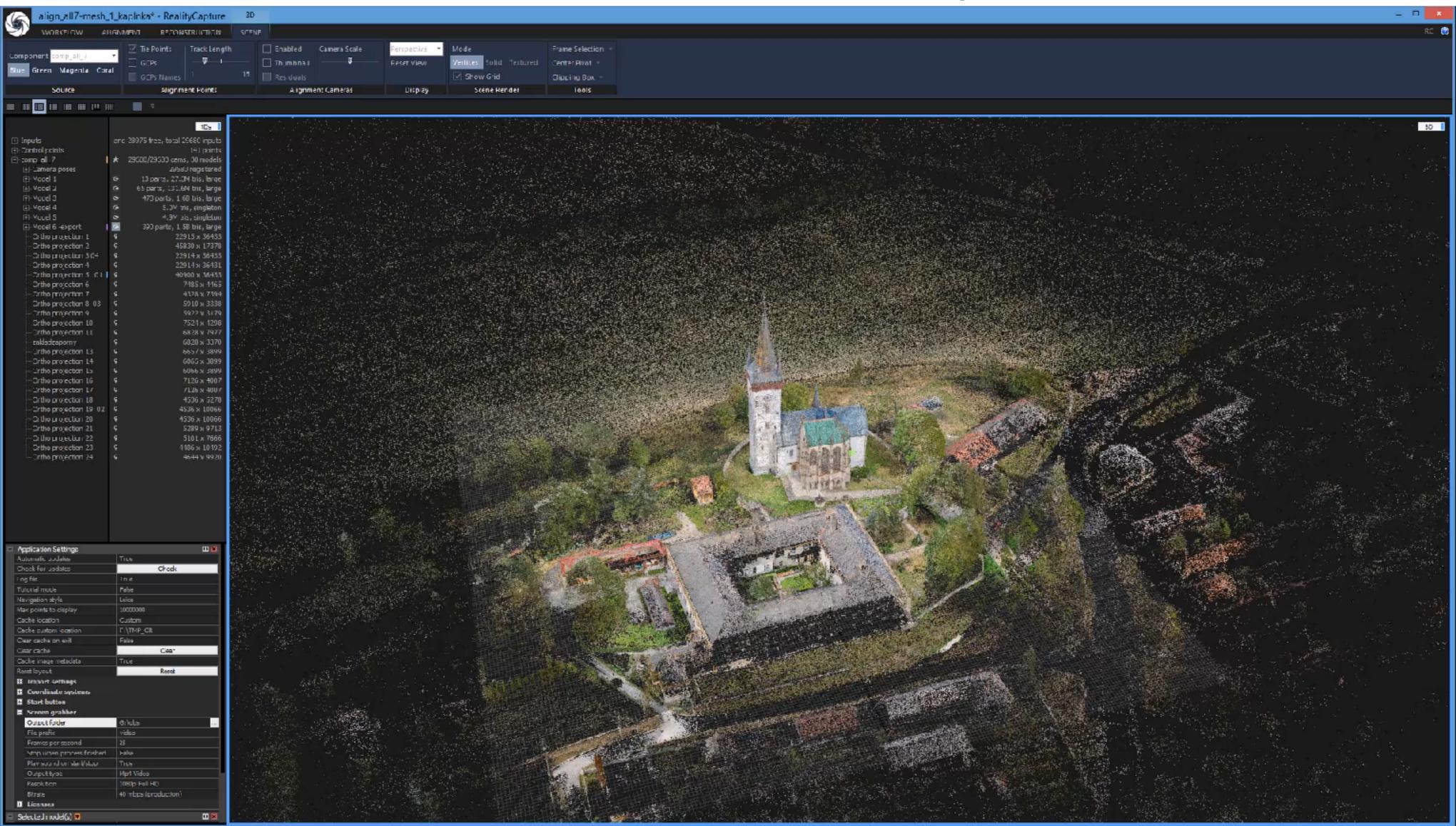
- RealityCapture (<u>https://www.capturingreality.com/</u>)
- Commercial software, Windows only
- Start-up (CapturingReality) out of Slovakia, former PhD students at CVUT, recently acquired by Epic Games
- Both SfM and MVS (MVS requires NVidia GPU)
- Highly efficient, SfM takes a few minutes even for large scenes
- Very high quality (probably best software out there)

- RealityCapture (<u>https://w</u>)
- Commercial software,
- Start-up (CapturingReal recently acquired by Epic
- Both SfM and MVS (MVS)
- Highly efficient, SfM tak
- Very high quality (probably best software out there)

Demo!

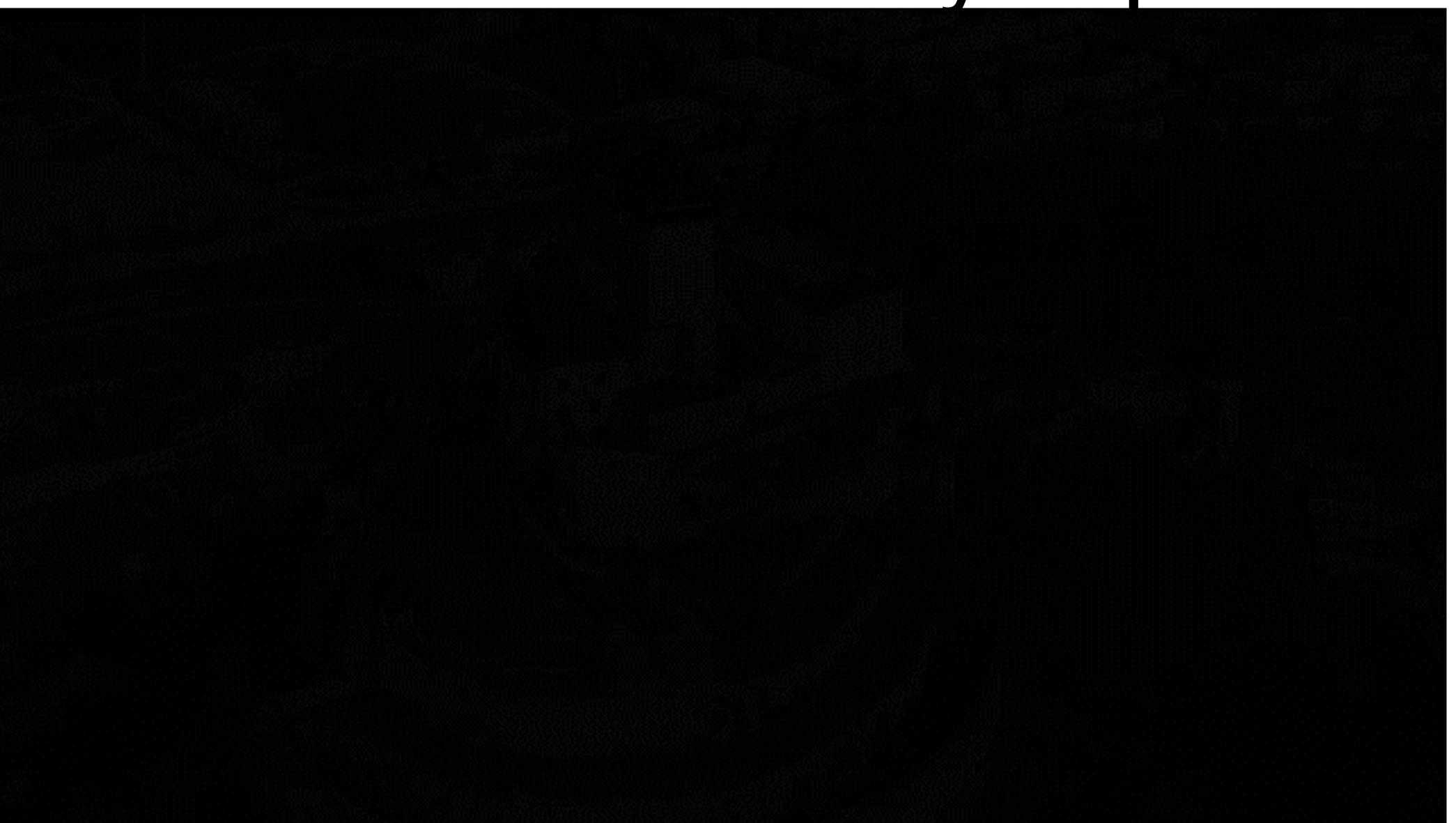
students at CVUT,

Results with RealityCapture



Torsten Sattler

Results with RealityCapture



- Many more commercial packages available
 - Agisoft Metashape (https://www.agisoft.com/)
 - Pix4D (<u>https://www.pix4d.com/</u>)

•

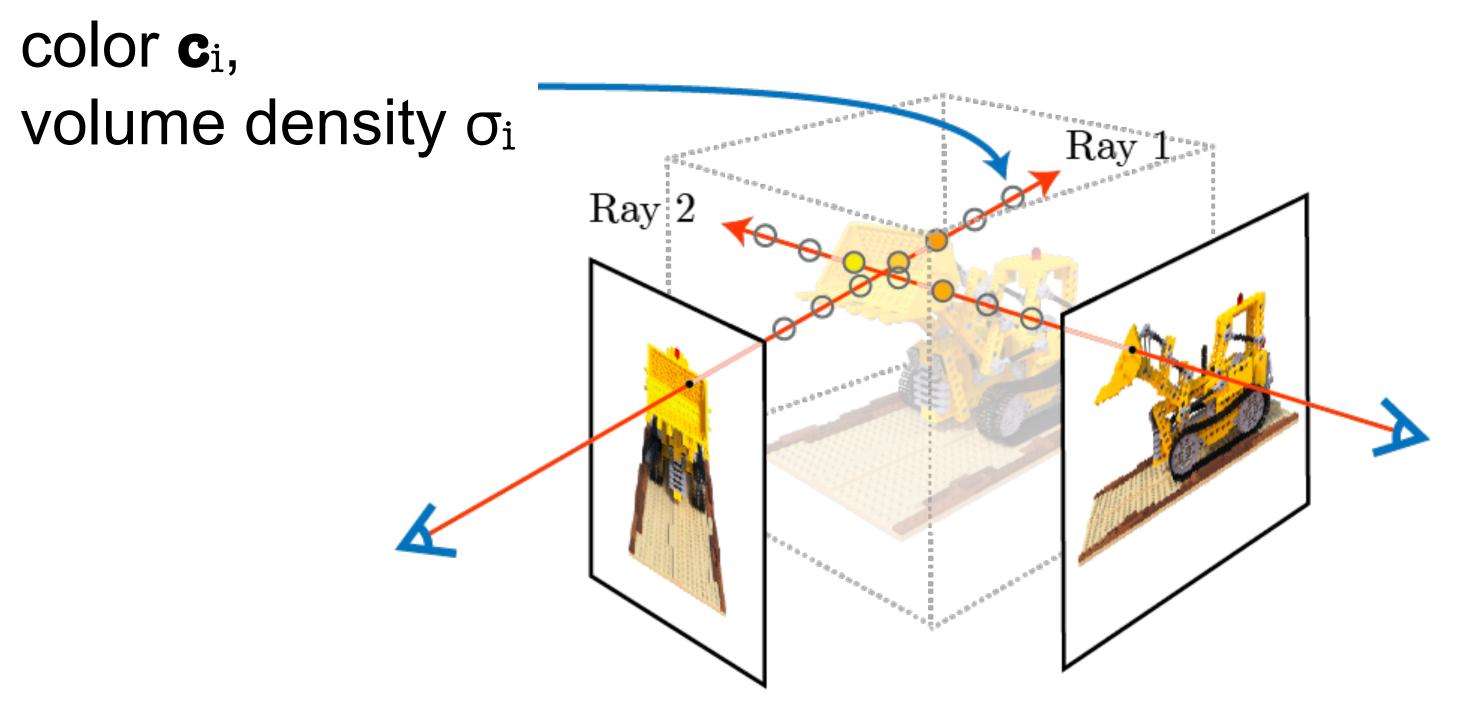
Bonus: Neural Radiance Fields (NeRFs)

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS CTU IN PRAGUE

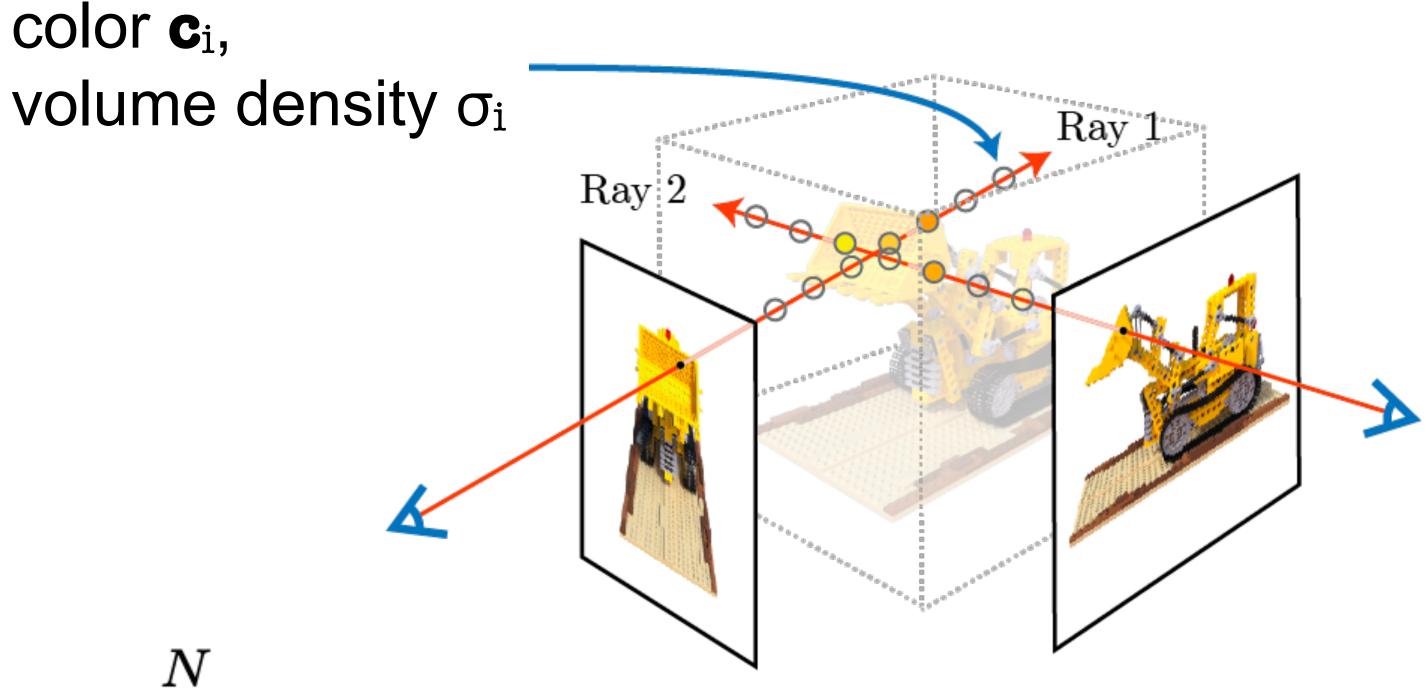
TOTSTEN Sattler

TOTSTEN Sattler



[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

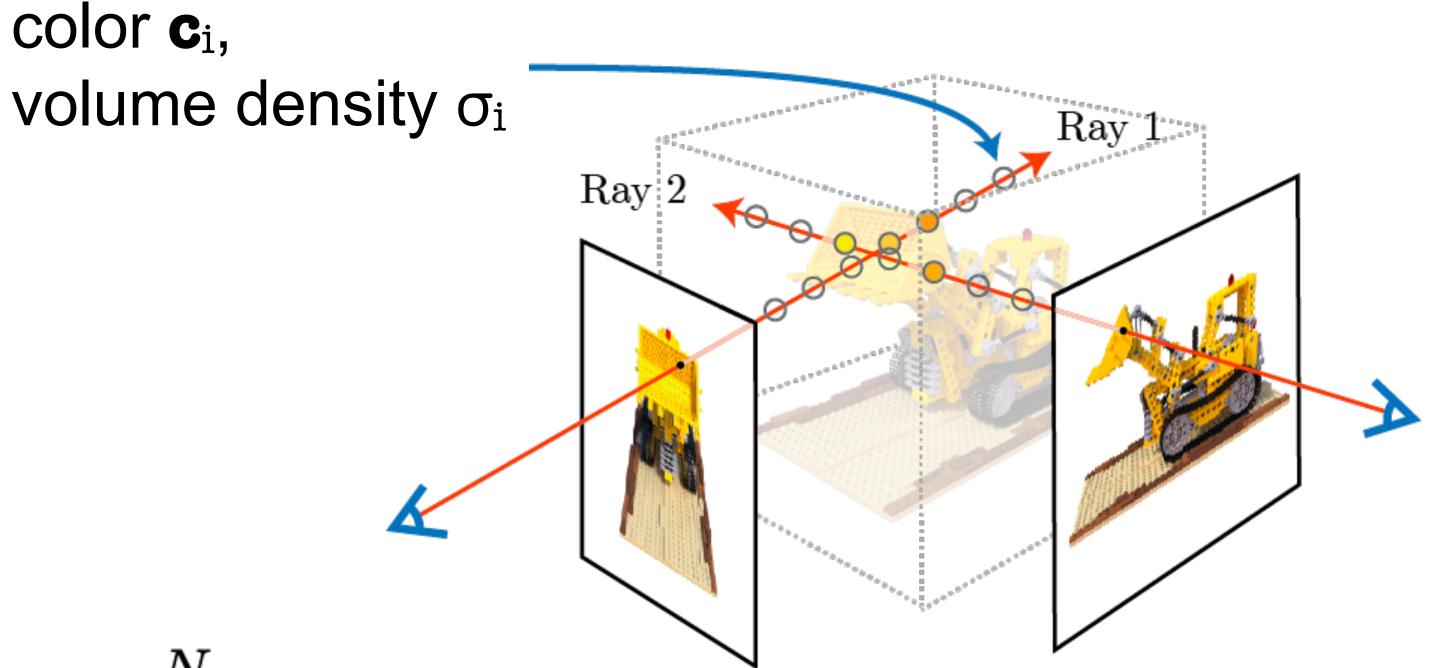
OF INFORMATION CYBERNE CTU IN PROBLEM CONTROL OF THE CONTROL OF TH



$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i$$

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORMATION OF THE CYBERIC CTU IN

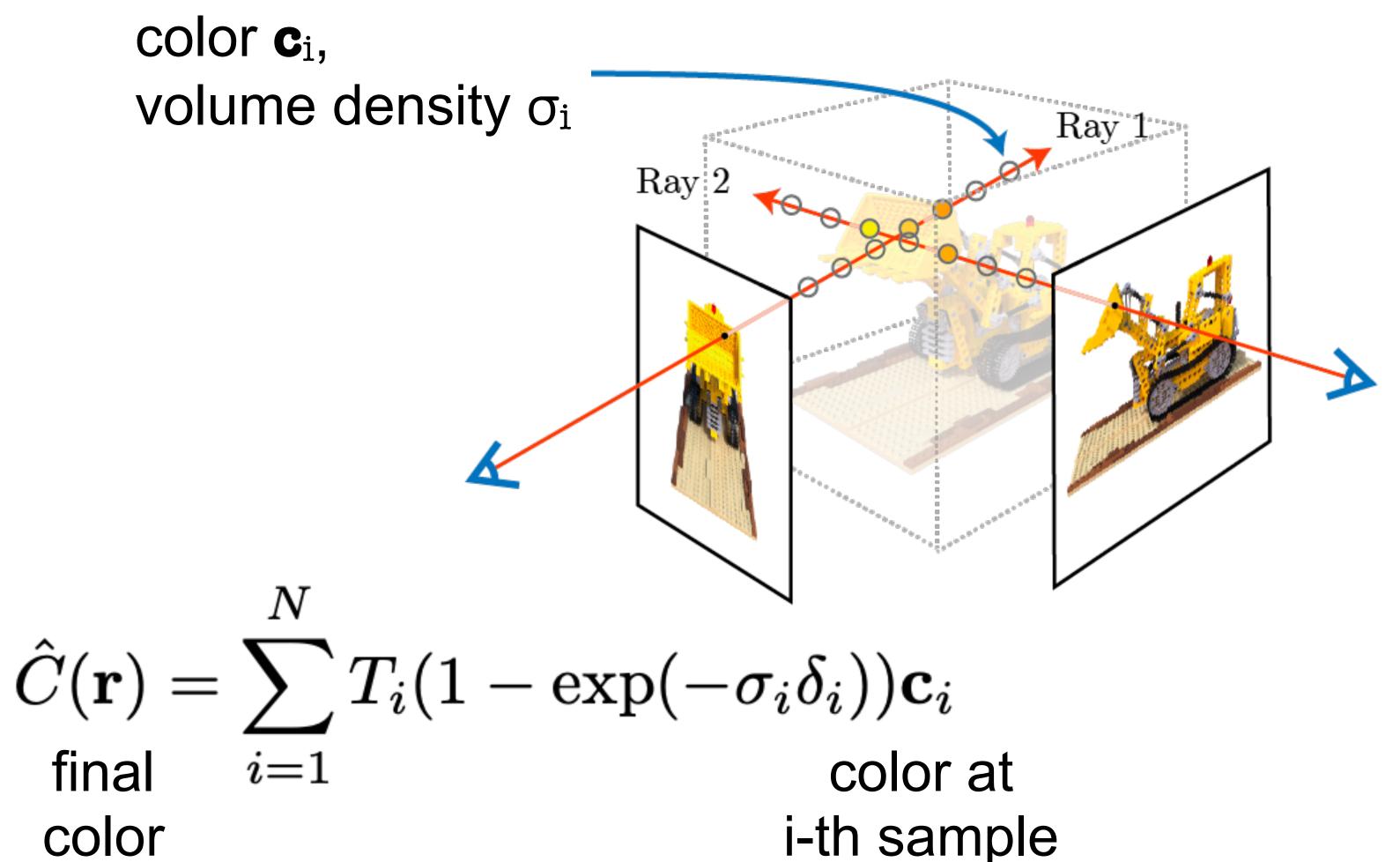


$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i$$
 final $i=1$ color

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

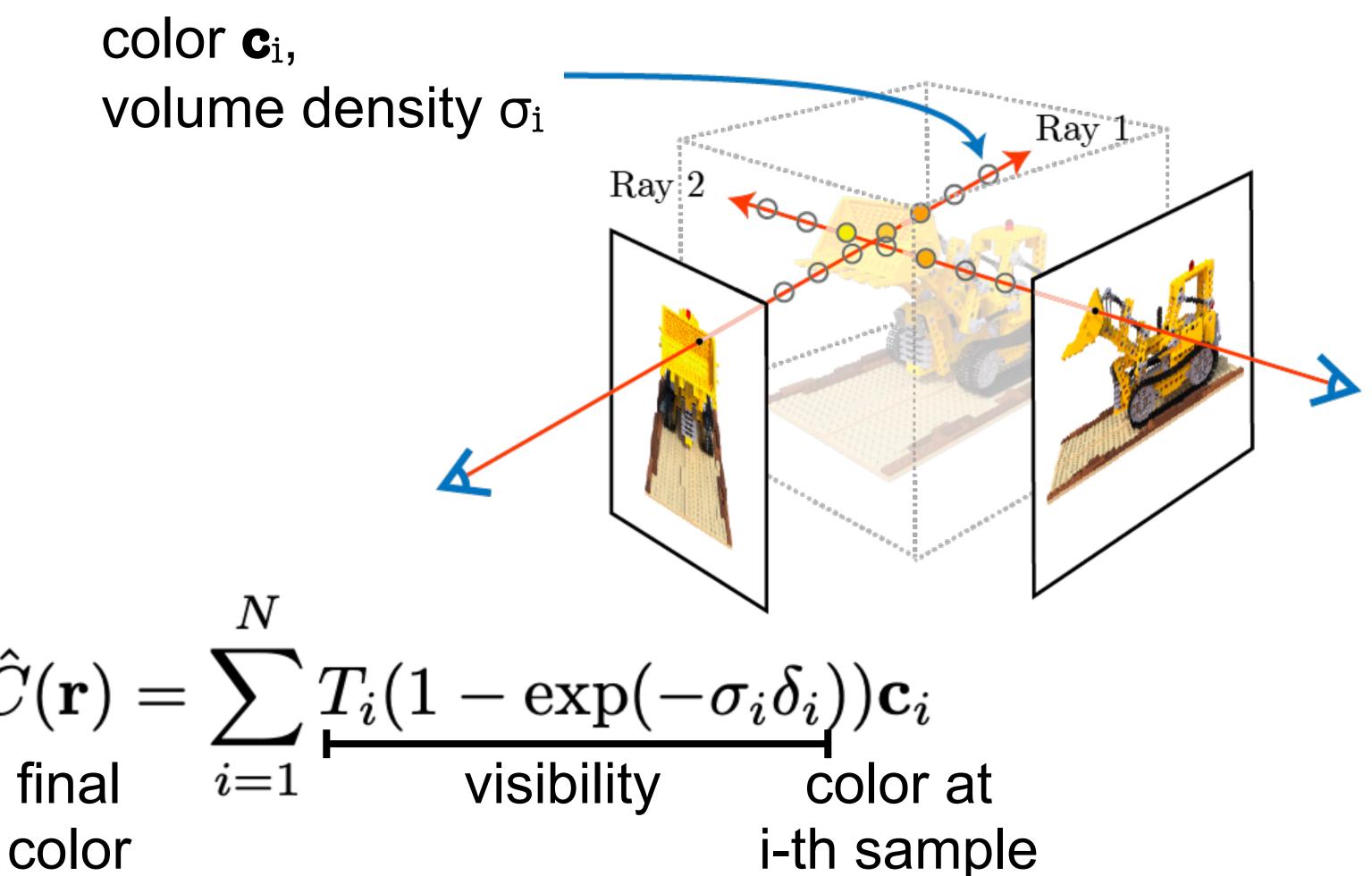
OF INFORMATION CYBERIC CTU IN

Torsten Sattler



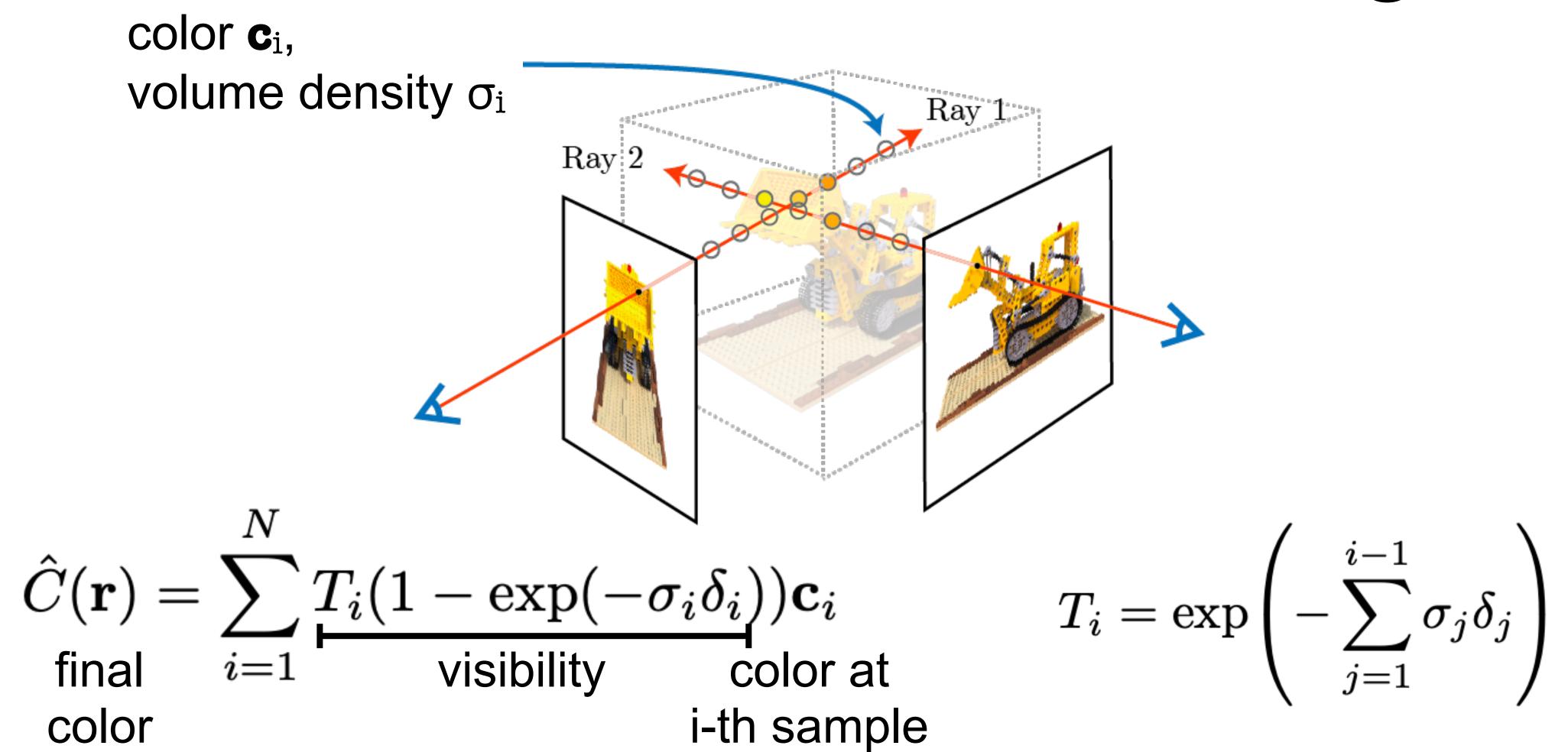
[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS CYBERNETICS CTU IN PRAGUE



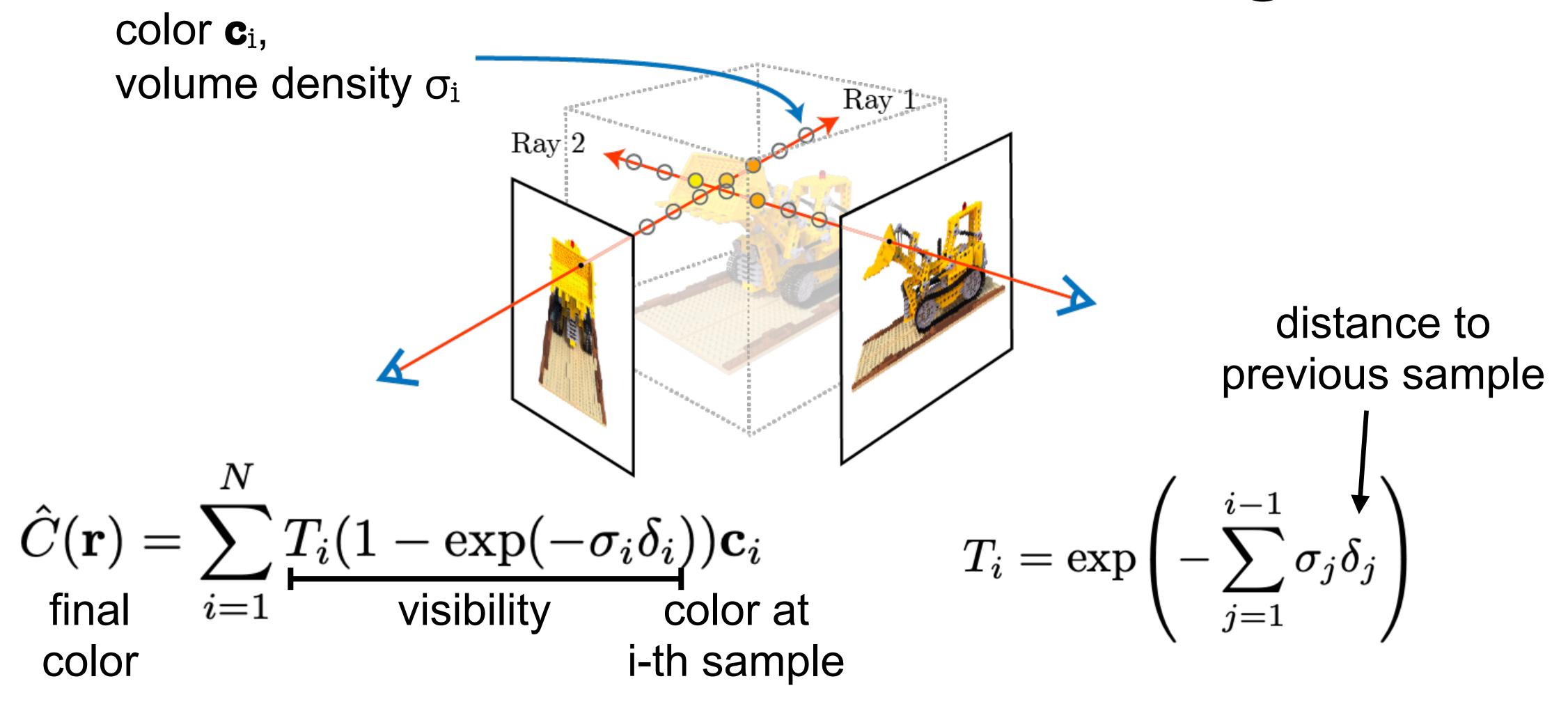
[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS TORSTEN Sattler



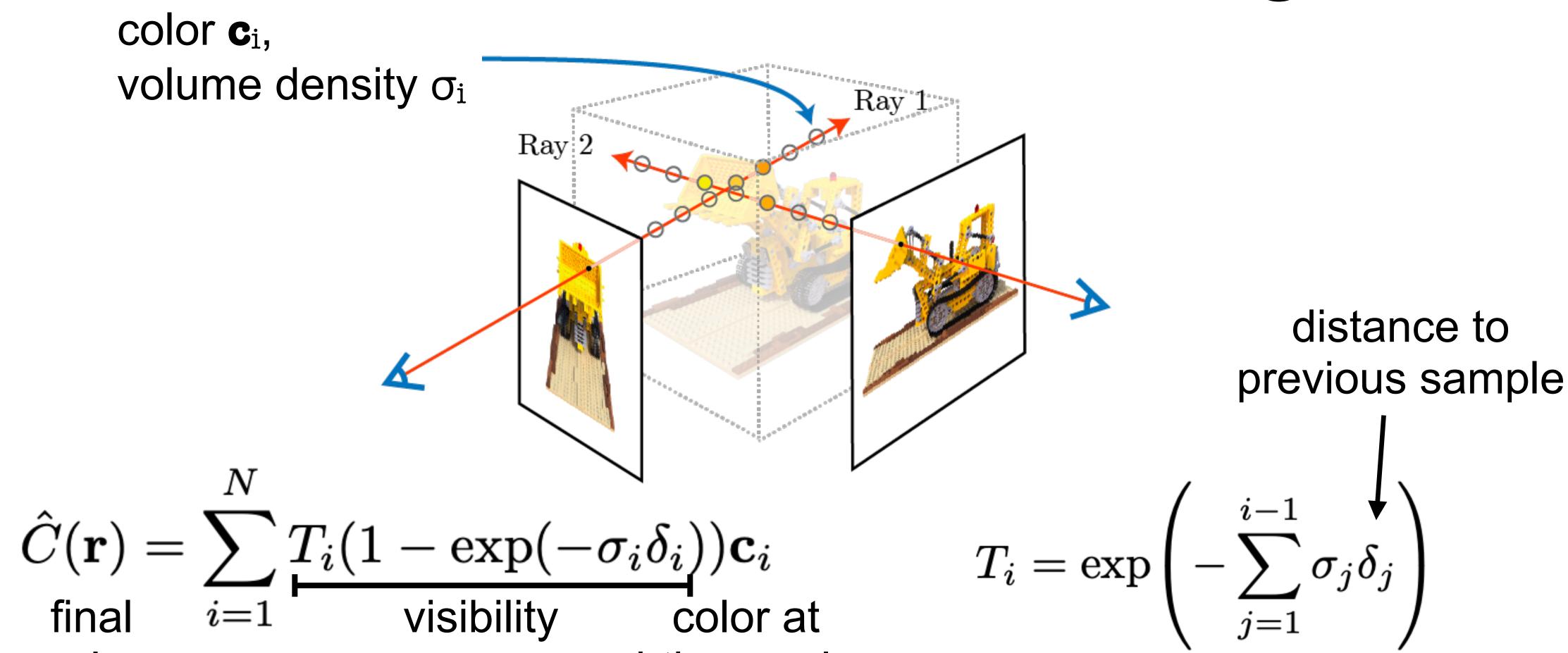
[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INF
ROBOT
CYBER
CTU IN



[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INF
ROBOT
CYBER
CTU IN



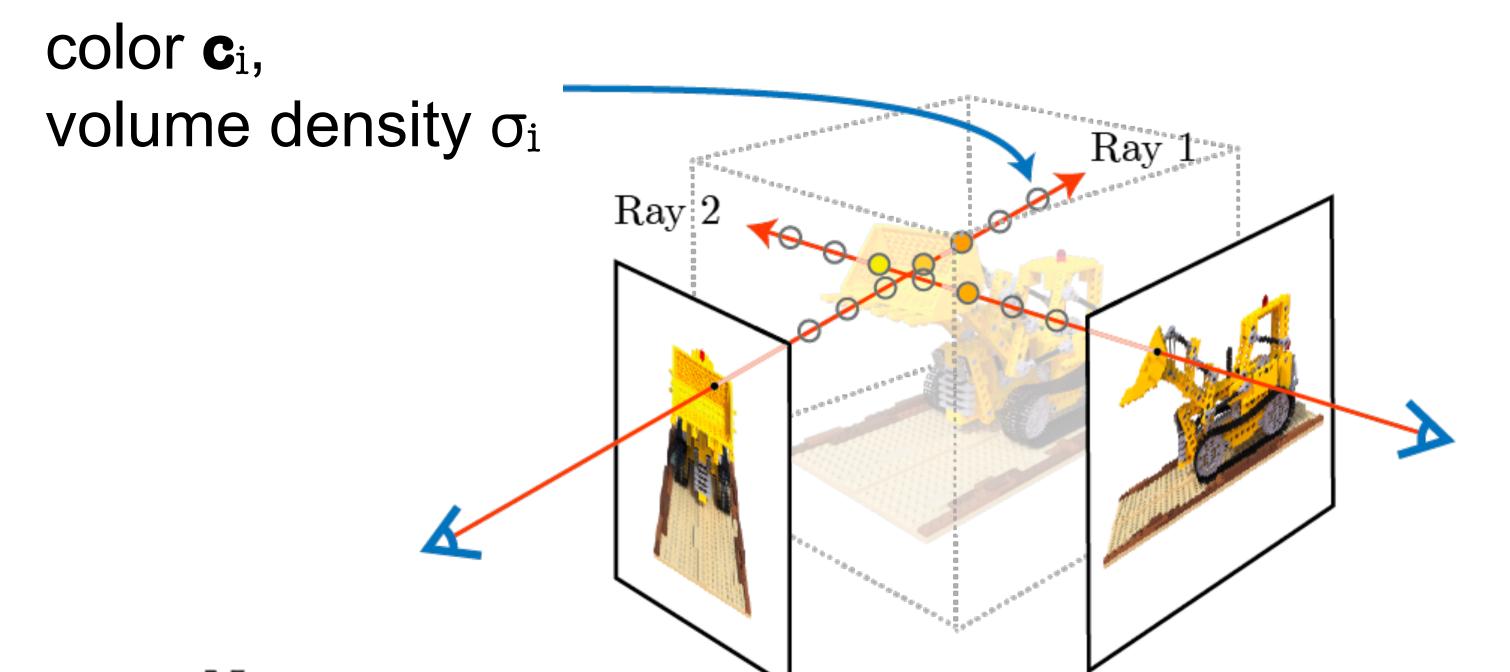
i-th sample

small if high density before this sample

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

color

Torsten Sattler



Fully differentiable!

distance to previous sample

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i$$
 final visibility color at color i-th sample

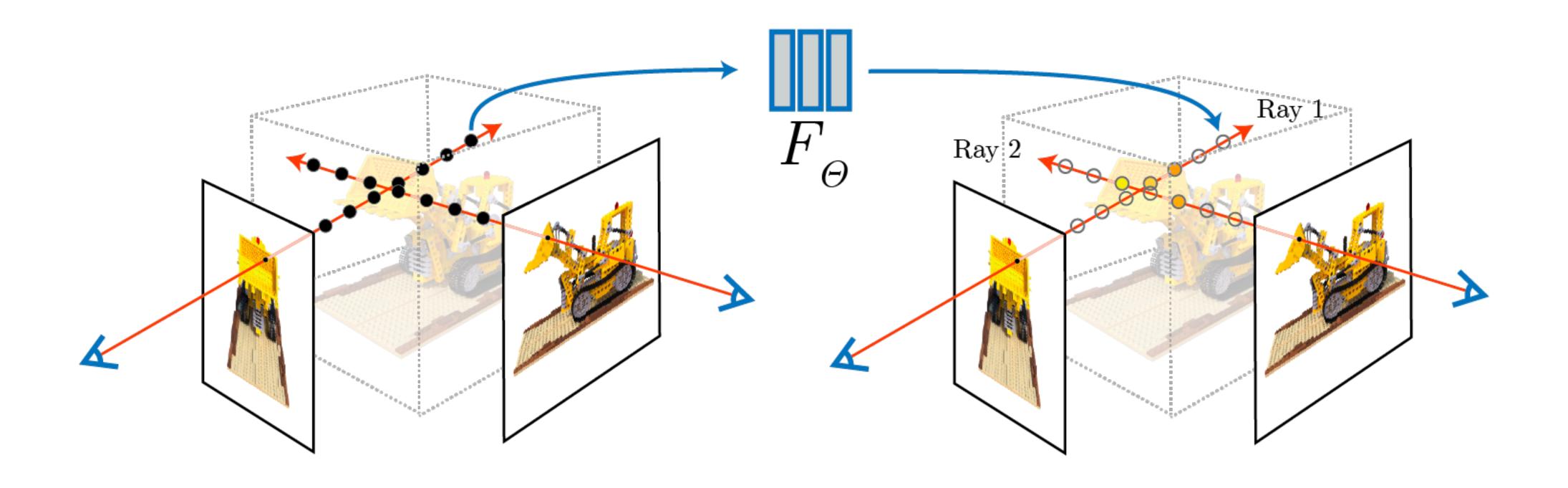
$$T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$

small if high density before this sample

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

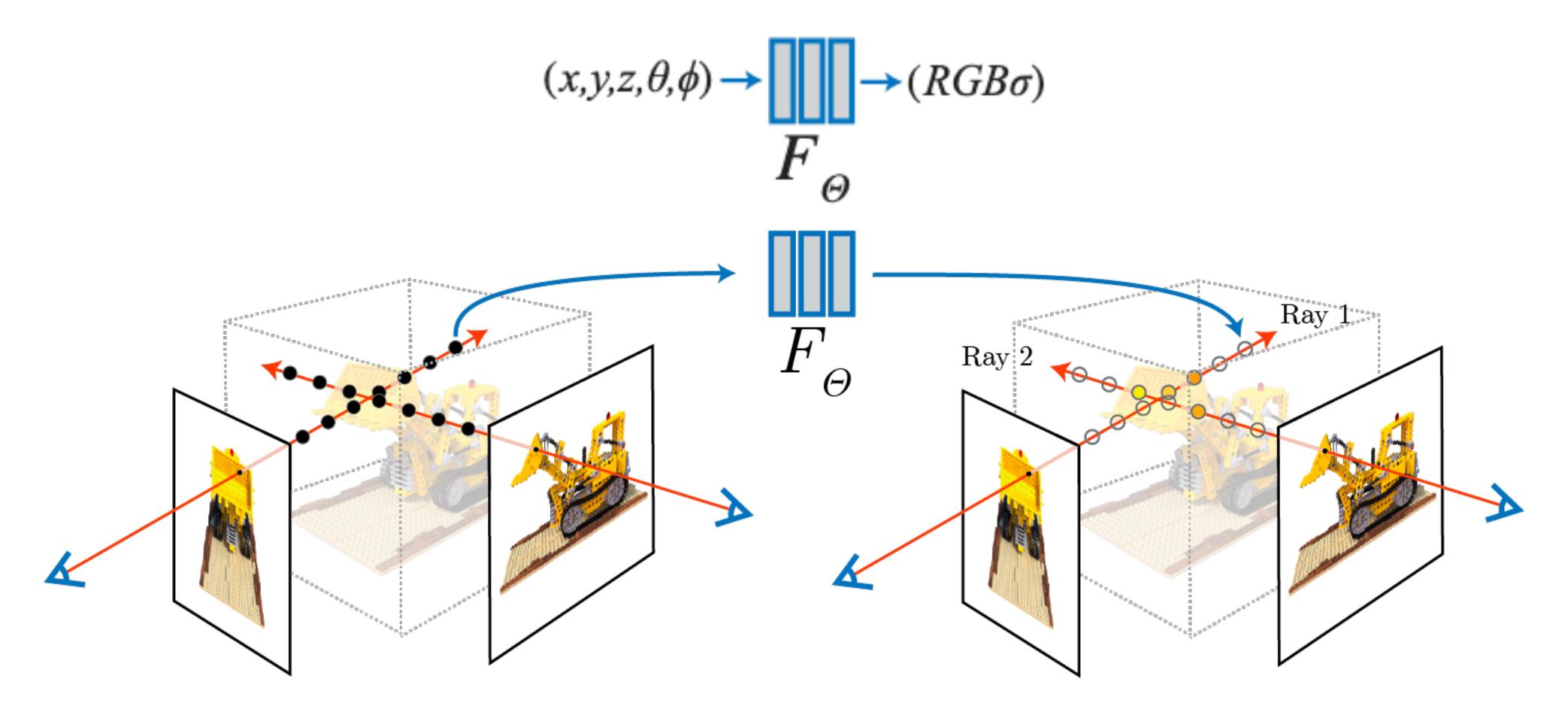
Torsten Sattler

Torsten Sattler



[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS TORSten Sattler 68



[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS CYBERNETICS CTULIN PRACUE

input: 3D point and ray direction

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

Torsten Sattler

CTU IN PRAGUE

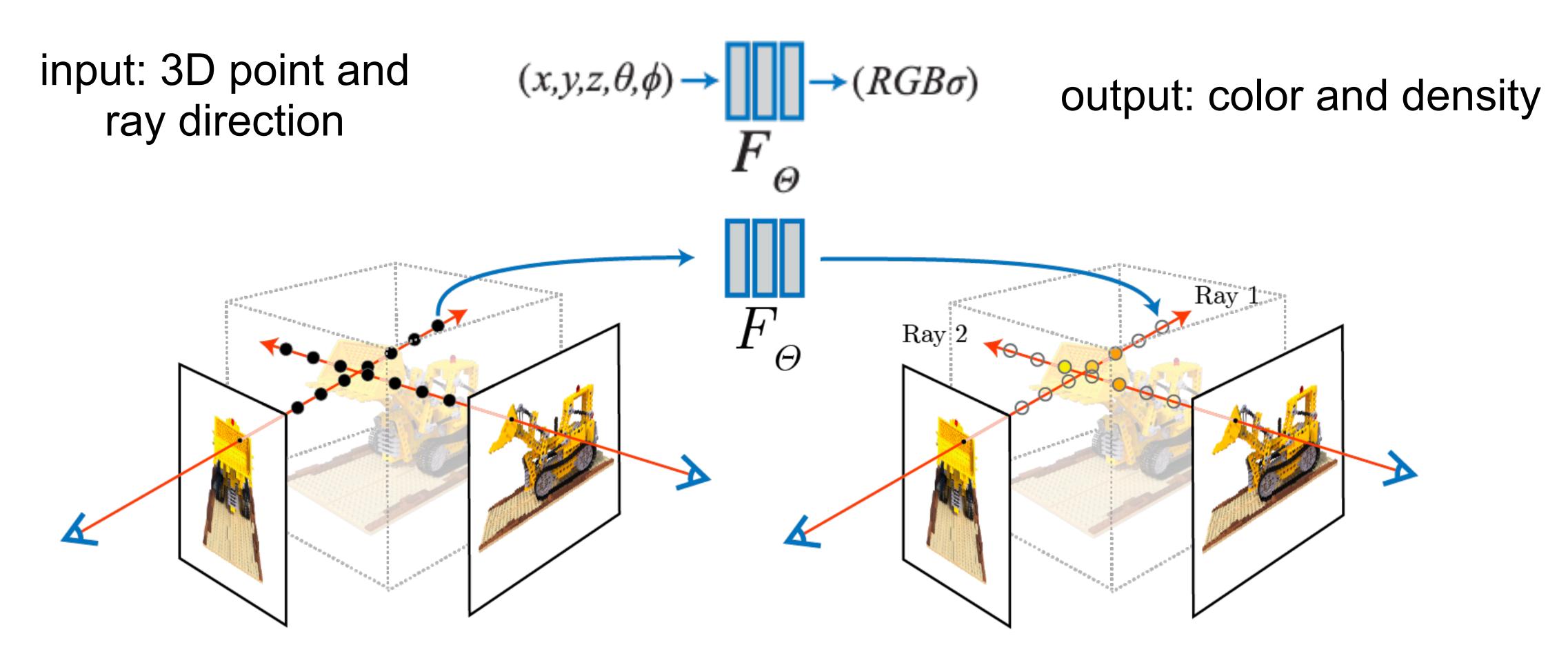
TO STATE SATTLES

input: 3D point and output: color and density ray direction

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORMATION OF INF

Torsten Sattler



Continuous scene representation (vs. discrete voxel volumes)

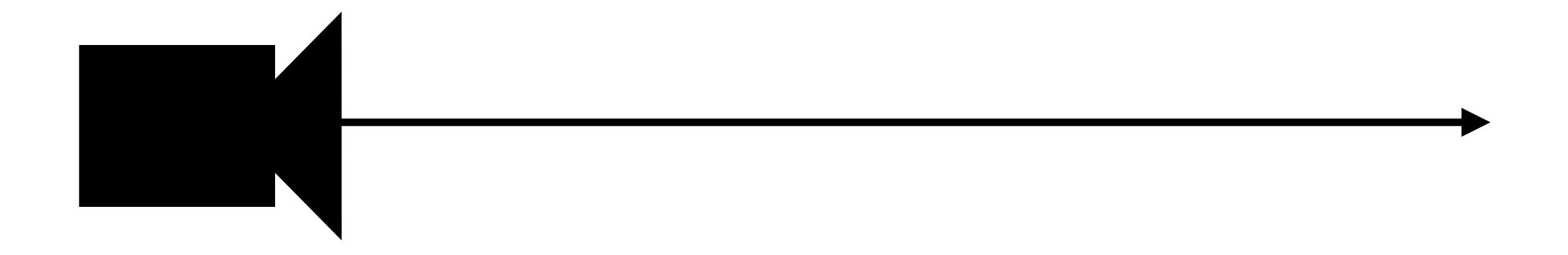
[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

68

OF INFORMATICS ROBOTICS AND CYBERNETICS CTU IN PRAGUE

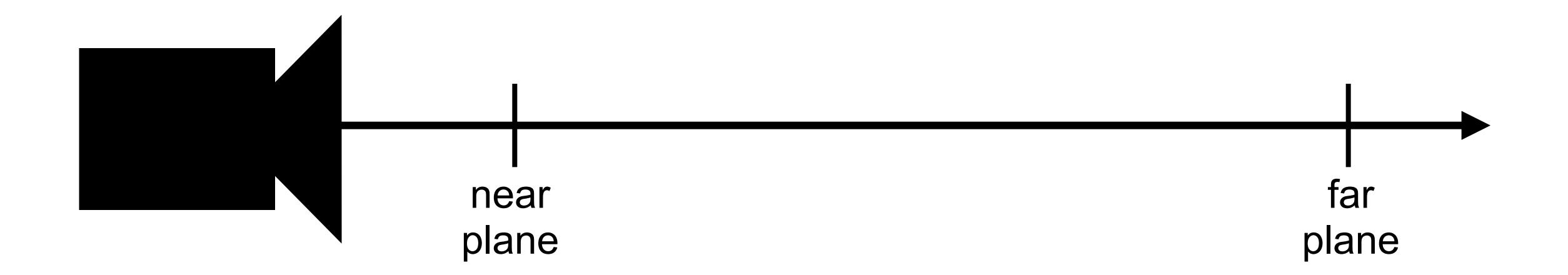
OF INFORMATICS TO SET IN FORMATICS TO SET IN FRAGUE

Torsten Sattler

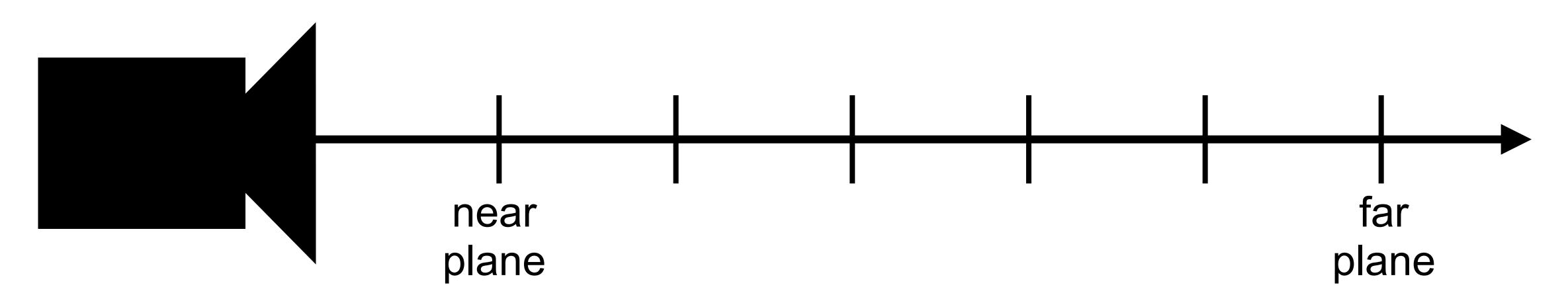


[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORM ROBOTICS A CYBERNETIC CTU IN PRAC



[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]



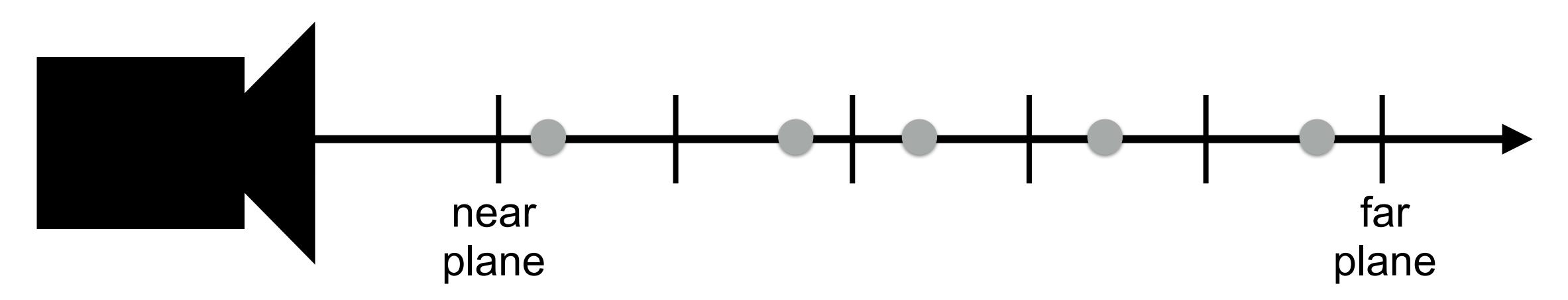
subdivide into equally sized intervals

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORMATION ROBOTICS AND CYBERNETICS CTU IN PRAGUE

Torsten Sattler 69

uniform sampling inside intervals → continuous sampling of the volume

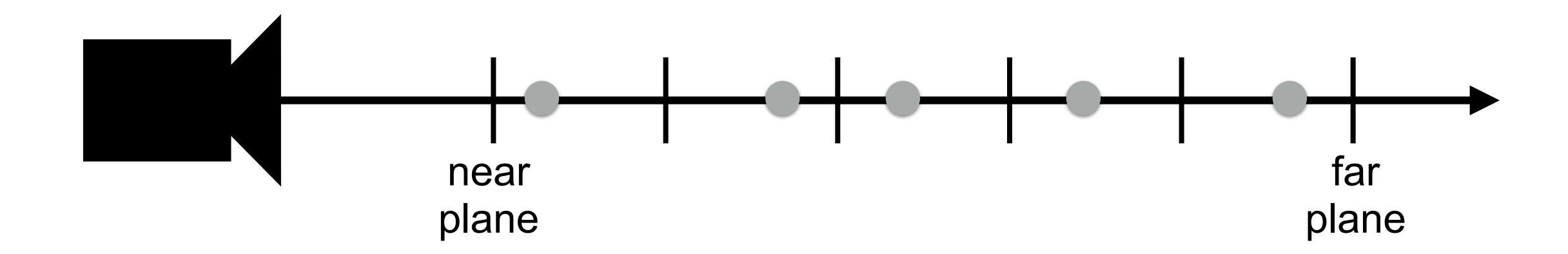


subdivide into equally sized intervals

69

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CYBERNETICS
CYBERNETICS
CYBERNETICS

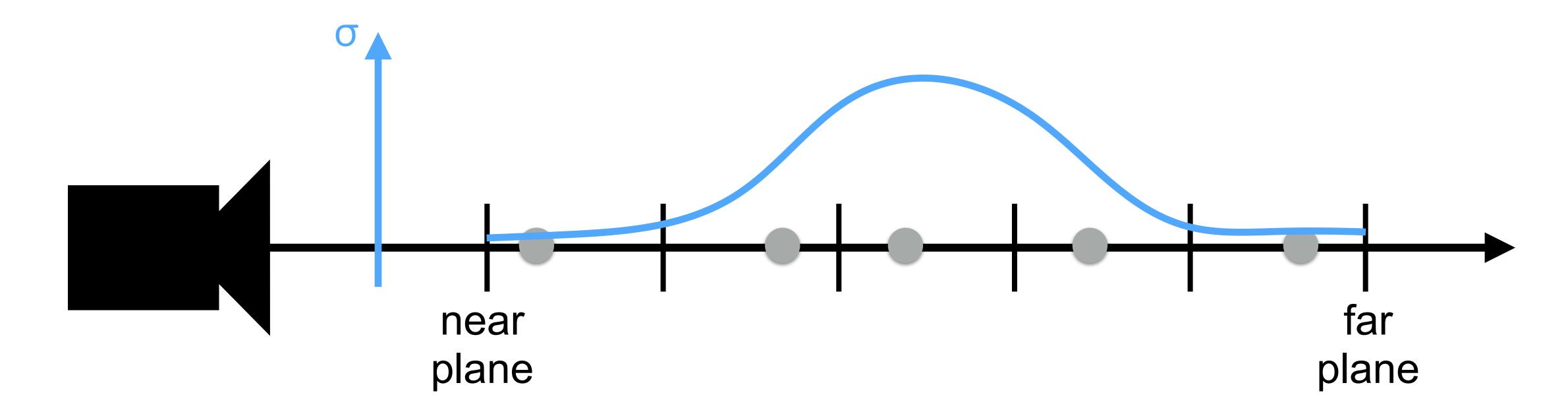
Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals



[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS CTU IN PRAGUE

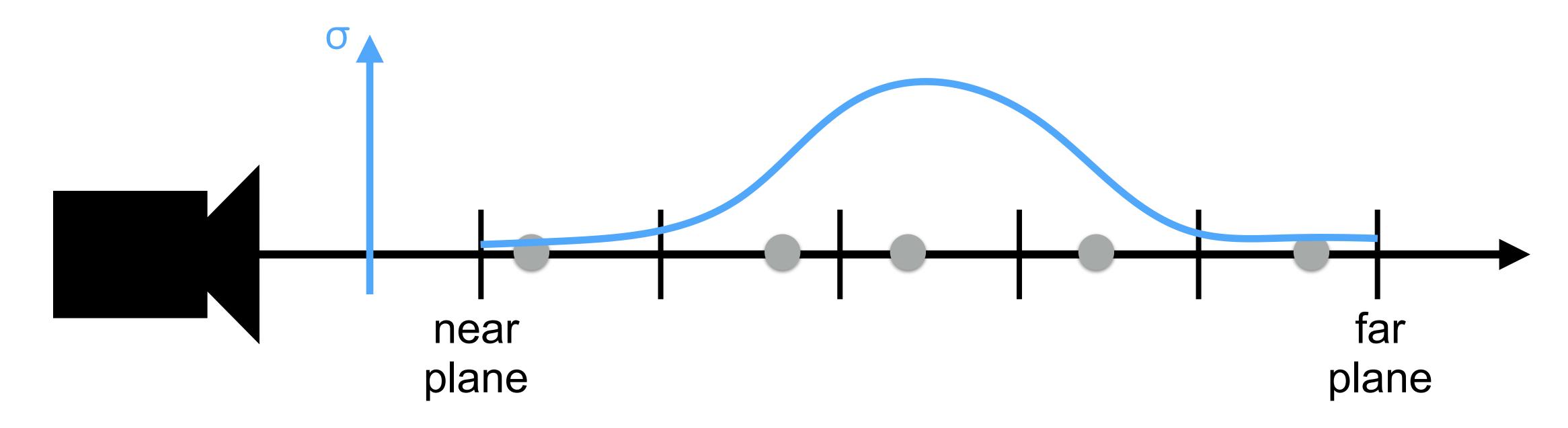
Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals



[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFOIR ROBOTIC CYBERNICTU IN P

Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals



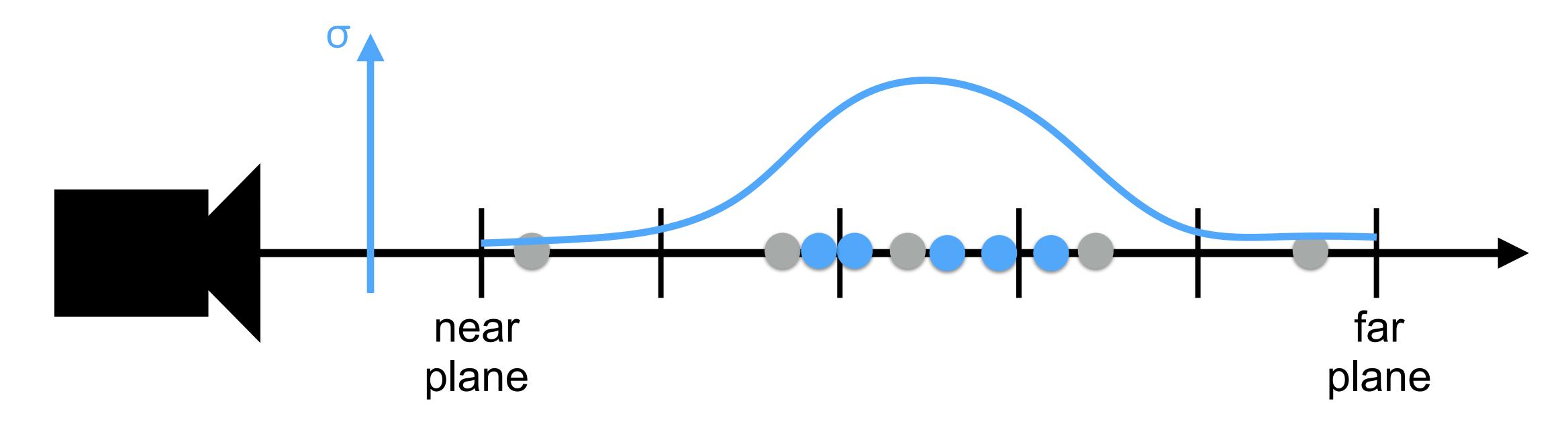
"Fine" sampling ("fine" network): Sample according to observed densities

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORMA ROBOTICS AI CYBERNETIC CTU IN PRAG

70

Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals

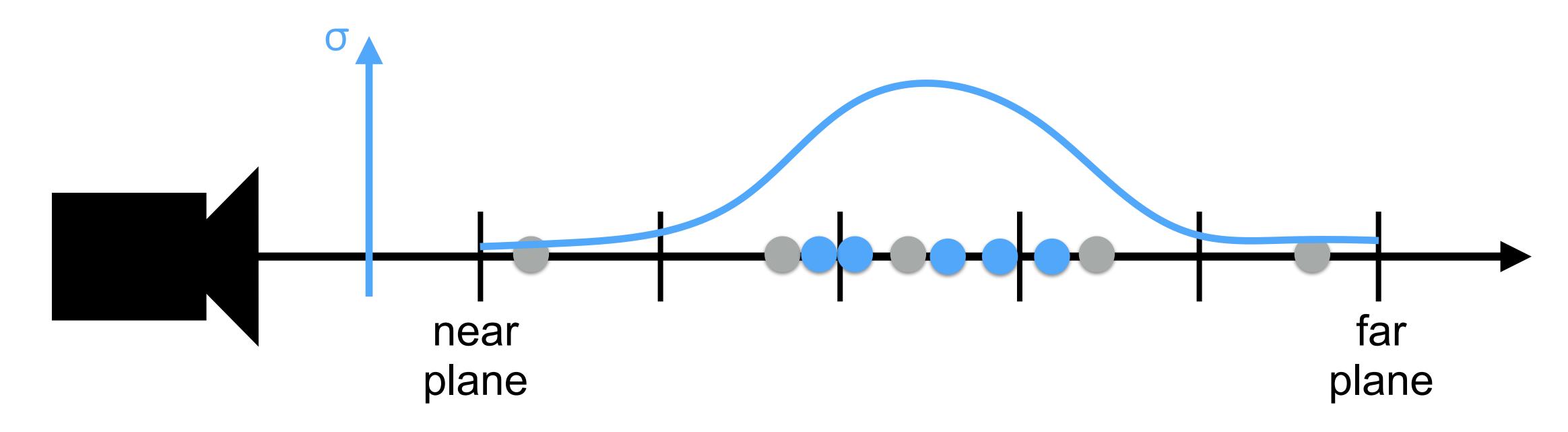


"Fine" sampling ("fine" network): Sample according to observed densities

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORMATION CYBERN CTU IN

Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals



"Fine" sampling ("fine" network): Sample according to observed densities

All samples are used during volume rendering

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFO ROBOTIC CYBERN CTU IN P

Torsten Sattler 70

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

[Müller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022] [Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS TORSTEIN Sattler

ground truth color

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

[Müller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022] [Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS TO Sattler

ground truth color

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

color predicted by "fine" network

[Müller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022] [Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS CTUIN PRACUE

ground truth color

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

color predicted by coarse network

color predicted by "fine" network

[Müller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022] [Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

of informatics robotics and cybernetics

Torsten Sattler

ground truth color

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

color predicted by coarse network

color predicted by "fine" network

Trained individually per scene, can now be done in a matter of minutes

[Müller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022] [Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

robotics and Cybernetics

Torsten Sattler

Neural Radiance Fields (NeRFs)

Synthetic Scenes

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

