3D Reconstruction Pipelines

GVG 2022 - Lecture 13

GVG - Brief Summary

- Previously in the GVG lecture:
 - Absolute camera pose estimation
 - Homograph estimation
 - Fundamental matrix estimation
 - Reconstruction from two views
 - Essential matrix estimation
- This lecture: Putting things together for full 3D reconstruction

Torsten Sattler

Structure-from-Motion (SfM)

Input: images

Output: (sparse) 3D point cloud, camera poses

model computed using Colmap

Sequential / Incremental SfM

Sequential / Incremental SfM

Feature Detection

Detect interest points and extract descriptors for them, e.g., SIFT features (see lecture 06)

Torsten Sattler

Sequential / Incremental SfM

Feature Detection

Feature Matching & H/E/F Matrix Fitting

- Nearest neighbor search in descriptor space to establish feature matches
- Robust model fitting via RANSAC

While probability of missing correct model >η

While probability of missing correct model $>\eta$ Estimate model from n random data points

While probability of missing correct model >η

Estimate model from *n* random data points

Estimate support inliers of model

While probability of missing correct model >η
Estimate model from *n* random data points
Estimate support inliers of model
If new best model
update best model, η

While probability of missing correct model >η

Estimate model from *n* random data points

Estimate support inliers of model

If new best model

update best model, η

Return: Model with most inliers

2D line fitting example

2D line fitting example

Repeat:

2D line fitting example

Repeat:

2D line fitting example

Repeat:

2D line fitting example

Repeat:

best number of inliers: 3

2D line fitting example

2D line fitting example

Repeat:

best number of inliers: 3

2D line fitting example

Repeat:

best number of inliers: 4

2D line fitting example

2D line fitting example

2D line fitting example

2D line fitting example

2D line fitting example Repeat: Draw Minimal Sample **Estimate Model Count Inliers** best number of inliers: 4

2D line fitting example Repeat: Draw Minimal Sample **Estimate Model Count Inliers** best number of inliers: 5

• Let's assume we know the inlier ratio ε (fraction of inliers)

- Let's assume we know the inlier ratio ε (fraction of inliers)
- Probability of picking an inlier randomly: ε

- Let's assume we know the inlier ratio ε (fraction of inliers)
- Probability of picking an inlier randomly: ε
- Probability of picking n inlier randomly: εn

- Let's assume we know the inlier ratio ε (fraction of inliers)
- Probability of picking an inlier randomly: ε
- Probability of picking n inlier randomly: εn
- Probability of non-all inlier sample (≥ 1 outlier): (1-εn)

- Let's assume we know the inlier ratio ε (fraction of inliers)
- Probability of picking an inlier randomly: ε
- Probability of picking n inlier randomly: εn
- Probability of non-all inlier sample (≥ 1 outlier): (1-εn)
- Probability of not picking all-inlier sample in k iterations: (1-εn)k

Terminate if (1-εn)k<η

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{kmax} = \eta$

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{kmax} = \eta$
 - $\Leftrightarrow k_{\text{max}} \ln(1-\epsilon^n) = \ln(\eta)$

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{kmax} = \eta$
 - $\Leftrightarrow k_{\text{max}} \ln(1-\epsilon^n) = \ln(\eta)$
 - $\Leftrightarrow k_{\text{max}} = \ln(\eta) / \ln(1-\epsilon^n)$

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{kmax} = \eta$
 - $\Leftrightarrow k_{\text{max}} \ln(1-\epsilon^n) = \ln(\eta)$
 - $\Leftrightarrow k_{\text{max}} = \ln(\eta) / \ln(1-\epsilon^n)$
 - Note: $k_{max}(\varepsilon) > k_{max}(\varepsilon')$ if $\varepsilon < \varepsilon'$

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{kmax} = \eta$
 - $\Leftrightarrow k_{\text{max}} \ln(1-\epsilon^n) = \ln(\eta)$
 - $\Leftrightarrow k_{\text{max}} = \ln(\eta) / \ln(1-\epsilon^n)$
 - Note: $k_{max}(\varepsilon) > k_{max}(\varepsilon')$ if $\varepsilon < \varepsilon'$
- How do we know inlier ratio ε?

- Terminate if (1-εn)k<η
- In practice: Compute maximum number iterations k_{max}
 - Find k_{max} such that $(1-\epsilon^n)^{kmax} = \eta$
 - $\Leftrightarrow k_{\text{max}} \ln(1-\epsilon^n) = \ln(\eta)$
 - $\Leftrightarrow k_{\text{max}} = \ln(\eta) / \ln(1-\epsilon^n)$
 - Note: $k_{max}(\varepsilon) > k_{max}(\varepsilon')$ if $\varepsilon < \varepsilon'$
- How do we know inlier ratio ε?
- In practice more than $k_{max}(\epsilon)$ steps necessary as not every all-inlier sample leads to best model (due to, e.g., noise, degeneracies, etc.)

While probability of missing correct model >η

- See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)
- Never use standard RANSAC!

While probability of missing correct model $>\eta$ Estimate model from n random data points

- See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)
- Never use standard RANSAC!

While probability of missing correct model >n

Estimate model from *n* random data points

Estimate support (#inliers / robust cost func.) of model

• See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)

[Fischler & Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 1981]

Never use standard RANSAC!

While probability of missing correct model >η

Estimate model from *n* random data points

Estimate support (#inliers / robust cost func.) of model

[Chum, Matas, Optimal Randomized RANSAC. PAMI 2008]

- See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)
- Never use standard RANSAC!

While probability of missing correct model >η

Estimate model from *n* random data points

Estimate support (#inliers / robust cost func.) of model

[Chum, Matas, Optimal Randomized RANSAC. PAMI 2008]

If new best model

Perform Local Optimization (LO)

[Lebeda, Matas, Chum, Fixing the Locally Optimized RANSAC. BMVC 2012] [code]

- See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)
- Never use standard RANSAC!

While probability of missing correct model >η

Estimate model from *n* random data points

Estimate support (#inliers / robust cost func.) of model

[Chum, Matas, Optimal Randomized RANSAC. PAMI 2008]

If new best model

Perform Local Optimization (LO)

[Lebeda, Matas, Chum, Fixing the Locally Optimized RANSAC. BMVC 2012] [code]

update best model, η

- See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)
- Never use standard RANSAC!

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS

While probability of missing correct model >η

Estimate model from *n* random data points

Estimate support (#inliers / robust cost func.) of model

[Chum, Matas, Optimal Randomized RANSAC. PAMI 2008]

If new best model

Perform Local Optimization (LO)

[Lebeda, Matas, Chum, Fixing the Locally Optimized RANSAC. BMVC 2012] [code]

update best model, η

Return: Model with most inliers / lowest cost

- See also USAC [Raguram et al., PAMI'13] [code] (good overview, nice implementation)
- Never use standard RANSAC!

- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure

- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure

- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure

- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure

- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure

Feature Detection

Feature Matching & H/E/F Matrix Fitting

Two-View Initialization

- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure

Two-View Initialization

Feature Detection

Feature Matching &

H/E/F Matrix Fitting

- Extract relative rotation and translation from H/E/F matrix
- Use 2D-2D matches to triangulate 3D structure

How to select a good initial pair?

- How to select a good initial pair?
- Criteria:

- How to select a good initial pair?
- Criteria:
 - Accurate relative pose ≈ many inlier matches

- How to select a good initial pair?
- Criteria:
 - Accurate relative pose ≈ many inlier matches
 - Non-planar scene (planar scenes are degeneracy for F-matrix fitting)

- How to select a good initial pair?
- Criteria:
 - Accurate relative pose ≈ many inlier matches
 - Non-planar scene (planar scenes are degeneracy for F-matrix fitting)
 - Compute both H and E/F matrix

- How to select a good initial pair?
- Criteria:
 - Accurate relative pose ≈ many inlier matches
 - Non-planar scene (planar scenes are degeneracy for F-matrix fitting)
 - Compute both H and E/F matrix
 - Select pair with large ratio #inliers(E/F) / #inliers(H)

- How to select a good initial pair?
- Criteria:
 - Accurate relative pose ≈ many inlier matches
 - Non-planar scene (planar scenes are degeneracy for F-matrix fitting)
 - Compute both H and E/F matrix
 - Select pair with large ratio #inliers(E/F) / #inliers(H)
 - No pure forward motion (triangulation inaccurate / impossible)

- How to select a good initial pair?
- Criteria:
 - Accurate relative pose ≈ many inlier matches
 - Non-planar scene (planar scenes are degeneracy for F-matrix fitting)
 - Compute both H and E/F matrix
 - Select pair with large ratio #inliers(E/F) / #inliers(H)
 - No pure forward motion (triangulation inaccurate / impossible)
- In practice, try out multiple initial pairs

- Pick image(s) with large number of matches to existing cameras
- Obtain 2D-3D matches from 2D-2D matches
- Estimate absolute pose of new image

- Pick image(s) with large number of matches to existing cameras
- Obtain 2D-3D matches from 2D-2D matches
- Estimate absolute pose of new image

- Pick image(s) with large number of matches to existing cameras
- Obtain 2D-3D matches from 2D-2D matches
- Estimate absolute pose of new image

- Pick image(s) with large number of matches to existing cameras
- Obtain 2D-3D matches from 2D-2D matches
- Estimate absolute pose of new image

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure**

- Associate existing 3D points with new features
- Triangulate new 3D points for features without associated 3D points

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure**

- Associate existing 3D points with new features
- Triangulate new 3D points for features without associated 3D points

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure**

- Associate existing 3D points with new features
- Triangulate new 3D points for features without associated 3D points

- Associate existing 3D points with new features
- Triangulate new 3D points for features without associated 3D points

True trajectory

True trajectory
Estimated trajectory

- Errors accumulate, leading to drift over time
- Adjust motion and structure frequently

- Estimated trajectory
 - Errors accumulate, leading to drift over time
 - Adjust motion and structure frequently

Cost function is highly non-linear → refine from initialization

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix},$$

slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{t} \mathbf{X}}{\mathbf{P}_{3}^{t} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{t} \mathbf{X}}{\mathbf{P}_{3}^{t} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{t} \mathbf{X}}{\mathbf{P}_{3}^{t} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{t} \mathbf{X}}{\mathbf{P}_{3}^{t} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Compute gradient: $\nabla f(\mathbf{X}_k) = \mathbf{J}^T \Delta$

slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Compute gradient: $\nabla f(\mathbf{X}_k) = \mathbf{J}^T \Delta$

$$\mathtt{J} = rac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$$
 : Jacobian

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Compute gradient: $\nabla f(\mathbf{X}_k) = \mathbf{J}^T \Delta$

Update: $\mathbf{X}_{k+1} = \mathbf{X}_k - \eta \nabla f(\mathbf{X}_k)$

$$\mathtt{J} = rac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$$
 : Jacobian

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Compute gradient: $\nabla f(\mathbf{X}_k) = \mathbf{J}^T \Delta$

Update: $\mathbf{X}_{k+1} = \mathbf{X}_k - \eta \nabla f(\mathbf{X}_k)$

$$\mathtt{J} = rac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$$
: Jacobian η : Step size

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Iterate until convergence or for fixed number of iterations

ullet Compute gradient: $abla f(\mathbf{X}_k) = \mathtt{J}^T \Delta$

-Update: $\mathbf{X}_{k+1} = \mathbf{X}_k - \eta \nabla f(\mathbf{X}_k)$

$$\mathtt{J} = rac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$$
: Jacobian η : Step size

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Gradient descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} , \ \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Iterate until convergence or for fixed number of iterations

ightharpoonup Compute gradient: $abla f(\mathbf{X}_k) = \mathbf{J}^T \Delta$

-Update: $\mathbf{X}_{k+1} = \mathbf{X}_k - \eta \nabla f(\mathbf{X}_k)$

$$\mathtt{J} = rac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$$
: Jacobian η : Step size

Slow convergence near minimum point!

slide credit: Gim Hee Lee

Newton's method

2nd order approximation (quadratic Taylor expansion):

$$f(\mathbf{X} + \delta)|_{\mathbf{X} = \mathbf{X}_k} = f(\mathbf{X}) + \nabla f(\mathbf{X})^T \delta + \frac{1}{2} \delta^T \mathbf{H} \delta \Big|_{\mathbf{X} = \mathbf{X}_k}$$

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Newton's method

2nd order approximation (quadratic Taylor expansion):

$$f(\mathbf{X} + \delta)|_{\mathbf{X} = \mathbf{X}_k} = f(\mathbf{X}) + \nabla f(\mathbf{X})^T \delta + \frac{1}{2} \delta^T \mathbf{H} \delta \Big|_{\mathbf{X} = \mathbf{X}_k}$$

Hessian matrix:
$$\mathbf{H} = \left. \frac{\partial^2 f(\mathbf{X} + \delta)}{\partial^2 \delta} \right|_{\mathbf{X} = \mathbf{X}_k}$$

slide credit: Gim Hee Lee

Newton's method

2nd order approximation (quadratic Taylor expansion):

$$f(\mathbf{X} + \delta)|_{\mathbf{X} = \mathbf{X}_k} = f(\mathbf{X}) + \nabla f(\mathbf{X})^T \delta + \frac{1}{2} \delta^T \mathbf{H} \delta \Big|_{\mathbf{X} = \mathbf{X}_k}$$

Hessian matrix:
$$\mathbf{H} = \left. \frac{\partial^2 f(\mathbf{X} + \delta)}{\partial^2 \delta} \right|_{\mathbf{X} = \mathbf{X}_k}$$

Find δ that minimizes $f(\mathbf{X} + \delta)|_{\mathbf{X} = \mathbf{X}_k}!$

slide credit: Gim Hee Lee

Newton's method

Differentiate and set to 0 gives:

$$\delta = -\mathbf{H}^{-1} \nabla f(\mathbf{X}_k)$$

Update:

$$\mathbf{X}_{k+1} = \mathbf{X}_k + \delta$$

slide credit: Gim Hee Lee

Newton's method

Differentiate and set to 0 gives:

$$\delta = -\mathbf{H}^{-1} \nabla f(\mathbf{X}_k)$$

Update: $\mathbf{X}_{k+1} = \mathbf{X}_k + \delta$

Computation of H is not trivial (2nd order derivatives) and optimization might get stuck at saddle point!

slide credit: Gim Hee Lee

Gauss-Newton

Approximate Hessian matrix by dropping 2nd order terms:

$$\mathtt{H} pprox \mathtt{J}^T \mathtt{J}$$

slide credit: Gim Hee Lee

Gauss-Newton

Approximate Hessian matrix by dropping 2nd order terms:

$$\mathtt{H} pprox \mathtt{J}^T \mathtt{J}$$

Solve normal equation:

$$\mathbf{J}^T\mathbf{J}\delta = -\mathbf{J}^t\Delta$$

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Gauss-Newton

Approximate Hessian matrix by dropping 2nd order terms:

$$\mathtt{H} pprox \mathtt{J}^T \mathtt{J}$$

Solve normal equation:

$$\mathbf{J}^T\mathbf{J}\delta = -\mathbf{J}^t\Delta$$

Might get stuck and slow convergence at saddle point!

slide credit: Gim Hee Lee

Levenberg-Marquardt

Regularized Gauss-Newton with damping factor

$$(\mathbf{J}^T\mathbf{J} + \lambda \mathbf{I}) \, \delta = -\mathbf{J}^t \Delta$$

slide credit: Gim Hee Lee

Levenberg-Marquardt

Regularized Gauss-Newton with damping factor

$$\left(\mathbf{J}^T\mathbf{J} + \lambda\mathbf{I}\right)\delta = -\mathbf{J}^t\Delta$$

 $\lambda \to 0$: Gauss-Newton (when convergence is rapid)

 $\lambda o \infty$: Gradient descent (when convergence is slow)

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Levenberg-Marquardt

Regularized Gauss-Newton with damping factor

$$\left(\mathbf{J}^T\mathbf{J} + \lambda\mathbf{I}\right)\delta = -\mathbf{J}^t\Delta$$

 $\lambda \to 0$: Gauss-Newton (when convergence is rapid)

 $\lambda \to \infty$: Gradient descent (when convergence is slow)

Adapt λ during optimization:

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Levenberg-Marquardt

Regularized Gauss-Newton with damping factor

$$\left(\mathbf{J}^T\mathbf{J} + \lambda\mathbf{I}\right)\delta = -\mathbf{J}^t\Delta$$

 $\lambda \to 0$: Gauss-Newton (when convergence is rapid)

 $\lambda o \infty$: Gradient descent (when convergence is slow)

Adapt λ during optimization:

Decrease λ when function value decreases

slide credit: Gim Hee Lee

Levenberg-Marquardt

Regularized Gauss-Newton with damping factor

$$\left(\mathbf{J}^T\mathbf{J} + \lambda\mathbf{I}\right)\delta = -\mathbf{J}^t\Delta$$

 $\lambda \to 0$: Gauss-Newton (when convergence is rapid)

 $\lambda o \infty$: Gradient descent (when convergence is slow)

Adapt λ during optimization:

- Decrease λ when function value decreases
- Increase λ otherwise

Feature Detection Feature Matching & H/E/F Matrix Fitting Two-View Initialization **Extend Motion Extend Structure Bundle Adjustment**

slide credit: Gim Hee Lee

Reconstruction of the old inner city of Aachen, Germany, using the Bundler SfM software

slide credit: Gim Hee Lee

- Not covered here:
 - Sparse structure of the bundle adjustment problem
 - Efficient strategies (e.g., Schur Complement Trick)
 - •
- Recommended reading:
 - Triggs et al., Bundle Adjustment A Modern Synthesis, 1999

slide credit: Gim Hee Lee

Multi-View Stereo (MVS)

Input: calibrated images, camera poses, SfM model

Output: dense 3D point cloud or (textured) 3D mesh

- Use known epipolar relation to find dense matches between images
- Create dense point cloud

- Use known epipolar relation to find dense matches between images
- Create dense point cloud

- Use known epipolar relation to find dense matches between images
- Create dense point cloud

- Use known epipolar relation to find dense matches between images
- Create dense point cloud

- Bundler (<u>https://github.com/snavely/bundler_sfm</u>)
- Linux (Windows also supported), open source
- SfM pipeline, MVS pipelines can read file format
- Showed nice results on internet photo collections
- Not state-of-the-art anymore

https://www.youtube.com/watch?v=5ceiOd8Yx3g

- VisualSFM (http://ccwu.me/vsfm/)
- Linux, Mac OS X, Windows, closed source
- SfM pipeline, interface to external MVS software
- Graphical User Interface
- Very efficient due to use of GPU

- OpenMVG (https://github.com/openMVG/openMVG)
- Linux, Mac OS X, Windows, open source
- SfM pipeline, MVS pipelines can read file format
- Very modular, functionality not in other packages (full multi-camera support)
- Not very efficient, no GUI

- COLMAP (https://colmap.github.io/index.html)
- Linux, Mac OS X, Windows, open source
- SfM and MVS (NVidia GPU required for MVS)
- Efficient pipeline, GUI
- High code quality, very great tool for research!

- COLMAP (https://colmap.github.io/index.html)
- Linux, Mac OS X, Windows, open source
- SfM and MVS (NVidia GPU required for MVS)
- Efficient pipeline, GUI
- High code quality, very great tool for research!

- AliceVision Meshroom (https://alicevision.org/)
- Linux, Windows, open source
- SfM and MVS (NVidia GPU required for both)
- Includes work by Tomas Pajdla and his PhD students
- Have not tried it yet, on my Todo list

- RealityCapture (<u>https://www.capturingreality.com/</u>)
- Commercial software, Windows only
- Start-up (CapturingReality) out of Slovakia, former PhD students at CVUT, recently acquired by Epic Games
- Both SfM and MVS (MVS requires NVidia GPU)
- Highly efficient, SfM takes a few minutes even for large scenes
- Very high quality (probably best software out there)

- RealityCapture (<u>https://w</u>)
- Commercial software,
- Start-up (CapturingReal recently acquired by Epic
- Both SfM and MVS (MVS)
- Highly efficient, SfM tak
- Very high quality (probably best software out there)

Demo!

students at CVUT,

Results with RealityCapture

Torsten Sattler

Results with RealityCapture

- Many more commercial packages available
 - Agisoft Metashape (https://www.agisoft.com/)
 - Pix4D (<u>https://www.pix4d.com/</u>)

•

Bonus: Neural Radiance Fields (NeRFs)

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS CTU IN PRAGUE

TOTSTEN Sattler

TOTSTEN Sattler

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORMATION CYBERNE CTU IN PROBLEM CONTROL OF THE CONTROL OF TH

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i$$

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORMATION OF THE CYBERIC CTU IN

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i$$
 final $i=1$ color

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORMATION CYBERIC CTU IN

Torsten Sattler

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS CYBERNETICS CTU IN PRAGUE

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS TORSTEN Sattler

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INF
ROBOT
CYBER
CTU IN

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INF
ROBOT
CYBER
CTU IN

i-th sample

small if high density before this sample

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

color

Torsten Sattler

Fully differentiable!

distance to previous sample

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i$$
 final visibility color at color i-th sample

$$T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$

small if high density before this sample

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

Torsten Sattler

Torsten Sattler

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS TORSten Sattler 68

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS CYBERNETICS CTULIN PRACUE

input: 3D point and ray direction

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

Torsten Sattler

CTU IN PRAGUE

TO STATE SATTLES

input: 3D point and output: color and density ray direction

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORMATION OF INF

Torsten Sattler

Continuous scene representation (vs. discrete voxel volumes)

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

68

OF INFORMATICS ROBOTICS AND CYBERNETICS CTU IN PRAGUE

OF INFORMATICS TO SET IN FORMATICS TO SET IN FRAGUE

Torsten Sattler

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORM ROBOTICS A CYBERNETIC CTU IN PRAC

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

subdivide into equally sized intervals

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORMATION ROBOTICS AND CYBERNETICS CTU IN PRAGUE

Torsten Sattler 69

uniform sampling inside intervals → continuous sampling of the volume

subdivide into equally sized intervals

69

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CYBERNETICS
CYBERNETICS
CYBERNETICS

Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS CTU IN PRAGUE

Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFOIR ROBOTIC CYBERNICTU IN P

Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals

"Fine" sampling ("fine" network): Sample according to observed densities

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORMA ROBOTICS AI CYBERNETIC CTU IN PRAG

70

Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals

"Fine" sampling ("fine" network): Sample according to observed densities

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFORMATION CYBERN CTU IN

Coarse sampling (coarse network): Uniform sampling in equally-spaced intervals

"Fine" sampling ("fine" network): Sample according to observed densities

All samples are used during volume rendering

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

OF INFO ROBOTIC CYBERN CTU IN P

Torsten Sattler 70

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

[Müller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022] [Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS TORSTEIN Sattler

ground truth color

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

[Müller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022] [Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS TO Sattler

ground truth color

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

color predicted by "fine" network

[Müller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022] [Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

ROBOTICS AND CYBERNETICS CTUIN PRACUE

ground truth color

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

color predicted by coarse network

color predicted by "fine" network

[Müller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022] [Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

of informatics robotics and cybernetics

Torsten Sattler

ground truth color

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

color predicted by coarse network

color predicted by "fine" network

Trained individually per scene, can now be done in a matter of minutes

[Müller, Evans, Schied, Keller, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, SIGGRAPH 2022] [Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

robotics and Cybernetics

Torsten Sattler

Neural Radiance Fields (NeRFs)

Synthetic Scenes

[Mildenhall, Srinivasan, Tancik, et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020]

