GVG – Geometry of Computer Vision & Graphics

Tomas Pajdla 2021

CIIRC - Czech Institute of Informatics Robotics and Cybernetics, CTU in Prague

Applied Algebra & Geometry Group

3D Reconstruction

Camera Geometry

Robotics

Visual localization

AAG – Applied Algebra & Geometry

Basic & Applied Research

Vision Vision Robotics Robotics Mathematics Machine Learning

Torsten Sattler Researcher

3D Vision Learning

Jiri Sedlar Postdoc

Vision **Robotics**

Michal Polic

PhD Student 3D Vision

Pavel Trutman

PhD Student Polynomial Optimization

Stanislay Steidl

PhD Student Vision **CNN**

Viktor Korotynskiy

PhD Student Algebraic Geometry

Research

We apply elements of

- Algebra
- Geometry
- **Statistics**
- **Optimization** in
- **Computer Vision**
- Robotics
- Machine Learning

Czech Technical University

Teaching

We teach Geometry of

- **Computer Vision**
- Robotics at

FEE of the CTU in Prague MFF of Charles University

Projects

We are funded by

H2020 EU

3D Reconstruction for Movies

IMPACT OP VaVPI Intelligent Machine Perception

R4I **OP VaVPI**

Robotics for Industry 4.0

Industry

We collaborate with DAIMLER

Omni-Vision

Photogrammetry

3D sensing

Ontinental 🏂

Camera calibration

Research

We apply elements of

- Algebra
- Geometry
- Statistics
- Optimization
- Computer Vision
- Robotics
- Machine Learning

Teaching

We teach Geometry of

- Computer Vision
- Robotics at

FEE of the CTU in Prague MFF of Charles University

Projects

We are funded by

H2020 EU 3D Reconstruction for Movies

IMPACT OP VaVPI

Intelligent Machine Perception

R41 OP VaVPI Robotics for Industry 4.0

Industry

We collaborate with DAIMLER

Omni-Vision

Photogrammetry

3D sensing **O**ntinental **5**

Camera calibration

Applied Algebra & Geometry Group

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

JNIVERSITY

3D Reconstruction

Camera Geometry

Robotics

Visual localization

AAG – Applied Algebra & Geometry

Theory

Many Minimal reconstruction Problems in **RANSAC** based optimization

Camera Geometry

views

R = ZZ/13[x,y,z, MonomialOrder=>GRevLex]; 7*x^2*v^4 + 18*x*v^3*z^2 + G = gens gb I

Macaulav2 program over the finite field Z/13

30 Minimal Problems

Configuration # solutions 11296# views Configuration 328# solutions

views Configuration **Applications**

AAG Applied Algebra & Geometry Tomas Pajdla - pajdla@cvut.cz

Research

We apply elements of

- Algebra
- Geometry
- Statistics
- Optimization
- Computer Vision
- Robotics
- Machine Learning

Teaching

We teach Geometry of

- Computer Vision
- Robotics at

FEE of the CTU in Prague MFF of Charles University

Projects

We are funded by

H2020 EU 3D Reconstruction for Movies

IMPACT OP VaVPI

Intelligent Machine Perception

R41 OP VaVPI Robotics for Industry 4.0

Industry

We collaborate with DAIMLER

Omni-Vision

Photogrammetry

Magik Eye

3D sensing **⊘**ntinental 🕏

Camera calibration

T Pajdla pajdla@cvut.cz

ICCV 2019

Best Student Paper Award

Applied Algebra & Geometry Group

CZECH INSTITUTE
OF INFORMATICS
ROBOTICS AND
CYBERNETICS
CTU IN PRAGUE

CTU

3D Reconstruction

Camera Geometry

Robotics

Visual localization

3D Mapping

CapturingReality

Spin-off of M Bujnak and M Jancosek (PhD students of T Pajdla) Based on 3D reconstruction techniques developed at the CTU in Prague

AAG Applied Algebra & Geometry Tomas Pajdla - pajdla@cvut.cz

Research

We apply elements of

- Algebra
- Geometry
- **Statistics**
- Optimization
- Computer Vision
- Robotics
- Machine Learning

Teaching

We teach Geometry of

- Computer Vision
- Robotics at

FEE of the CTU in Prague MFF of Charles University

Projects

We are funded by

H2020 EU

3D Reconstruction for Movies

IMPACT OP VaVPI Intelligent Machine Perception

R41 OP VaVPI

Robotics for Industry 4.0

Industry

We collaborate with DAIMLER

Omni-Vision

Photogrammetry

3D sensing **C**ontinental **5**

Camera calibration

Applied Algebra & Geometry Group

3D Reconstruction

Camera Geometry

Robotics

Visual localization

Visual Effects

MIKROSMPC

Open 3D Reconstruction Pipeline: alicevision.org

"See You Up There", dir. Albert Dupontel, prod. ADCB Films, Manchester Films

Czech Institute of Informatics Robotics and Cybernetics

Applied Algebra & Geometry Tomas Pajdla - pajdla@cvut.cz

Research

We apply elements of

- Algebra
- Geometry
- Statistics
- Optimization
- Computer Vision
 - Robotics
 - Machine Learning

Teaching

We teach Geometry of

- Computer Vision
- Robotics at

FEE of the CTU in Prague MFF of Charles University

Projects

We are funded by

H2020 EU 3D Reconstruction for Movies

IMPACT OP VaVPI

Intelligent Machine Perception

R4I OP VaVPI Robotics for Industry 4.0

Industry

We collaborate with DAIMLER

Omni-Vision

Photogrammetry

3D sensing

Camera calibration

Applied Algebra & Geometry Group

3D Reconstruction

Camera Geometry

Robotics

Visual localization

Robotics & Machine Perception

DAIMLER

Research

We apply elements of

- Algebra
- Geometry
- Statistics
- Optimization
- Computer Vision
- Robotics
- Machine Learning

Teaching

We teach Geometry of

- Computer Vision
- Robotics at

FEE of the CTU in Prague MFF of Charles University

Projects

We are funded by

H2020 EU

3D Reconstruction for Movies

IMPACT OP VaVPI

Intelligent Machine Perception **R41**

OP VaVPI Robotics for Industry 4.0

Industry

We collaborate with

Omni-Vision

Photogrammetry

Magik Eye

3D sensing **Continental**

Camera calibration

Applied Algebra & Geometry Tomas Pajdla - pajdla@cvut.cz

Applied Algebra & Geometry Group

3D Reconstruction

Camera Geometry

Robotics

Visual localization

Cameras on Cars

Ontinental **3**

Left Camera

4 x Continental wide angle + 1 x 3-focal Mobileye

Many poses + Bundle Adjustment Result: Cameras on car

Research

We apply elements of

- Algebra
- Geometry
- Statistics
- Optimization
- Computer Vision
- Robotics
- Machine Learning

Teaching

We teach Geometry of

- Computer Vision
- Robotics at

FEE of the CTU in Prague MFF of Charles University

Projects

We are funded by

H2020 EU 3D Reconstruction for Movies

IMPACT OP VaVPI

Intelligent Machine Perception

R4I OP VaVPI Robotics for Industry 4.0

Industry

We collaborate with DAIMLER

Omni-Vision

Photogrammetry

Magik Eye

3D sensing **Ontinental**

Camera calibration

Applied Algebra & Geometry Group

3D Reconstruction

Camera Geometry

Robotics

Visual localization

Autonomous Driving

CIRC Czech Institute of Informatics Robotics and Cybernetics

AAG Applied Algebra & Geometry (Tomas Pajdla - pajdla@cvut.cz

Research

We apply elements of

- Algebra
- Geometry
- Statistics
- Statistic
- Optimization
- Computer Vision
- Robotics
- Machine Learning

Teaching

We teach Geometry of

- Computer Vision
- Robotics at

FEE of the CTU in Prague MFF of Charles University

Projects

We are funded by

IMPACT OP VaVPI

Intelligent Machine Perception

R4I OP VaVPI
Robotics for Industry 4.0

Industry

We collaborate with

DAIMLER Omni-Vision

Leica Onni-

Photogrammetry

Magik Eye

3D sensing

Camera calibration

GVG Lectures

Lectures [Monday 12:45-14:15 Online]

Tomas Pajdla, Torsten Sattler:

Online Lectures via MS Teams

Week	Date	Lecture at Pajdla. Elements of Geometry for Computer Vision			
01	15.2.	TP: Intro: Geometry of CV & CG, LA [Sec. 2.1] image coordinate system [Sec. 5] La O			
02	22.2.	TP: Mathematical model of the perspective camera [Sec. 6]			
03	01.3.	TP: Camera calibration and pose [Sec. 7.1]			
04	08.3.	TP: Calibrated camera pose computation I & II [Sec. 7.2, 7.3]			
05	15.3.	TP: Homography [Sec. 8.1-8.5]			
06	22.3.	TS: Image based camera localization			
07	29.3.	TS: Projective plane [9.1-9.2]			
08	05.4.	Easter Monday			
09	12.4.	TP: Vanishing points & line [Sec. 9.4, 9.5] projective space [Sec. 10] camera autocalibration [Sec. 11]			
10	19.4.	TP: Vector product [Sec. 2.2, 2.3] dual space [Sec. 2.4] lines under homography [Sec. 9.3]			
11	26.4.	TS: Epipolar geometry [Sec. 12.1-12.2]			
12	03.5.	TP: 3D reconstruction with a calibrated camera [Sec. 12.3, 12.4]			
13	10.5.	TP: Calibrated camera motion computation [Sec. 12.5], SVD			
14	17.5.	TS: 3D Reconstruction pipelines			

GVG Labs

Labs [Monday 14:30-16:00, 16:15-17:45 Online]

Martin Matoušek, Viktor Korotynskiy , Kateryna Zorina, Vojěch Pánek: W Online Labs via MS Teams

- solving of algebraic problems related to vision geometry; this is without computer, i.e. 'pen-and-paper'
- · solving of practical tasks (home-works) on a real data with computer

Schedule

Week	Date	Pen & Paper	Test	Assignment	Deadline
01	15.2.	Basic elements of LA	Test-α	HW-01 Image Coordinate System	
02	22.2.	Projection matrix Ex-02		HW-02 Projection Matrix	
03	01.3.	Camera internal calibration Ex-03		HW-03 Camera calibration	HW-01
04	08.3.	Polynomial solving Ex-04		HW-04a Calibrated pose I	HW-02
05	15.3.	Test 1 m Example video		HW-04b Calibrated pose II	HW-03
06	22.3.	Homography Ex-06 Ex-06	Test 1	HW-05 Homography	HW-04a
07	29.3.	Projective plane Ex-07 Ex-07 video		HW-06 Panorama	HW-04b
08	05.4.	Easter monday			HW-05
09	12.4.	Test 2		HW-07 Autocalibration	
10	19.4.	Meet & Join <u>Ex-10</u> Ex-10(<u>M</u> 04a 04b 04c)	Test 2		HW-06
11	26.4.	Epipolar geometry Ex-11		HW-08 Epipolar geometry	
12	03.5.	3D Reconstruction Ex-12		HW-09a 3D reconstruction I	HW-07
13	10.5.	Test 3 a Example		HW-09b 3D reconstruction II	HW-08
14	17.5.		Test 3		HW-09a
	24.5.				HW-09b

Assessment

- 1. All homework must be submitted via SBRUTE and accepted.
- 2. At least 50% of points in total for the homework.
- 3. At least 50% of points in total from the tests.
- 4. Regular submission of homework ends on May 24, 2021. Later submissions are possible only by an agreement with the assistants.
- 5. All the above conditions have to be fulfilled, and the results have to be recorded in the Submission system before the exam.

Exam

The exam consists of a written and an oral part. It is required to achieve at least 50% of points from the written exam to be admitted to the oral exam. The grade depends on the exam (40%), tests (30%), and homework (30%).

Exam content:

- 1. Linear algebra [4,5,6,7]: linear space, basis, coordinates, linear dependence/independence, matrices, rank, determinant, eigenvalues and eigenvectors, solving systems of linear equations, Frobenius theorem and linear independence, linear function, affine function, linear mapping and its matrix, computing roots of a polynomial via eigenvalues of its companion matrix, dual space, dual basis, change of the dual basis corresponding to a change of a basis, vector product and derived linear mappings, SVD, dual space, and dual basis.
- 2. Course material

Rules

- 1. Lecture: It is very difficult to pass the course without attending online lectures.
- 2. Labs: It is impossible to pass the course without attending online labs.
- 3. Homework: Homework is assigned at a lab where it can be discussed with teaching assistants. Students work out homework individually (rules in Czech). The deadline for submitting homework via BRUTE is on Monday at 6:00 in the morning two weeks after the assignment. Late submissions are penalized (10% for each commenced day of delay but not more than 50% of points).
- 4. Assessment: see above.
- Tests: Students take tests individually.

 \oplus

GVG Labs

ALL COURSES

Geometry of Computer Vision and Graphics 2021

Geometry of Computer Vision and Graphics 2021 Lectures [Monday 12:45-14:15 Online] Labs [Monday 14:30-16:00, 16:15-17:45 Online] Assessment Exam Rules Literature

Contacts

MS Teams – lectures, labs, tests, the exam

BRUTE (cw.felk.cvut.cz/brute) – homework, tests, quizzes, points, feedback

Forum is the communication channel (limited emails & no messages in MS Teams)

- 1. Login to **BRUTE** at cw.felk.cvut.cz/brute
- 2. Check that you see GVG in 2021L in BRUTE
- 3. Check that you see News in the **Forum**

Questions ...