
Convex Hull (Scheme+Haskell - 7+7 Points)

June 18, 2021

The convex hull of a set of points is the smallest convex shape that contains the whole set. Fig. 1A
shows a set of six points - five of which constitute the generating points of their convex hull. In this
task you have to find smallest set of generating points of the convex hull of a given set of points.

(A)

% (1,−3)

� (4,−1)

� (2, 2)

� (−2, 3)

� (−2,−1.5)

� (−1, 1)

(B)

%

�

�

�

�

�

i1

i2

i3

Figure 1: (A) Convex hull of a set of points depicted by the dashed line. The generating points
in counter-clockwise order are: % , �, �, �, �. (B) Three of the polar angles i8 that have to be
computed to sort the points.

Algorithm

The imperative pseudocode for finding the generating points is shown below.

points = [list of points]
stack = empty_stack()

p_0 = initial_point(points) # find lowest y-coordinate and rightmost point
sorted_points = sort_by_angle(p_0, points) # sort by polar angle with p0

for p_i in sorted_points:
pop last point from the stack if we turn right to reach this point
while length(stack) > 1

and (not isLeftTurn(next_to_top(stack), top(stack), p_i)):
pop stack

push p_i to stack
end

1

1. In the initial phase of the algorithm you have to find the point with smallest y-coordinate and
largest x-coordinate, further called ?0.

2. Now, sort all points based on the polar angle they form with ?0. The polar angle is the angle
that a vector forms with the x-axis (as shown in Fig. 1B). Note that the polar angle of ?0
with itself is not well defined, so you can just add ?0 as the first element in your sorted list.
Further, you can assume that there are no points with the same polar angle in your input set
of points.

3. Initialize an empty stack G. While your stack has less than three elements, just push points
from your sorted list of points. For each remaining point ?8 in the sorted list, check if the two
top points from the stack (?8−2, ?8−1) and ?8 form a left turn. If it is a left turn, add ?8 to G
and continue to the next point. If it is a right turn, ?8−1 is not part of the hull; remove ?8−1
from G, and repeat the check for a left turn with the current point ?8 and the updated G.

Exemplary iterations of the algorithm are shown in Fig. 2. You can assume that the set of points
does not contain the same point multiple times.

#1
%

�

�

�

�

�

#2
%

�

�

�

�

�

#3
%

�

�

�

�

�

Figure 2: Before #1, the stack of points is G = [%,�, �] = [?8−3, ?8−2, ?8−1]. In #1 we see that −−−→
��� is

a left turn so we add ?8 = � to G. Now G = [%,�, �, �]. In #2 the algorithm checks whether −−−→
��� is

a left turn. It is not, so we remove � (corresponding to ?8−1) and check again if −−−→��� is a left turn.
This is the case, so � is added to G in #3.

Hint #1 (Left Turn): To check whether three points (G1, ~1), (G2, ~2), and (G3, ~3) represent a
left turn you can compute the cross product

2 = (G2 − G1) (~3 − ~1) − (~2 − ~1) (G3 − G1) . (1)

If 2 > 0 then the three points constitute a left turn, otherwise a right turn.

1 Task 3 - Scheme
In Scheme, implement a function convex-hull that accepts a list of points and returns the generat-
ing points of the convex hull as described above. The list returned by convex-hull must start
at the initial point ?0 and contain the generating points in counter-clockwise order.

(define points '((-2 3) (2 2) (-1 1) (-2 -1.5) (4 -1) (1 -3)))

> (convex-hull points)
'((1 -3) (4 -1) (2 2) (-2 3) (-2 -1.5))

2

Your file has to be called convexhull.rkt and must provide the function convex-hull so it
should start like this:

#lang racket
(provide convex-hull)

; your code goes here

Hint #2 (Polar Angle) In Scheme, you can compute the polar angle of a vector ®E = (G,~) with

(atan y x) ; note the argument order!

Computing the polar angle like above will result in i ∈ (−c, c). You may want to shift the output
by adding 2c to negative angles in order to obtain i ∈ (0, 2c).

Hint #3 (Sorting) To implement custom sorting you can use the function sort which takes a
list and a comparison function. The comparison function has to accept two elements from the list
and return #t if the first argument is less than the second and otherwise #f . Below is an example
that sorts a list of points by the x-coordinate.

(define (xcomp a b)
(if (< (car a) (car b)) #t #f))

> (sort '((2 5) (1 1) (3 0)) xcomp)
'((1 1) (2 5) (3 0))

2 Task 4 - Haskell
In Haskell, implement a function convexHull :: RealFloat a => [(a,a)] -> [(a,a)] that ac-
cepts a list of points and returns the generating points of the convex hull as described above. The
list returned by convexHull must start at the initial point ?0 and contain the generating
points in counter-clockwise order.

points = [(-2.0, 3.0), (2.0, 2.0), (-1.0, 1.0),
(-2.0,-1.5), (4.0,-1.0), (1.0,-3.0)]

> convexHull points
[(1.0,-3.0),(4.0,-1.0),(2.0,2.0),(-2.0,3.0),(-2.0,-1.5)]

Your file has to be called ConvexHull.hs and must export the function convexHull so it should
start like this:

module ConvexHull (convexHull) where
import Data.List -- for sortBy

-- your code goes here

Hint #4 (Polar Angle): In Haskell, you can compute the polar angle of a vector v = (x,y)
with

3

atan2 y x -- note the argument order!

Computing the polar angle like above will result in i ∈ (−c, c). You may want to shift the output
by adding 2c to negative angles in order to obtain i ∈ (0, 2c).

Hint #5 (Sorting): To implement custom sorting of a list of tuples you can use the function
sortBy :: (a -> a -> Ordering) -> [a] -> [a] provided by Data.List . Below is an exam-
ple that sorts a list of tuples by the x-coordinate

import Data.List

xcomp (x1,y1) (x2,y2)
| x1 == x2 = EQ
| x1 < x2 = LT
| otherwise = GT

> sortBy xcomp [(2,5),(1,1),(3,0)]
[(1,1),(2,5),(3,0)]

4

	Task 3 - Scheme
	Task 4 - Haskell

