Deep Learning (BEV033DLE)
Lecture 4. SGD

Alexander Shekhovtsov

Czech Technical University in Prague

4 Definitions and Main Properties
e Gradient Descent and SGD
e (Convergence properties, step size
4 Important Details
e Dataset sampling with and without replacement
® How to monitor progress, Running averages
¢ Momentum

e |mplicit regularization: early stopping, batch size and weight norm

Stochastic Gradient Descent

L(0)
foee= ik MeReKOra

¢ Gradient Descent: wg ‘\ 3

® (Jy — VQL(Qt) '

® 0i1="0;—aug; v ’&z"’

"'u@m

¢ SGD:

e Noisy gradient g;

o E[g:] =gt

o 0i1="01— gy

SGD for Statistical Estimation

¢ Problem Setup:
e Training set: T = (x;,y:)1, — i.i.d.
e Predictor: f(x;0), 6 — vector of all parameters 6
e Negative log-likelihood: L =23 1(y;, f(z:0)) =+, 1:(0)

e Learning problem: m@inL(@)

¢ Examples

e Regression in R™:
f(x;0) € R™ — predicted values
Squared error loss: 1; = ||y; — f(x:;0)||*

e (lassification with K classes:
f(z) € RE — scores
Predictive probabilities p(y = k|x) = softmax(f(x;0))x
NLL loss: [;(0) = —(logsoftmax(f(x;6)))y,

SGD for Statistical Estimation

¢ Gradient Descent (GD):
e Gradient at current point 6;: g = VL(0;) =<, VI;(6)
e Make a small step in the steepest descent direction of L:
o 0i1="0;— g
e Historically called “'batch gradient descent”

o |f the dataset is very large, lots of computation to make a small step

¢ Stochastic Gradient Descent (SGD):
e Pick M data points I = {iy,...ips} at random
e Estimate gradient as §r = =7 >, ; V1i(6;)
® 0i1="0;— gy
o {(x;,y;)|2 € I} is called a (mini)-batch

¢ “Noisy"” gradient g;:
o E[gi] = g:
e V[g:] =+ V[g;], where ' is stochastic gradient with 1 sample
e Diminishing gain in accuracy with larger batch size M

e |n the beginning a small subset of data suffices for a good direction

More General Form

SGD in Machine learning:

e Specialized loss functions (not necessary likelihood), additive in training data

e Training set possibly infinite (augmentation)

Problem Setup:

o |oss: L(@) = E(m,y)fvp* [l(y,f(ilf,@))] —|—R(9)
e T[raining set is given as a generator p*

e R(0) is a regularizer, not dependent on the data

e Fixed training set is a special case

SGD:
e Draw a batch of data (z;,%;), i.i.d. from p*

© §=17 2 Vi(yi [(x:,0)) +VR(9)

Data augmentation (Lecture 6)

rigid transforms noise and distortions
ol — 4 Original image Elas cTran sl orm
% | B |g EPESN EpESY
S|P N W fs'é
I | S\ 2 = ” ~R s
- I!L& Tsd) ;

— _A\ A
& & | & EEavd
> - ¢
,,k""/ \'yj - TN v\‘ ~ i
= & ‘
anl 28Ty RSN

A

rendering

Perceptron Algorithm @

4 Neural Network 1950s: Perceptron 6

Press: “the embryo of an electronic
computer that [the Navy] expects

will be able to walk, talk, see,

write, reproduce itself and be

conscious of its existence” E
Frank Rosenblatt

¢ Perceptron Algorithm as SGD: 4 First GPU:
o Two classes y = +1 Mark | Perceptron, 1958
o Predictor: f(z) = w'x, decide by sign
e Loss: I(y, f(z)) = max(—yw'z,0)
e Draw a point (x,y) from the training data at random

_ _ 5 —yx, if classified incorrectly
e Stochastic gradient: g; =

0, otherwise
e Make a step: wyr1 = wr+yx
e No need of step size thanks to scale invariance

Convergence Rates @

¢ lteration cost:

e GD: O(n) — full data
e SGD: O(M) — mini-batch
¢ Guarantees on convergence rate depend on assumptions. Setup closest to NNs:
e [(0) is bounded from below
e VL (0) is Lipschitz continuous with constant p
e Bounded variance: E||VI;(0) — VL(0)|* < o?

or stronger condition E||V;(0)||* < o2 for some o and all §

2
¢ Convergence rates: 10% ¢

_ _ _ _ ; SGD 1/v1
e Error at iteration t: best over iterations | SGD const

GD const

expected gradient norm,
ming—y..¢—1{|[E[VL(0)]| }

e GD with step size oy = o
Error: O(3)

o SGD with step size o = oz/\/g
Error: O(X2L) 107}

V't
e SGD with step size oy = «

Error: O() + O(apo?)

[Mark Smidt CPSC 540 Lecture 11] work

Convergence Rates @

8
¢ Convergence rates: 102
e GD with step size a; = « :EB 1\1
Error: O(%) ('}D('nust'
. . 10’
e SGD with step size oy = a/\/t
. log(t)
Error: O(=7-) .
e SGD with step size a; = « = 10°
Error: O(3) 4+ O(apo?) log(?)
1 \/z 1
: 107 ¢ —4+0.1 5
4+ Insights: t no
e SGD wins when there is a lot of data 2 ot
10°
e (Convergence with a constant step size is fast work

but to within a “region” around optimum

4+ Remarks:
e To have guarantees need to use conservative estimates with very small step sizes, etc.
e Different other setups possible: convex / strongly convex, smooth/non-smooth

e The rate is often faster in practice, but the general picture stays

Convergence Rates @

¢ Convergence rates: 102 ¢

SGD 1/vE |
SGD const 1
GD const

e GD with step size oy = «
Error: O(3)

o SGD with step size a; = oz/\/f
Error: O(8l)

Vvt
e SGD with step size oy = «

Error: O(3) 4+ O(apo?)

work

Learning Rate Schedule @

¢ Common practice: decrease learning rate in steps

e Example: start with @ = 0.1 then decrease by factor of 10 at epochs 100 and 150

4 Comments

e (Consistent with the idea of fast convergence to a
region

e After the sep size decrease, “1/n" rate replays

e Many other empirically proposed schedules

Courtesy: [Chen et al. “Closing the Generalization Gap of
Adaptive Gradient Methods in Training Deep Neural Networks']

1.0
—— SGD-Momentum

08 | ==+ Adam

' —-- Amsgrad
N - == AdamW
3 0.6-_‘ — - Yogi
— \| AdaBound
£
© 0.4 -
|_

0.2 A

0.0

0 20 40 60 80 100 120 140 160 180 200
Epochs

(a) Train Loss for VGGNet

0.20 1=
| —— SGD-Momentum
0.18 7 1 ——- Adam
0.16 - “ —-- Amsgrad
C \ —=- AdamW
g 01471 I —-- Yogi
W 515 .f M ‘ AdaBound
= P
g ST Q 1(‘ —— Padam
10 - CWinYy
|_ 0.10 '&‘I"\" 1'\ 7 ‘/“’,‘
0.08 - v‘:\h 55 Ry o Y
0.06 -
0.04

(d) Test Error for VGGNet

How to Draw Data Points? @
4 How should we draw data points for SGD: 11

e every time select randomly with replacement
e shuffle the data once
e shuffle at each epoch but draw without replacement

4 Empirical evidence:

Bottou (2009): “Curiously Fast Convergence of some Stochastic Gradient Descent Algorithms”
logistic regression d = 47,152, n = 781,256

0.01

0.001 ¢

11111

11111

1e-09 ! 16-09 1e-09

5 10 50 100 500 5 10 50 100 5 10 50 100 500

Random selection: Cycling the same random Random shuffle at each
slope=—1.0003 shuffle: slope=—1.8393 epoch: slope=—2.0103

¢ A simple consideration:
Drawing n times with replacement from the dataset of size n some points may not be
selected. On average each point is selected with probability =~ 0.63 for large n. Takes

long time to even out (x) — associated exercise

How to Measure the Progress?

4 Batch Estimate

e Batch mean: L = MZZEI

e Not good idea, too high variance

4 Training data mean

L=2%".1

e Accurate, good if the dataset not too large

4 Average using all last known loss values

* L:= %(ZZEIZ?GW_'_ Zzggldd)

® | ow variance, hysteresis 1 epochs

® need to remember losses for full dataset

4 Running Exponentially Weighted Average (EWA)
e L:=(1—q)L+qL
e Higher variance/ larger hysteresis

e remember only the running average loss

12

Same Applied to Gradient — Variance Reduction

4+ SGD
e Batch mean: =+ ..,V

® need a small step size

+ GD
* Full gradient: g=2%".VI,

® too costly

4 Stochastic Average Gradient (SAG)
o 5= L (e (VI)™ + 50, (V1))

e Improved convergence rates (convex analysis)

® need to remember gradients

4+ SGD with momentum
o g:=(1—q)g+aqg
e practical variance reduction

e remember only the running average gradient

13

Running Averages @ o

¢ General setup: 14
e X, k=1,...,t — independent random variables _
EWA weights qg=0.2
e ¢ € (0,1]

e Running mean: u; = (1 —q¢)pe—1+ @ X4
¢ Exponentially Weighted Average (EWA):

e Constant ¢; = ¢

o t=(1-qpo+qXy

o o= (1—¢) o+ (1—q)gX1+¢Xs

o ..

_ 1 —ag)t
o ur=1-q o+ > (1-¢) *¢X, (1—-q)

1<k<t
= Wy o + Z Wi X : :
1<k<t Running mean weights
\ 4 Running mean: | —

® 4t — %

o (11 =0pp+ Xy
o ="+ X
® [t+1 = H%Mt + H%Xtﬂ = i;—%utq + H%(Xt +Xt+1)

(*) Smooth transition from running mean to EWA

SGD with Momentum

¢ Algorithm
e Stochastic gradient: § = ﬁzielt Vi;
e EWA gradient: g; =(1—¢q)g:—1+qg
o Step: 0; = 0;_1 — ayg;
¢ Can rewrite in different forms, e.g. in pytorch:
e Velocity: vy = uvi_1+4g
o Step: 0; =0;_1 —ev;

(x) Equivalent by setting: v; = g:/q, n=(1—¢q), € = qu
e When changing momentum pu often need to adjust the learning rate as well

15

SGD with Momentum @

¢ With variance sufficiently low — GD with momentum, i.e. consider g is noise-free
e Velocity: vy :=pvi_1+g
o Step: 0, =0;_1—¢cv;

4 Even exact gradient may not be a good direction

4 Cancels “noise” in the incorrect prediction of the function change

Gradient descent

=—=>

Gradient descent with momentum

¢ The "heavy ball" method
e Friction (px < 1) and slope forces build up velocity
e Recall the hysteresis effect from using estimates from the past
e The inertia may lead to oscillatory behavior (not good)

e Sometimes helpful to overcome plateaus

16

* “Nesterov" Momentum @

¢ Common Momentum 17
e Velocity: vy = pve+ g(xy)

L141
¢ Step: Ty1 = Xt — €V

The step consists of momentum and current gradient
The momentum part of the step is known in advance

Can make it before computing the gradient:

® Nesterov Momentum
e lLeading sequence: y; = xy — vy —£9(yt)
e Velocity: viy1 = pve+ g(y¢)

o Step: T =y —€9(Yt)

Lt4+1

Takes advantage of the known part of the step

Less overshooting

¢ Can express as steps on the leading sequence alone (*):
e Velocity: v = pvr + g(ye)
° Step: yri1 =1y — 5(§(yt) "'/th)

The two sequences eventually converge

% Running Averages: How Much Smoothing?

¢ General setup

e X; — independent random variables

e g, < (0,1]

e Running mean: p; = (1 —q¢)ps—1+q:Xs is a r.v.
¢ Expectation:

o Elu] =(1—q)E|us—1] + ¢:E[X:] — running average of expectations

t
o Efpue] = woE[po] + > wiE[X]
k=1
e When iterations stabilize (# does not change much) an unbiased estimate

¢ Variance:
o Vi =(1—q)*V{p—1]+ ¢ V[X,
¢
o Vi) =wdVo+ 3 wiV[Xy]
k=1

. . . ¢ /
e Variance reduction of running mean: >, _ w; = Zk:u% z%

2
e Variance reduction of EWA: Z};Zowi = 1_(‘f_q)2 — in the limit of large ¢

x) Equivalent window size of EWA: n=2—-1. E.g. ¢=0.1 < n=19
q

4 Can use EWA with a decreasing q series for a progressive smoothing

18

Implicit Regularization

MNIST CIFAR-10
0.06} — Training | —Training
—Test (at convergence) 0.6 —Test (at convergence)
0.05¢ |
0.5_ _
0.041
S 5 %4 |
0-027 0.2
0.01r 0.1
94 8 16 32 64 128 256 512 1K 2K 4K 948 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

4 We increase the network capacity but generalization improves, why?
® There exist global minima that do not generalize

e SGD somehow finds a good global minimum

% Implicit Regularization: Min. Norm @

20

¢ Linear models:
e The model is linear: f(x)=w'x
e Training loss: L=>"" l(w'x;,y;)
e Loss has a unique finite root: I(y,y;) > 0 with equality iff y = y;
Theorem (Gunasekar et al. 2018) If iterates of SGD start with wy and converge to a

solution w., that is a global minimizer of L, then

Woo = arg min f|w —wy|*,

where W is the solution space: W = {w|(Vi)w'z; = y;}.

4+ Remarks:
e We do observe convergence to global minima in practice (overparameterized models)
e Some recent theoretical and experimental results indicating this extends to deep networks

e So even without explicit 2 norm regularization SGD does some of that implicitly

% Implicit Regularization: Batch Size @ 0

4 Typically choose batch size to fully utilize parallel throughput (in GPUs 21
means ~10"4 independent arithmetic computations in parallel)

4 Limited by memory

4 Smaller batch -> noisier gradient -> implicit regularization

Synthetic data

Decision boundary of batch size 1 Decision boundary of batch size 5 Decision boundary of batch size 30

NLP data

93.5

e—e Dropout: No
9—® Dropout: Yes

Lei et al. (2018) “Implicit Regularization of Stochastic
Gradient Descent in Natural Language Processing:

test sccuracy

Observations and Implications”

| 1 1 1 | L 1
0 5 10 15 20 25 30 35
batch size

% Implicit Regularization: Early Stopping @

22

4+ We expect the learning to overfit, often it does not

4 Example when it does:

1.0 20660066 O LS HH6S6 . . -
= L2 0 A explicit regularization
DDODQ(}D{}UOO(o
.9 ' : no overfitting
5‘ \
0.6 .
o Test accuracy decreases
3 =0 test(w/aug, wd, dropout)
8 0.4 o—o train(w/ aug, wd, dropout) Wlth more iterations
&= test(w/o aug, dropout)
0.2 & train(w/o aug, dropout)
' test(w/o aug, wd, dropout)
| train(w/o aug, wd, dropout)
0.0>

0 2000 4000 6000 8000 10000
thousand training steps

(a) Inception on ImageNet

[Zhang et al. (2017) “Understanding Deep Learning Requires ReThinking Generalization]

4 Early stopping could potentially improve generalization when other regularizers are absent

4 Need a validation set

More in Lecture 8
4 Loss Landscape of NNs
e Permutation invariance and overcomplete parameterizations
® [ocal minima and saddle points in high dimensions
e Empirical evidence of many good local minima
e Redundancy helps optimization
4 SGD sensitivity to change of variables
4 Adaptive methods

4 Handling simple constraints - Mirror Descend

23

