# Deep Learning (BEV033DLE) Lecture 7. Regularization

Czech Technical University in Prague

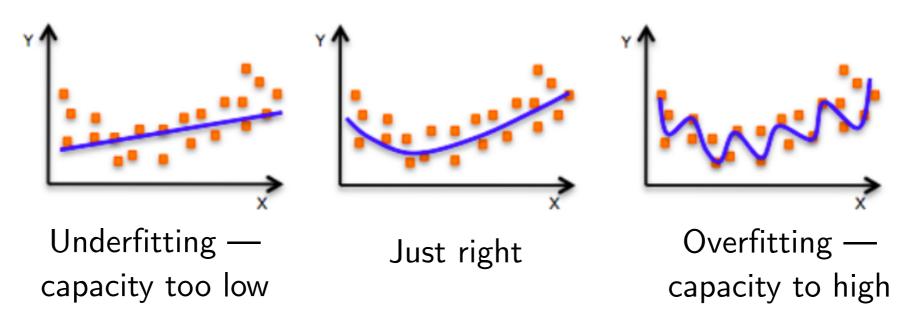
- ✦ Recap of Overfitting Issues
- ◆ L2 regularization (Weight Decay)
- → Dropout
- → Implicit Regularization and Other Methods

## Overfitting in Deep Learning (Recall)

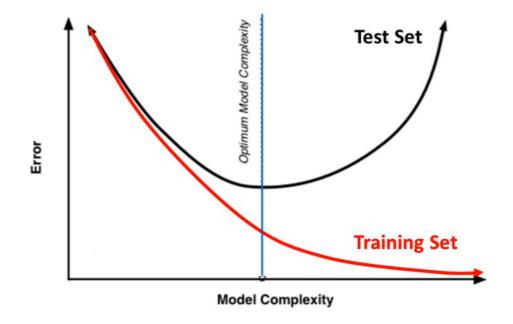
#### **Underfitting and Overfitting**

Classical view in ML:





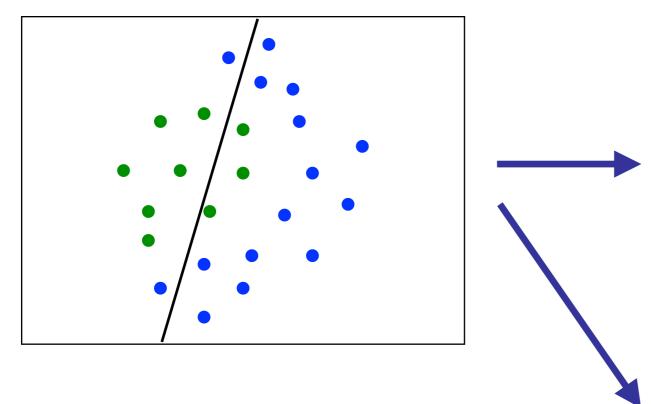




- Control model capacity (prefer simpler models, regularize) to prevent overfitting
  - In this example: limit the number of parameters to avoid fitting the noise

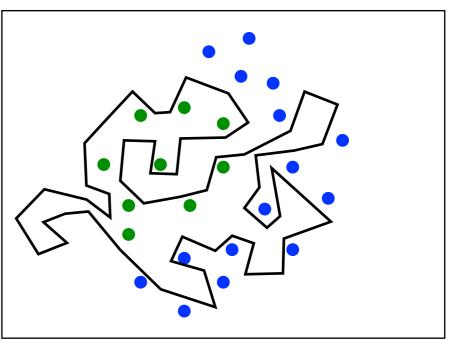
#### → Deep Learning

Underfitting — model capacity too low

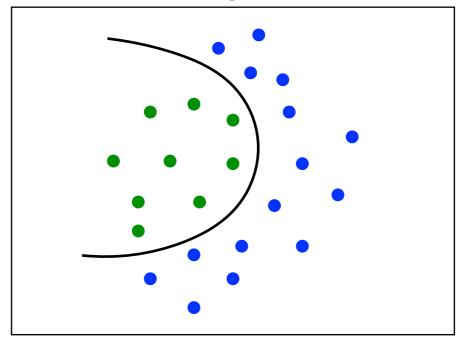


- Models in practice are chosen to perfectly fit training data (overparametrized)
- The boundary may be arbitrary complex as they can fit any labeling

Overfitting — model capacity too high



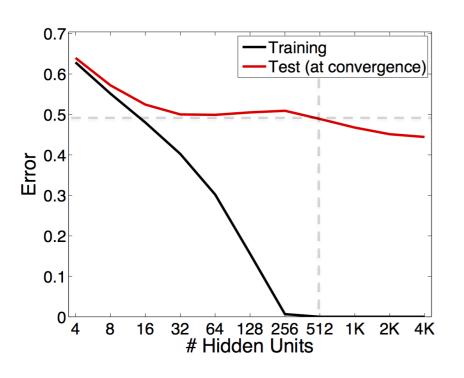
Good overfitting?

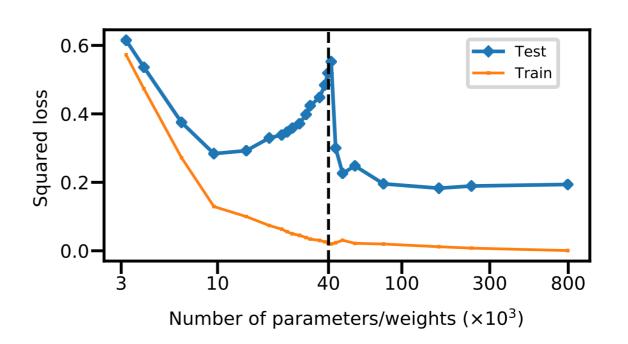


#### **Generalization of Over-Parametrized Models**



♦ Good architecture + SGD generalizes better in the overparametrized regime

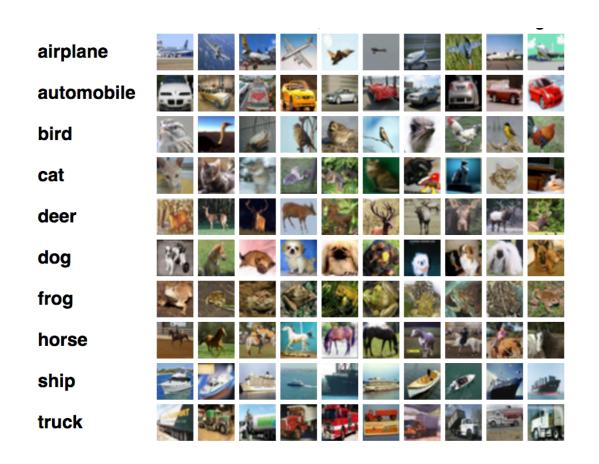




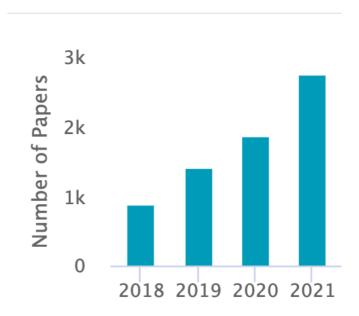
[Neyshabur et al. (2015) In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning] [Belkin et al. (2019) Reconciling modern machine learning practice and the bias-variance trade-off]

- ♦ Regularizing by controlling only the number of parameters is not the best option
- → Important to regularize by other means:
  - 1. Good model architecture (putting our knowledge of invariances and useful information processing blocks into the network structure)
  - 2. Many other components affect implicit regularization properties (optimizer, batch size, normalization etc.)
  - 3. Explicit regularization

- ◆ CIFAR10 dataset
  - 60000 32x32 color images in 10 classes, with 6000 images per class.
  - 50000 training and 10000 test

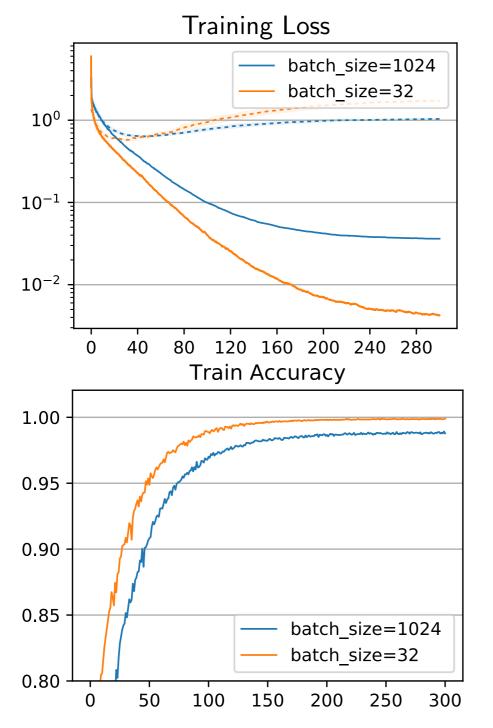


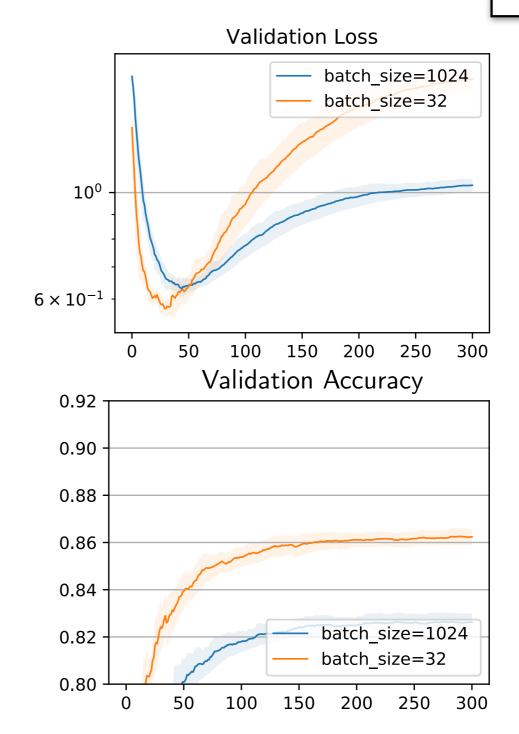
#### Usage *△*



[paperswithcode.com]

### CIFAR10 Example: Overfitting

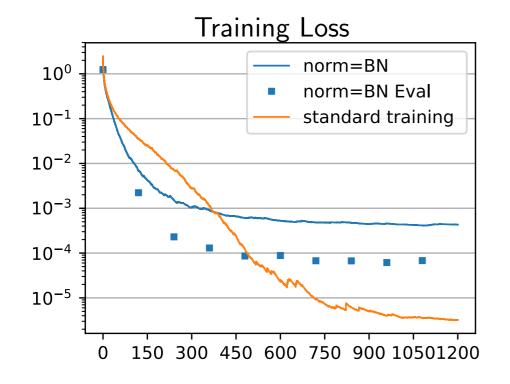


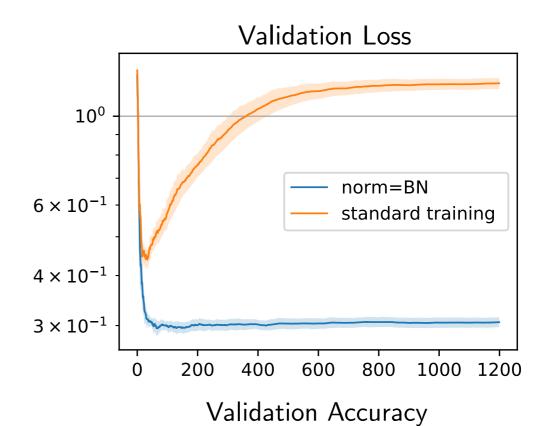


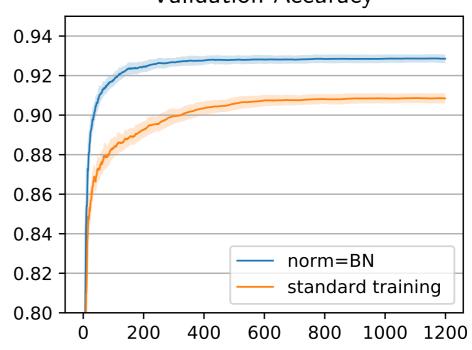
- Training loss approaches 0
- Training accuracy approaches 100%
- Validation loss starts growing
- Validation accuracy may still be improving but the model becomes overconfident

#### **CIFAR10 Example: BN**

- ♦ BN has a strong regularization effect!
  - It depends on a randomly formed batch -> injecting specific structured noises
- The normalization bends the parameter space -> different behavior of SGD







## L<sub>2</sub> Regularization (Weight Decay)

#### **General Setup**



$$\min_{\theta} L(\theta) + \lambda R(\theta) = \min_{\theta} \sum_{i} l_i(y_i|x_i;\theta) + \lambda R(\theta)$$

- ullet R( heta) function not depending on data
- ullet  $\lambda$  regularization strength
- Recall connection to maximum a posteriori parameter estimation (MAP):  $\max_{\theta} p(D|\theta)p(\theta)$ 
  - $p(\theta) \propto \exp(-\lambda R(\theta))$  prior on the model weights
  - ullet  $p(D|\theta)$  likelihood of the data given parameters
  - $p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$  Bayesian posterior over parameters

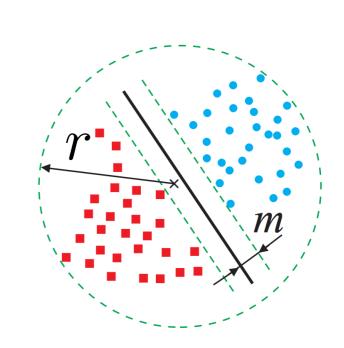
RPZ lecture 3:(Parameter Estimation: Maximum a Posteriori (MAP))

- In practice also commonly appears in the form independent of the amount of data:  $\min_{\theta} \frac{1}{n} \sum_{i} l_i(y_i|x_i;\theta) + \lambda R(\theta)$ 
  - ullet  $\lambda$  is tuned for a given dataset with cross-validation

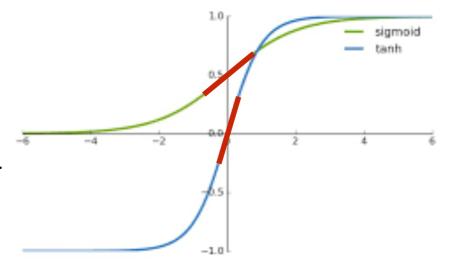
•  $L_2$ -regularization ( $l_2$ , weight decay):

$$R(\theta) = \|\theta\|^2$$

- ♦ In linear regression:
  - Known as ridge regression, Tikhonov regularization
  - ullet Equivalent to using multiplicative noise  $\mathcal{N}(1,\lambda^2)$  on the input
  - Smoothing effect (reduces the variance of  $\hat{\theta}$ )
- In linear classification:
  - Small  $\theta \leftrightarrow$  large margin
  - Generalization bounds independent of dimensionality of the model (roughly):  $\mathrm{Risk}(h) \leq O^* \left(\frac{1}{N} \frac{r^2 + \|\xi\|^2}{m^2}\right)$ , where  $\xi$  are slacks



- **♦** Sigmoid NNs:
  - ullet Small  $heta o ext{sigmoid outputs}$  are close to linear
    - → smoother classification boundary

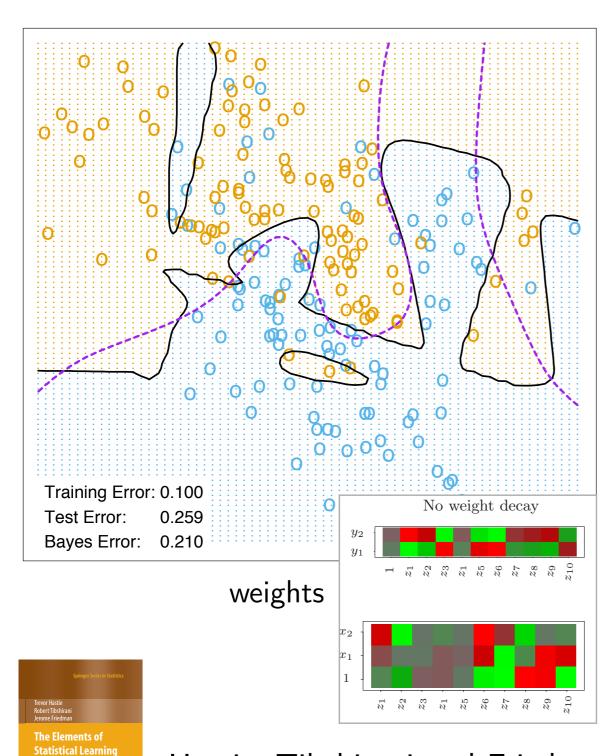


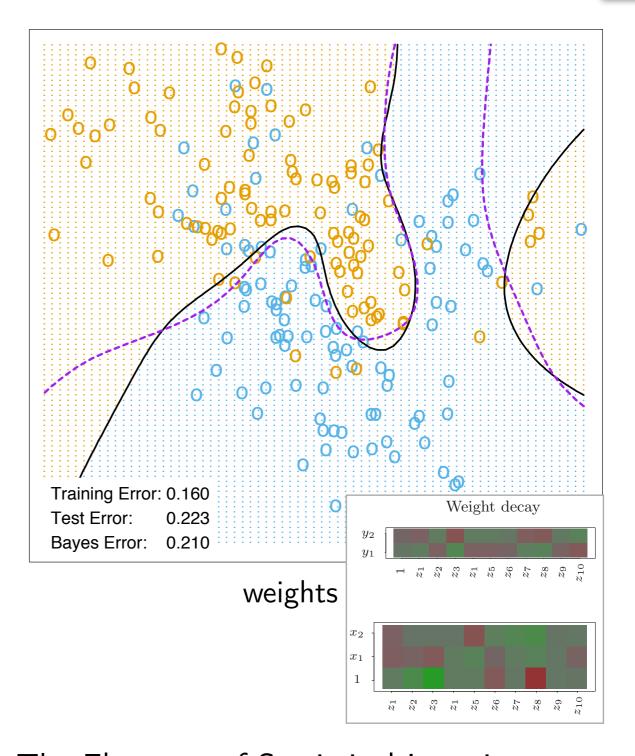
#### Simulated Data Example



Neural Network - 10 Units, No Weight Decay

Neural Network - 10 Units, Weight Decay=0.02





Hastie, Tibshirani and Friedman: The Elements of Statistical Learning

https://web.stanford.edu/~hastie/ElemStatLearn/

#### L<sub>2</sub> Regularization and Batch Normalization



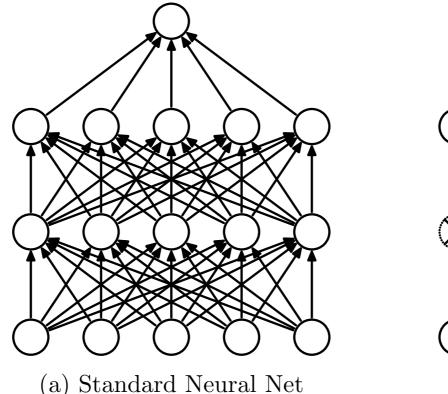
Consider BN-normalized layer:

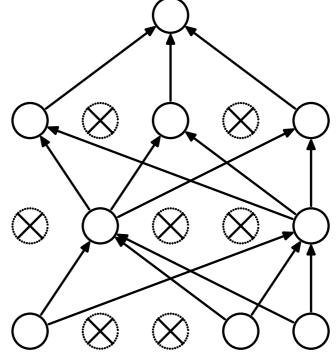
$$a = \frac{Wx + b - \mu}{\sigma} \gamma + \beta$$

- $\mu = \frac{1}{M} \sum_{i} (Wx_i + b)$   $\sigma^2 = \frac{1}{M} \sum_{i} (Wx_i + b \mu)^2$
- $\bullet$  Exercise: the value of a does not depend on the bias b and the scale of the weights  $W \to sW$
- What will happen if we try to solve  $\min_W L(a(W)) + \|W\|^2$  , where L(a(W)) is invariant w.r.t.  $\|W\|$ ?
  - Ill-posed: optimum value is approached with  $\|W\| \to 0$
  - Still works if you apply it in practice with small weight decay
  - Better to avoid such ill-specified problems

## Dropout

#### Simple Idea





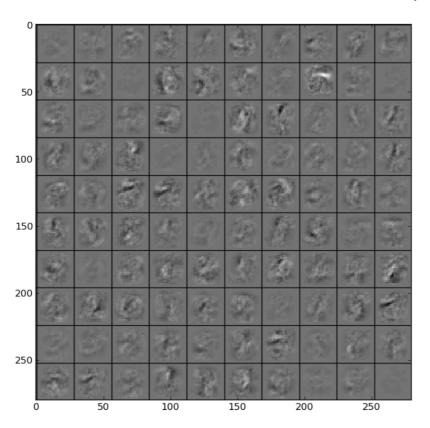
(a) Standard Neural Net

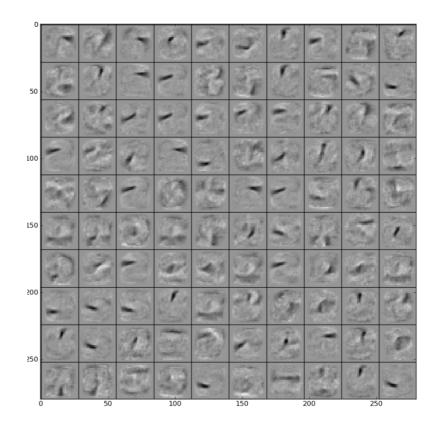
(b) After applying dropout.

[Hinton et al. (2012) Improving Neural Networks by Preventing Co-adaptation of Feature Detectors] [Srivastava et al. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting]

- During training:
  - Randomly, "drop" some units activities -- set their outputs to zero
  - This results in the associated weights not being used and we obtain a (random) subnetwork
  - When learning, the network develops robustness to units being dropped
- During testing:
  - Use all units

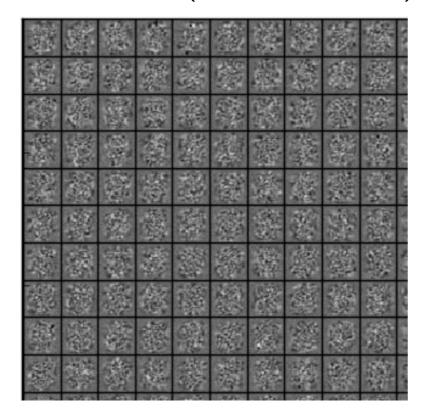
♦ MNIST 784-500-500 neural network, first layer features

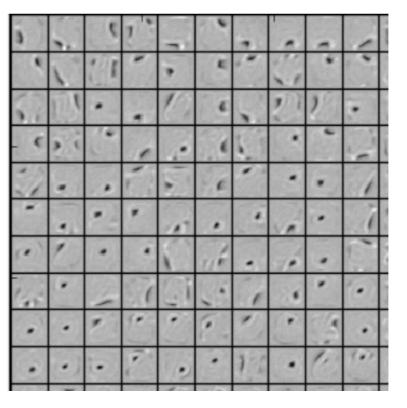




50% dropout

→ MNIST autoencoder (non-variational) with 256 hidden units

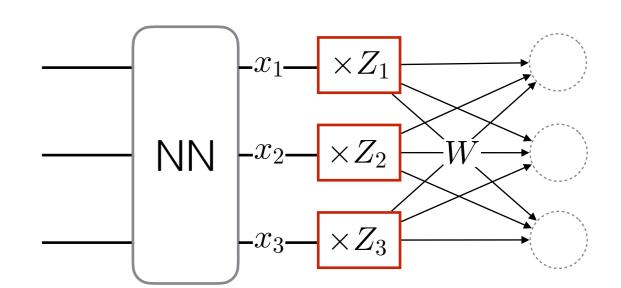




50% dropout

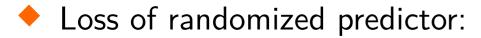
 $Z_i \sim \mathsf{Bernoulli}(0.3)$ 

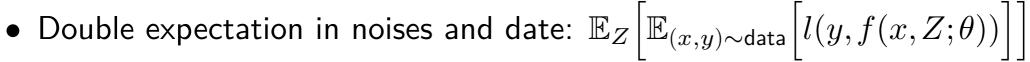
- What does it mean mathematically?
  - Introduce random Bernoulli variables  $Z_i = \begin{cases} 1, \\ 0, \end{cases}$ with probability p, with probability 1-p,multiplying outputs of the preceding layer
  - Can interpret outputs multiplied with 0 as dropped
  - Drop probability q = 1 p
  - Next layer activations:  $a = W(x \odot Z)$
  - ullet Gaussian multiplicative  $\mathcal{N}(1,\sigma^2)$  noises work as well (Gaussian Dropout)



- Prediction is random now?
  - Denote the network output as  $f(x, Z; \theta)$
  - We have two choices how to make predictions:
    - Randomized predictor:  $p(y|x,Z) = f(x,Z;\theta)$
    - Ensemble:  $p(y|x) = \mathbb{E}_Z[f(x,Z;\theta)] = \sum_{Z} p(z)f(x,Z;\theta)$







- ullet Same as:  $\mathbb{E}_{Z\sim \mathsf{Bernoulli}(q),\ (x,y)\sim \mathsf{data}}\Big[l(y,f(x,Z;\theta))\Big]$
- Unbiased loss estimate using a batch of size M:

$$\frac{1}{M} \sum_{i=1}^{M} l(y_i, f(x_i, z_i; \theta))$$

- What it means practically:
  - Draw a batch of data
  - ullet For each data point i independently sample noises z
  - Compute forward and backward pass as usual
  - Will have increased variance of the stochastic gradient

- Use approximation (common default):
  - $\mathbb{E}_{Z}[f(x,Z;\theta)] \approx f(x,\mathbb{E}_{Z}[Z];\theta)$
  - Since  $\mathbb{E}_Z[Z] = p$ , we have  $a = W(x \odot \mathbb{E}[Z]) = (pW)x$
  - i.e. need to scale down the weights
- Use sampling:

• 
$$\mathbb{E}_Z[f(x,Z;\theta)] \approx \frac{1}{M} \sum_{i=1}^M f(x_i,z_i;\theta)$$

- Generalizes slightly better than the above
- Can be used to also estimate model uncertainty
- Both variants achieve a "comity" or "ensembling" effect

averaging of many well fitting models:

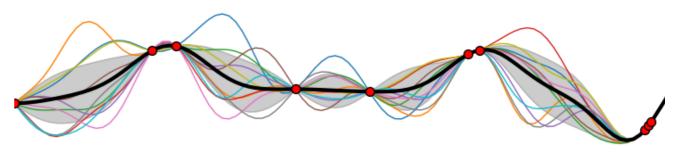
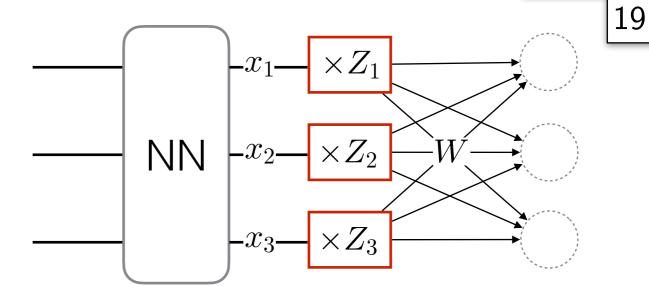


Illustration: Gaussian Process

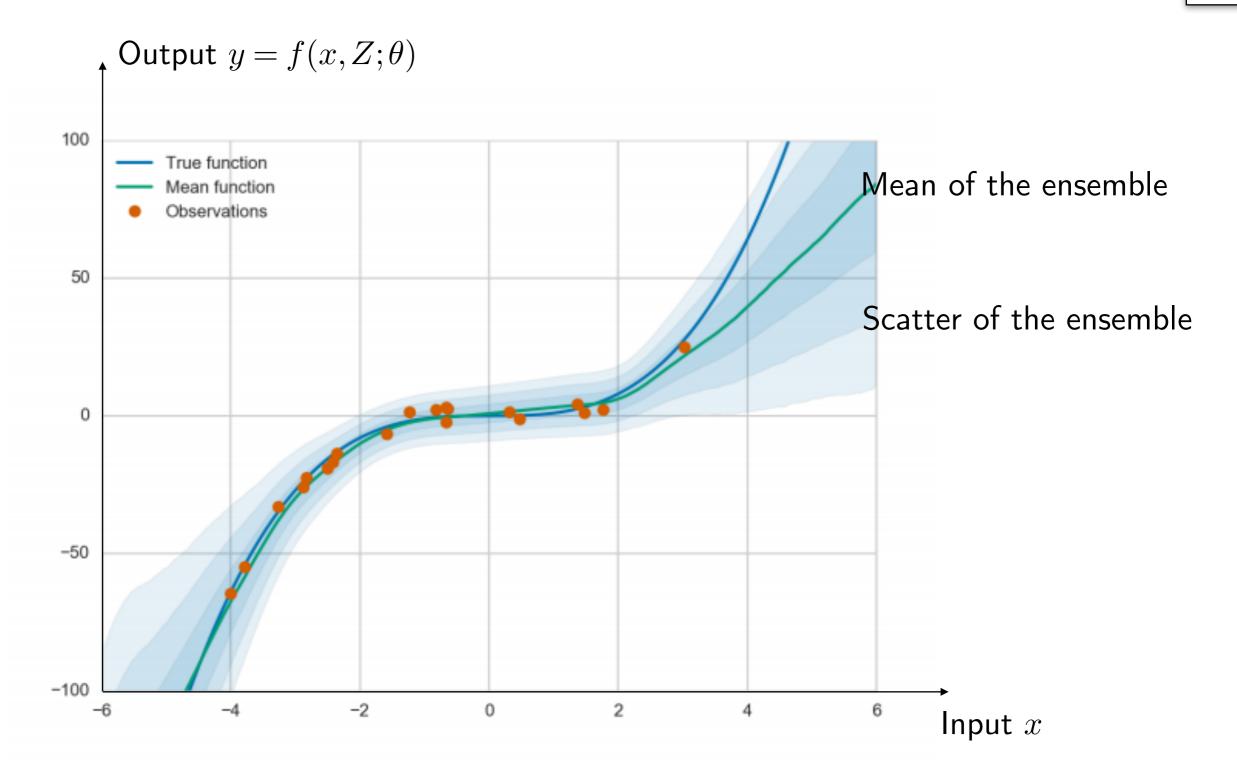
More accurate analytic approximations than the first option are possible



 $Z_i \sim \mathsf{Bernoulli}(0.3)$ 

$$E[Z] = p$$

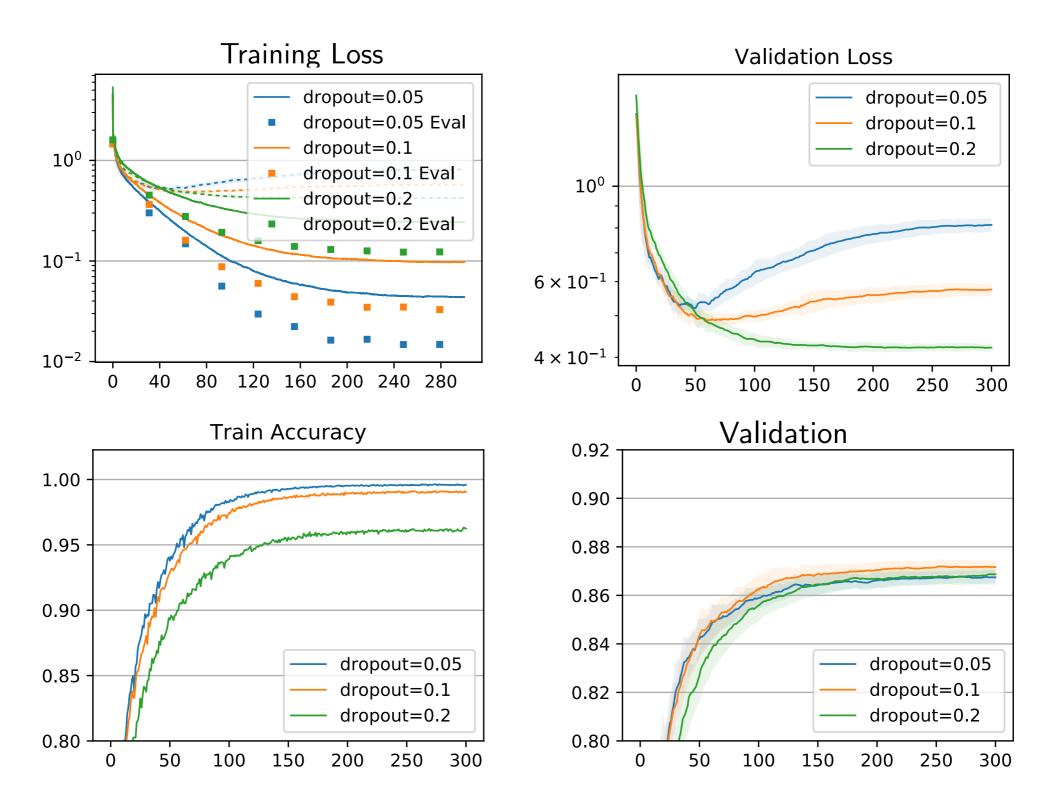
→ Toy example of uncertainty estimation with dropout for regression:



[Louizos and Welling 2017: Multiplicative Normalizing Flows for Variational Bayesian Neural Networks]

#### **CIFAR10 Example: Dropout**



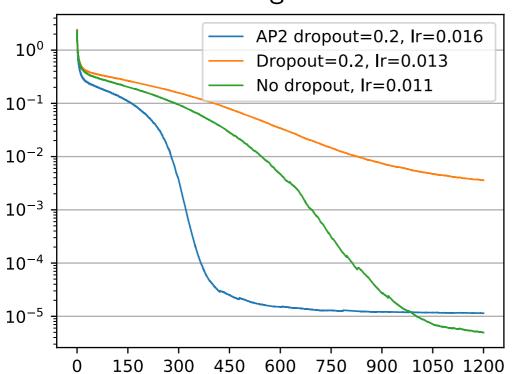


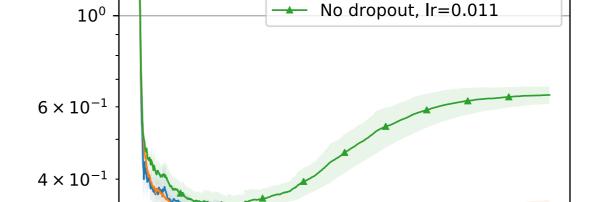
Looks like dropout does not help for the validation accuracy, but see the next slide

#### **CIFAR10** Example: Dropout

 $3 \times 10^{-1}$ 







400

200

Validation Loss

→ AP2 dropout=0.2, Ir=0.016

Dropout=0.2, Ir=0.013

800

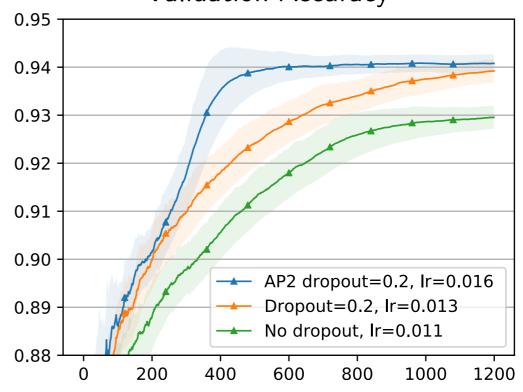
1000

1200

- ♦ Change the learning setup:
  - train longer with a slower learning rate decay
- Now it works!
  - Analytic approximations: Fast Dropout, Analytic Dropout (AP2) less gradient noise -> faster

#### Validation Accuracy

600



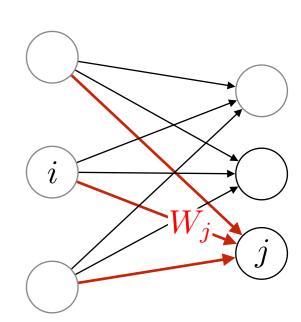
## Beyond $L_2$ and Dropout



- $\mathbf{L}_1$  regularization:  $R(W) = \|W\|_1 = \sum_{ij} |W_{ij}|$ 
  - Promotes sparsity
  - For better generalization we typically do not want sparsity (= less parameters)
- Constrained optimization form instead of penalty:

$$\min_{W} L(W)$$
 s.t.  $R(W) \leq s$ 

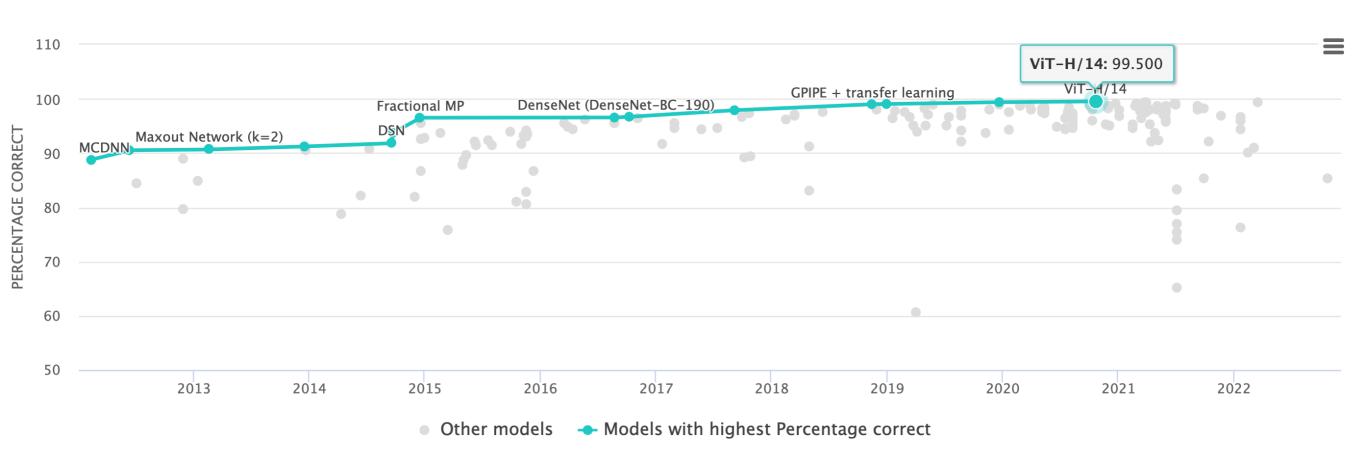
- Does not makes weights small, but prevents them from growing high
- Can use projected SGD to solve
- In particular  $L_2$  norm on each row:  $R(W) = \max_i ||W_i||_2$ called max-norm appears useful
- **Generalizations**:
  - Flat  $L_p$  norm:  $R(W) = \left(\sum_{ij} W_{ij}^p\right)^{\frac{1}{p}}$
  - Group-norm:  $R(W) = \left(\sum_{j} \left(\sum_{i} W_{ij}^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}$
  - Above variants are special cases
  - Different generalization bounds derived measuring complexity with group norm



#### CIFAR10: State of the Art

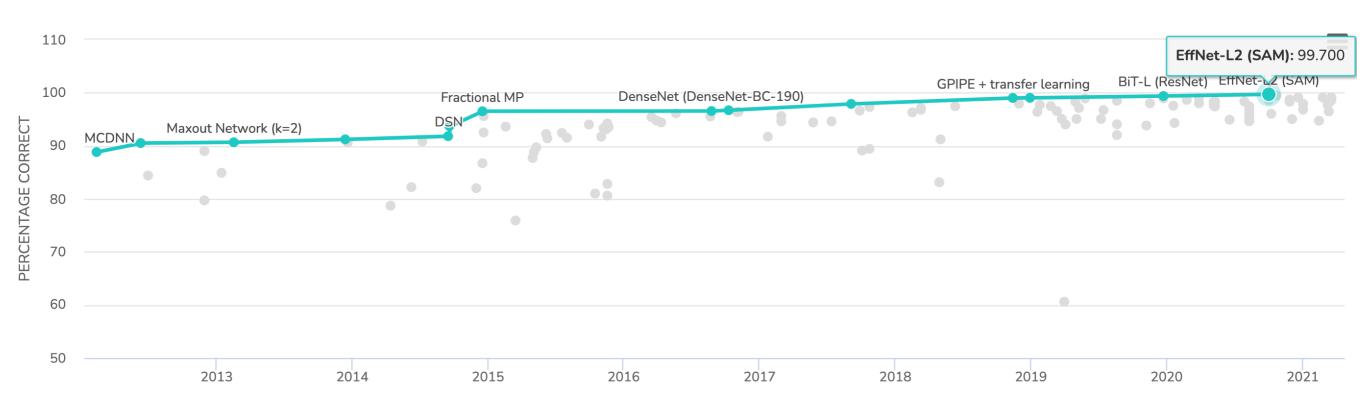
25

CIFAR10 classification progress [paperswithcode.com]



- Architecture improvements
- Simple regularization techniques (dropout, BN, weight or activation regularization)
- Optimizers, e.g. finding stable local minima (e.g. Sharpness-Aware Minimization)
- Ensembles
- Data augmentation
- Feature Transfer (start from pertained on ImageNet)
- Auxiliary tasks (reconstruct input or its part, etc.)

#### CIFAR10 classification progress [paperswithcode.com]



- What are the methods:
  - Architecture improvements
  - Data augmentation
  - Feature Transfer (start from pertained on ImageNet)
  - Simple regularization techniques (dropout, BN, weight or activation regularization)
  - More advanced regularization techniques: SAM = Sharpness-Aware Minimization. In Lecture 8 we will consider adversarially robust training.
  - Ensembles. More generally Bayesian neural networks is a big research topic.