Deep Learning (BEV033DLE)

Lecture 7. Regularization

Czech Technical University in Prague

4 Recap of Overfitting Issues

4 L2 regularization (Weight Decay)

4 Dropout

4 Implicit Regularization and Other Methods



Overfitting in Deep Learning (Recall)



Underfitting and Overfitting @

4 Classical view in ML: 3
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Model Complexity

4 Control model capacity (prefer simpler models, regularize) to prevent overfitting

e [n this example: limit the number of parameters to avoid fitting the noise



Underfitting and Overfitting @

4

4 Deep Learning

Underfitting — model capacity too low Overfitting — model capacity too high

e Models in practice are chosen to perfectly
fit training data (overparametrized)

¢ The boundary may be arbitrary complex
as they can fit any labeling




Generalization of Over-Parametrized Models @ o

4 Good architecture + SGD generalizes better in the overparametrized regime
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[Neyshabur et al. (2015) In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning]

[Belkin et al. (2019) Reconciling modern machine learning practice and the bias-variance trade-off]

4 Regularizing by controlling only the number of parameters is not the best option

4 Important to regularize by other means:

1. Good model architecture (putting our knowledge of invariances and useful

information processing blocks into the network structure)

2. Many other components affect implicit regularization properties (optimizer, batch

size, normalization etc.)

3. Explicit regularization



CIFAR10 Example ®
4+ CIFAR10 dataset 6

e 60000 32x32 color images in 10 classes, with 6000 images per class.
e 50000 training and 10000 test
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CIFAR10 Example: Overfitting

Training Loss Validation Loss
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Training loss approaches 0

Training accuracy approaches 100%

Validation loss starts growing

Validation accuracy may still be improving but the model becomes overconfident



CIFAR10 Example: BN

4 BN has a strong regularization effect!
e It depends on a randomly formed batch -> injecting specific structured noises

e The normalization bends the parameter space -> different behavior of SGD

Training Loss

Validation Loss
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L> Regularization (Weight Decay)



General Setup @

¢ Regularized training objective:
m@inL(@) + AR(0) = m@in > Li(yilzi 0) + AR(6)
e R(#) - function not depending on data

e )\ - regularization strength

¢ Recall connection to maximum a posteriori parameter estimation (MAP):
max p(D|0)p(0)
o p(f) xexp(—AR(0)) - prior on the model weights

e p(D|0) - likelihood of the data given parameters

e p(0|D) = p(Dp|(9D)})9(9) - Bayesian posterior over parameters

RPZ lecture 3:(Parameter Estimation: Maximum a Posteriori (MAP))

¢ In practice also commonly appears in the form independent of the amount of data:
min® 3, 1i(uil::6) + AR(6)

e ) is tuned for a given dataset with cross-validation

10


https://cw.fel.cvut.cz/b191/_media/courses/be5b33rpz/lectures/pr_03_parameter_estimation_2019_10_11.pdf

Well-understood in Linear Models

¢ Lo-regularization (I3, weight decay):

R(0) = ||0]
¢ In linear regression:

e Known as ridge regression, Tikhonov regularization

e Equivalent to using multiplicative noise N'(1,\?) on the input

e Smoothing effect (reduces the variance of 6)
¢ In linear classification:

e Small 8 + large margin

e Generalization bounds independent of dimensionality

. o 1 r2)E)
of the model (roughly): Risk(h) < O*( F——5— ),

where £ are slacks

¢ Sigmoid NNs:
e Small & — sigmoid outputs are close to linear

— smoother classification boundary
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Simulated Data Example

Neural Network - 10 Units, No Weight Decay

Neural Network - 10 Units, Weight Decay=0.02

TrainingError:O.1OO55555555555555;0
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The Elements of
Statistical Learning . .
- Hastie, Tibs

Training Error: 0.160

Test Error:
Bayes Error:

0.223
0.210

weights

https://web.stanford.edu/~hastie/ElemStatlLearn/

nirani and Friedman: The Elements of Statistical Learning

12


https://web.stanford.edu/~hastie/ElemStatLearn/

L, Regularization and Batch Normalization

¢ Consider BN-normalized layer:

q — Wa?—kb—u/y_'_ﬁ

o =S (Waitd) o= S (Way b p)?
e Exercise: the value of a does not depend on the bias b and the scale of the weights

W — sW

¢ What will happen if we try to solve mv[i/nL(a(W)) + W17,

where L(a(W)) is invariant w.r.t. ||W]|7?

e |ll-posed: optimum value is approached with ||[W| — 0
e Still works if you apply it in practice with small weight decay

e Better to avoid such ill-specified problems






Simple ldea
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(a) Standard Neural Net (b) After applying dropout.

[Hinton et al. (2012) Improving Neural Networks by Preventing Co-adaptation of Feature Detectors]
[Srivastava et al. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting]
4 During training:

e Randomly, "drop" some units activities -- set their outputs to zero

e This results in the associated weights not being used and we obtain a (random)
subnetwork

¢ \When learning, the network develops robustness to units being dropped
4 During testing:

e Use all units



Co-adaptation @
4+ MNIST 784-500-500 neural network, first layer features 16
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Mathematical Model

® What does it mean mathematically?

/

Introduce random Bernoulli variables Z; = <

\
multiplying outputs of the preceding layer

1,

0,

17

with probability p,

with probability 1 —p,

Can interpret outputs multiplied with 0 as dropped

Drop probability g=1—p
Next layer activations: a =W (x® Z)

Gaussian multiplicative N'(1,0%) noises

work as well (Gaussian Dropout)

® Prediction is random now?

e Denote the network output as f(z,Z;0)

e We have two choices how to make predictions:

- Randomized predictor: p(y|z,2) = f(x,Z;0)

—1 NN

— U 1—

_5132_

- Ensemble: p(y|z) =Ez[f(z,Z;0)] = EZJP(Z)J"(:E,Z;@)

XZg

Z; ~ Bernoulli(0.3)



Training

Loss of randomized predictor:

Double expectation in noises and date: E [E(x,y),\,data [l(y,f(x,Z;é’))H
Same as: EZr\JBernoulli(q), (z,y)~data [l(y,f(a:,Z,H))}

Unbiased loss estimate using a batch of size M:

M
7 2 Uy f (i, 2:6)

What it means practically:

Draw a batch of data
For each data point 7 independently sample noises z
Compute forward and backward pass as usual

Will have increased variance of the stochastic gradient
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Testing @
¢ Use approximation (common default): Y 19
-1 1 XZl "'.\
o Bz |f(w,2:0)] ~ f(2,E(2];0) M
e Since Ez|Z] = p, we have —— NN Fr2o— xZy —W
a=W(xeoE|Z])=(pW)x %
SE— —T3— X /3 SO
e i.e. need to scale down the weights \ ) e
Z; ~ Bernoulli(0.3)
¢ Use sampling:
PIne y ElZ]=p
o K7 [f(xaz;e)} %ﬁziﬂf@iazi;@)
e Generalizes slightly better than the above
e Can be used to also estimate model uncertainty
¢ Both variants achieve a "comity"” averaging of many well fitting models:

or "ensembling" effect

lllustration: Gaussian Process

® More accurate analytic approximations than the first option are possible



Model Uncertainty with Dropout @

4 Toy example of uncertainty estimation with dropout for regression: 20
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[Louizos and Welling 2017: Multiplicative Normalizing Flows for Variational Bayesian Neural Networks]



CIFAR10 Example: Dropout

4 Here BN is also used in all cases
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4 Looks like dropout does not help for the validation accuracy, but see the next slide
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CIFAR10 Example: Dropout @

Training Loss Validation Loss
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Beyond L2 and Dropout



Other Norms @

¢ L regularization: R(W) = ||W1=>_..|W, 2

"

e Promotes sparsity

e For better generalization we typically do not want sparsity (= less parameters)
¢ Constrained optimization form instead of penalty:

miny L(W) s.t. R(W) <s

e Does not makes weights small, but prevents them from growing high

e Can use projected SGD to solve

e In particular Ly norm on each row: R(W) = max,||W;

called max-norm appears useful

¢ Generalizations: 1

e Flat L, norm: R(W) = (Zw W,g-)p

e Group-norm: R(W) — (ZJ (Z’L Wip})%)

e Above variants are special cases

Q|

e Different generalization bounds derived measuring complexity with group norm
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CIFAR10 classification progress [paperswithcode.com] 25
ViT-H/14: 99.500 -
GPIPE + transfer learning ViT-d/14
Fractional MP DenseNet (DenseNet-BC-190)
Maxout Network (k=2) DSN
MCDNN
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Other models Models with highest Percentage correct

Architecture improvements

Simple regularization techniques (dropout, BN, weight or activation regularization)
Optimizers, e.g. finding stable local minima (e.g. Sharpness-Aware Minimization)
Ensembles

Data augmentation

Feature Transfer (start from pertained on ImageNet)

Auxiliary tasks (reconstruct input or its part, etc.)
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State of the Art @ o

CIFAR10 classification progress [paperswithcode.com] 26

EffNet-L2 (SAM): 99.700

GPIPE + transfer learning BiT-L (ResNet) EffNet-uZ (SAM)
Fractional MP DenseNet (DenseNet-BC-190)

_ DSN
MCDNN Maxout Network (k=2)

2013 2014 2015 2016 2017 2018 2019 2020 2021

4 What are the methods:

Architecture improvements

Data augmentation

Feature Transfer (start from pertained on ImageNet)

Simple regularization techniques (dropout, BN, weight or activation regularization)

More advanced regularization techniques: SAM = Sharpness-Aware Minimization. In
Lecture 8 we will consider adversarially robust training.

Ensembles. More generally Bayesian neural networks is a big research topic.
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