
Deep Learning (BEV033DLE)
Lecture 13 Recurrent Neural Networks

Czech Technical University in Prague

� Recurrent models

� Special cases and recurrent back propagation

� Error back propagation through time

� Gated recurrent units, GRU and LSTM networks

2/12
Recurrent networks

Recurrent models in a nutshell

� input sequence x= (x1, . . . ,xt, . . . ,xT), xt ∈ Rn, output sequence y = (y1, . . . ,yT),
yt ∈ Y and sequence of hidden states h= (h1, . . . ,hT), ht ∈ Rd.

� recurrent (dynamic) system with outputs

ht = f(xt,ht−1,w)

yt = g(ht,v)

where w and v are parameters. The model defines sequence-to-sequence mappings
h= Fw(x) and y =Gv(h).

� loss function `(y,y′), often locally additive `(y,y′) =
∑
t `t(yt,y

′
t)

Training goal: given training data T =
{

(xj,yj) | j = 1, . . . ,m
}
, learn the model parameters

w, v by solving
1

m

∑
(x,y)∈T

`
(
y,(Gv ◦Fw)(x)

)
→min

w,v

http://cmp.felk.cvut.cz

3/12
Recurrent networks

Incarnations of recurrent models and related tasks
� Deep neural network for classification with additional feedback connections: xt -
constant input, yt - output of the network, ht -states of all hidden layers. The loss
function depends on the last output yT only.

� “infinite state automata”: the output space is sufficient for keeping the history, thus h
and y can be identified, i.e. yt = f(xt,yt−1,w).
Example: Earth observation, landcover type monitoring xt - sequence of spectral
satellite measurements, yt - sequence of states (e.g. coniferous forest, broadleaf forest,
clearcut, bark beetle degradation etc.)

� general sequence-to-sequence segmentation: hidden states ht are needed for keeping
track of longer past and are latent.
Example: NLP translation:

http://cmp.felk.cvut.cz

4/12
Learning RNNs special cases: infinite state automata

Learning RNNs is particularly simple in the case that

� h and y can be identified, i.e. yt = f(xt,yt−1,w) and

� the loss is locally additive
∑
t `(yt,y

′
t)

Split each sequence (x,y) ∈ T m into triplets (yt−1,xt,yt) and train f from

1

m

∑
(x,y)∈T

∑
t

`
(
yt,f(xt,yt−1,w)

)
→min

w

Neither forward nor backward propagation through the sequence are needed.

http://cmp.felk.cvut.cz

5/12
Learning RNNs special cases: Recurrent backpropagation

Recurrent backpropagation: (Almeida, 1987), (Pineda, 1987)

Learning approach for classifier/regression networks with feedback connections.

the network input xt = x is constant, yt and ht denote the network output and all hidden
layers.

ht = f(x,ht−1,w) and yt = g(ht,v)

Assumptions:

� the network configuration ht converges to a fixpoint h∗ if we clamp its input to xt = x

� the loss depends on the final output y∗ = g(h∗,v) only.

Computing ∇v`(y∗,y) poses no problem if ` and g are differentiable. What about
∇w`(y∗,y)?

We have (implicit function theorem)

∂h∗

∂w
=
[
I−Jf(h∗)

]−1 ∂f

∂w
,

where Jf(h∗) = ∂f(x,w,h∗)
∂h is the Jacobian of f w.r.t. h.

http://cmp.felk.cvut.cz

6/12
Learning RNNs special cases: Recurrent backpropagation

Now, let us consider the gradient of the loss w.r.t. w.

∂w`= ∂y`(y
∗) ∂hg(h∗)

[
I−Jf(h∗)

]−1
∂wf(x,w,h∗)

Applying this directly would require to compute
[
I−Jf(h∗)

]−1.

Introduce the (column) vector z defined by

z =
[
I−Jf(h∗)

]−T (
∂y`(y

∗) ∂hg(h∗)
)T

Multiplying both sides by
[
I−Jf(h∗)

]T , we get

z = Jf(h∗)Tz+
(
∂y`(y

∗) ∂hg(h∗)
)T
.

This is a fixpoint equation for z and can be solved by fixpoint iteration.

http://cmp.felk.cvut.cz

7/12
Learning RNNs special cases: Recurrent backpropagation

The resulting algorithm for computing the derivative ∂`
∂w is:

� fix x, run the network until convergence → h∗

� start from z0 and iterate

zi = Jf(h∗)Tzi−1 +
(
∂y`(y

∗) ∂hg(h∗)
)T

until convergence.

� Return
∂`

∂w
= zT

∂f(x,w,h∗)

∂h

http://cmp.felk.cvut.cz

8/12
Learning RNNs general case: backpropagation through time

Assumptions:

ht = f(xt,ht−1,w)

yt = g(ht,v)

The mappings f and g are implemented by neural networks and are differentiable w.r.t. their
inputs and parameters. The loss function `(y,y′) is differentiable.
Example 1. Both mappings f and g are implemented by one layer networks

at =Wht−1 +Uxt+ b ht = tanh(at)

ot = V ht+ c yt = softmax(ot)

http://cmp.felk.cvut.cz

9/12
Learning RNNs general case: backpropagation through time

Computing the gradients: Unroll the network in time and apply backpropagation

Let us consider the loss for a single example (x,y∗) from the training data.

Computing the gradient w.r.t. v is easy (see Slide 4.). Let us consider the gradient w.r.t. w

∂w`(y,y
∗) =

T∑
t=1

∂w`(yt,y
∗
t) =

T∑
t=1

∂yt`(yt,y
∗
t)∂htg(ht,v)∂wht

The first two derivatives are simple. For the last one we have the recurrent expression

∂wht = ∂wf(xt,ht−1,w) +∂ht−1f(xt,ht−1,w)∂wht−1

This gives

∂wht = ∂wf(xt,ht−1,w) +

t−1∑
i=1

[t∏
j=i+1

∂hj−1
f(xj,hj−1,w)

]
∂wf(xi,hi−1,w)

http://cmp.felk.cvut.cz

10/12
Learning RNNs general case: backpropagation through time

Problems:

� backpropagation through time is computationally expensive

� Exploding/vanishing gradients: consider for simplicity the linear recurrence ht =Wht−1.
For τ steps we get hτ =W τh0. Suppose that we can write W = U−1ΛU , where Λ is
diagonal. We get

hτ = U−1ΛτUh0.

Eigenvalues with magnitude less than one will decay and eigenvalues with magnitude
greater than one will explode.

� We can not apply batch normalisation as simple remedy.

� We want the following model ability: events long in the past can trigger changes in
conjunction with current measurements.

Possible solutions: skip connections? designate special nodes in ht for keeping record of
events long in the past?

http://cmp.felk.cvut.cz

11/12
RNNs with gated recurrent units

LSTM (Hochreiter, Schmidhuber, 1997), GRU (Cho et al., 2014), ...

Gated recurrent unit (simplified):

A cell consisting of a recurrent unit ht and a gate unit ut ∈ [0,1]

ht = ut−1ht−1 + [1−ut−1]f(xt,ht−1,w)

ut = S(xt,ht,v)

The gate unit ut has sigmoid nonlinearity and “decides” whether to copy ht from ht−1 or to
apply the recurrence with f .

http://cmp.felk.cvut.cz

12/12
RNNs with gated recurrent units

Gated recurrent unit (general):

� h is a state vector

� u is a vector of “update” gates

� r is a vector of “reset” gates

The update equations are

ht = ut−1�ht−1 + [1−ut−1]�S
(
Uxt−1 +Wrt−1�ht−1

)
where � denotes the element-wise product of vectors. The gate unit outputs are given by

ut = S
(
Uuxt+Wuht

)
rt = S

(
Urxt+W rht

)
LSTM cells are somewhat more complicated – they have separate “forget” and “update”
gates.

http://cmp.felk.cvut.cz

	First page
	cmporange Recurrent networks
	cmporange Recurrent networks
	cmporange Learning RNNs special cases: infinite state automata
	cmporange Learning RNNs special cases: Recurrent backpropagation
	cmporange Learning RNNs special cases: Recurrent backpropagation
	cmporange Learning RNNs special cases: Recurrent backpropagation
	cmporange Learning RNNs general case: backpropagation through time
	cmporange Learning RNNs general case: backpropagation through time
	cmporange Learning RNNs general case: backpropagation through time
	cmporange RNNs with gated recurrent units
	cmporange RNNs with gated recurrent units
	Last page

