DEEP LEARNING (SS2022) SEMINAR 2

Assignment 1 (Chebyshev). Let X be a real valued random variable with expectation $\mathbb{E}X$ and finite variance $\mathbb{V}X$. The Chebyshev inequality asserts

$$\mathbb{P}(|X - \mathbb{E}X| > \varepsilon) \leq \frac{\mathbb{V}X}{\varepsilon^2}.$$

Let X_i , i = 1, ..., m be independent, identically distributed random variables with expectation $\mathbb{E}X$ and finite variance $\mathbb{V}X$ and let $Y = \frac{1}{m} \sum_{i=1}^{m} X_i$ be their empirical mean. Prove the inequality

$$\mathbb{P}(|Y - \mathbb{E}Y| > \varepsilon) \leqslant \frac{\mathbb{V}X}{m\varepsilon^2}.$$

Assignment 2 (Hoeffding). Let X_i , i = 1, ..., m be independent random variables bounded by the interval [a, b], i.e. $a \leq X_i \leq b$. Let $X = \frac{1}{m} \sum_{i=1}^m X_i$ be their empirical mean. The Hoeffding inequality asserts that

$$\mathbb{P}(|X - \mathbb{E}X| > \varepsilon) \leq 2 \exp\left(-\frac{2m\varepsilon^2}{(b-a)^2}\right).$$

Let us now consider a predictor $h: \mathcal{X} \to \mathcal{Y}$, and a loss $\ell(y, y')$. The risk of the predictor is denoted by R(h) and its empirical risk on a test set $\mathcal{T}^m = \{(x^j, y^j) \mid j = 1, ..., m\}$ is denoted by $R_{\mathcal{T}^m}(h)$.

a) Prove that the generalisation error of h can be bounded in probability by

$$\mathbb{P}\Big(|R(h) - R_{\mathcal{T}^m}(h)| > \varepsilon\Big) < 2e^{-\frac{2m\varepsilon^2}{(\triangle \ell)^2}},\tag{1}$$

where $\Delta \ell = \ell_{max} - \ell_{min}$.

b) Verify the value m given in Example 1. of Lecture 2. for the special case of a binary classifier and the 0/1-loss.

c*) We want to utilise the Hoeffding inequality for choosing the best predictor from a finite set of predictors \mathcal{H} . Denoting the r.h.s. of (1) by δ , we interpret it as follows. Among all possible test sets \mathcal{T}^m of size m there are at most $\delta * 100$ percent "bad" test sets for a given predictor h. We call a test set \mathcal{T}^m bad for the predictor h if $|R(h) - R_{\mathcal{T}^m}(h)| > \varepsilon$. Conclude that the percentage of test sets, which are bad for at least one $h \in \mathcal{H}$ can be bounded by

$$\mathbb{P}\left(\max_{h\in\mathcal{H}}|R(h)-R_{\mathcal{T}^m}(h)|>\varepsilon\right)<2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(\triangle\ell)^2}}$$

Assignment 3 (Log Softmax). Consider a neural network with outputs y_k , k = 1, ..., K representing posterior class probabilities. The last layer of this network is a softmax layer with output

$$y_k = \frac{e^{x_k}}{\sum_{\ell} e^{x_\ell}},$$

where x_k are the outputs of the last linear layer and represent class scores. When learning such a network by maximising the log conditional likelihood, we have to consider log-probabilities

$$z_k = \log y_k = x_k - \log \sum_{\ell} e^{x_\ell}$$

We will analyse the nonlinear part of the r.h.s.

$$f(x) = \log \sum_{\ell} e^{x_{\ell}}$$

a) Prove that its gradient is given by $\nabla f(x) = y$, i.e. by the vector of class probabilities. Conclude that the norm of the gradient is bounded by 1.

b*) Compute the second derivative of f and show that it can be expressed as

$$\nabla^2 f(x) = \operatorname{Diag}(y) - yy^T.$$

Prove that this matrix is positive semi-definite and conclude that f(x) is a convex function. Note that the second derivative is the Jacobian of softmax.

Assignment 4 (Backprop). Given an operation with the output y and the derivative of the loss w.r.t. y – a row vector J_y , the "backprop" operation needs to compute derivatives w.r.t. all inputs. Compute the backprop of the following operations:

a) y = |x|, where the absolute value is applied coordinate-wise to a vector x.

b)
$$y = x + z$$

c) y = (x; z) — the concatenated vector of x and z

d) Convolution in 1D: $y_i = \sum_k w_k x_{i+k} + b_i$. The inputs are: w, x, b. For simplicity, do not infer index ranges.

Assignment 5 (Backprop of Scan). In Adaboost classifiers, a commonly used feature is the difference of average brightness in two rectangles in the image. The average over arbitrary rectangle can be computed very cheaply if the so-called *integral image* (AKA *cumulative sum, scan*) is precomputed. In this exercise we want to make this operation differentiable.

The *inclusive cumulative sum* operation (in 1D) is defined as follows. Given the input vector $x \in \mathbb{R}^n$ the output $y \in \mathbb{R}^n$ has components:

$$y_i = \sum_{j \le i} x_j.$$

Compute the backprop of scan, i.e. given the derivative J_y , compute the derivative J_x .