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SEMINAR 2

Assignment 1 (Chebyshev). Let X be a real valued random variable with expectation
EX and finite variance VX . The Chebyshev inequality asserts

P
(
|X − EX| > ε

)
6

VX
ε2

.

Let Xi, i = 1, . . . ,m be independent, identically distributed random variables with ex-
pectation EX and finite variance VX and let Y = 1

m

∑m
i=1Xi be their empirical mean.

Prove the inequality
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)
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.

Assignment 2 (Hoeffding). Let Xi, i = 1, . . . ,m be independent random variables
bounded by the interval [a, b], i.e. a 6 Xi 6 b. Let X = 1

m

∑m
i=1Xi be their empiri-

cal mean. The Hoeffding inequality asserts that

P
(
|X − EX| > ε

)
6 2 exp

(
− 2mε2

(b− a)2

)
.

Let us now consider a predictor h : X → Y , and a loss `(y, y′). The risk of the predictor
is denoted by R(h) and its empirical risk on a test set T m =

{
(xj, yj)

∣∣ j = 1, . . . ,m
}

is
denoted by RT m(h).

a) Prove that the generalisation error of h can be bounded in probability by

P
(
|R(h)−RT m(h)| > ε

)
< 2e

− 2mε2

(4`)2 , (1)

where4` = `max − `min.

b) Verify the value m given in Example 1. of Lecture 2. for the special case of a binary
classifier and the 0/1-loss.

c*) We want to utilise the Hoeffding inequality for choosing the best predictor from a finite
set of predictors H. Denoting the r.h.s. of (1) by δ, we interpret it as follows. Among all
possible test sets T m of size m there are at most δ ∗ 100 percent “bad” test sets for a
given predictor h. We call a test set T m bad for the predictor h if |R(h)− RT m(h)| > ε.
Conclude that the percentage of test sets, which are bad for at least one h ∈ H can be
bounded by

P
(
max
h∈H
|R(h)−RT m(h)| > ε

)
< 2|H|e−

2mε2

(4`)2
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Assignment 3 (Log Softmax). Consider a neural network with outputs yk, k = 1, . . . , K
representing posterior class probabilities. The last layer of this network is a softmax layer
with output

yk =
exk∑
` e

x`
,

where xk are the outputs of the last linear layer and represent class scores. When learning
such a network by maximising the log conditional likelihood, we have to consider log-
probabilities

zk = log yk = xk − log
∑
`

ex`

We will analyse the nonlinear part of the r.h.s.

f(x) = log
∑
`

ex`

a) Prove that its gradient is given by ∇f(x) = y, i.e. by the vector of class probabilities.
Conclude that the norm of the gradient is bounded by 1.

b*) Compute the second derivative of f and show that it can be expressed as

∇2f(x) = Diag(y)− yyT .

Prove that this matrix is positive semi-definite and conclude that f(x) is a convex function.
Note that the second derivative is the Jacobian of softmax.

Assignment 4 (Backprop). Given an operation with the output y and the derivative of
the loss w.r.t. y – a row vector Jy, the "backprop" operation needs to compute derivatives
w.r.t. all inputs. Compute the backprop of the following operations:

a) y = |x|, where the absolute value is applied coordinate-wise to a vector x.

b) y = x+ z

c) y = (x; z) — the concatenated vector of x and z

d) Convolution in 1D: yi =
∑

k wkxi+k + bi. The inputs are: w, x, b. For simplicity, do
not infer index ranges.

Assignment 5 (Backprop of Scan). In Adaboost classifiers, a commonly used feature is
the difference of average brightness in two rectangles in the image. The average over
arbitrary rectangle can be computed very cheaply if the so-called integral image (AKA
cumulative sum, scan) is precomputed. In this exercise we want to make this operation
differentiable.
The inclusive cumulative sum operation (in 1D) is defined as follows. Given the input
vector x ∈ Rn the output y ∈ Rn has components:

yi =
∑
j≤i

xj.

Compute the backprop of scan, i.e. given the derivative Jy, compute the derivative Jx.
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