
DEEP LEARNING (SS2022)
SEMINAR 6

Assignment 1 (ML with noisy labels). We want to learn a binary classifier q(k |x; θ) with
classes k = ±1. It is defined as a neural network with parameters θ and with the sigmoid
logistic distribution in the output.
The true labels ki of the images xi are however unknown. Instead we are given training
pairs (xi, ti) with “noisy labels” ti = ±1. They might have been incorrectly assigned by
the person who annotated the data. More specifically, let us assume that the label ti is
correct (ti = ki) with probability 1− ε and incorrect (ti = −ki) with probability ε.

a) Formulate the conditional maximum likelihood learning of the parameters θ.
Hint: the conditional likelihood of the training data sample (xi, ti) is obtained by
marginalizing over the unknown true label

p(ti |xi) =
∑

k∈{−1,1}

p(ti | k)q(k |xi; θ),

where p(t | k) is the labelling noise model.

b) A popular practical solution is to minimize the cross-entropy loss

−
∑
i

∑
k

pi(k) log q(k |xi;w), (1)

where pi(k) denote "softened 1-hot labels": pi(k) = 1 − ε for k = ti and ε otherwise.
Prove that the negative cross-entropy (1) is a lower bound of the log likelihood in a). Use
Jensen’s inequality for log.

Assignment 2. Let q(x) and p(x) be two factorising probability distributions for random
vectors x ∈ Rn, i.e.

p(x) =
n∏

i=1

p(xi) and q(x) =
n∏

i=1

q(xi).

Prove that their KL-divergence decomposes into a sum of KL-divergences for the compo-
nents, i.e.

DKL(q(x) ‖ p(x)) =
n∑

i=1

DKL(q(xi) ‖ p(xi))

Assignment 3. Compute the KL-divergence of two univariate normal distributions.
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Assignment 4 (Smooth AP). Let f(x; θ) be a feature vector obtained by a neural network
with input image x and parameters θ. The network should learn an embedding from a
training set T of image triplets. Each triplet (a, p, n) consist of an anchor image xa, a
positive match xp and a negative match xn. The desired property of the learned embed-
ding f is that d(f(xa), f(xp)) < d(f(xa), f(xn)) holds for all such triplets, where d(., .)
denotes the distance in the embedding space. Consider the loss that counts the number of
triplets violating this relation:

L(θ) =
∑

(a,p,n)∈T

Jd(f(xa), f(xp))− d(f(xa), f(xn)) ≥ 0K, (2)

where JK is the indicator function (Iverson bracket).

a) Can we apply back-propagation to this loss?

b) Consider injecting independent noises Za,p,n and the expected loss

L̄(θ) = EZ

[ ∑
(a,p,n)∈T

Jd(f(xa), f(xp))− d(f(xa), f(xn)) + Za,p,n ≥ 0K
]
, (3)

where Za,p,n follows the logistic distribution. The logistic distribution has the cumulative
distribution function FZ(u) = P(Z ≤ u) = 1

1+e−u . Compute the expected loss L̄(θ).
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