DEEP LEARNING (SS2022) SEMINAR 6

Assignment 1 (ML with noisy labels). We want to learn a binary classifier $q(k | x; \theta)$ with classes $k = \pm 1$. It is defined as a neural network with parameters θ and with the sigmoid logistic distribution in the output.

The true labels k_i of the images x_i are however unknown. Instead we are given training pairs (x_i, t_i) with "noisy labels" $t_i = \pm 1$. They might have been incorrectly assigned by the person who annotated the data. More specifically, let us assume that the label t_i is correct $(t_i = k_i)$ with probability $1 - \varepsilon$ and incorrect $(t_i = -k_i)$ with probability ε .

a) Formulate the conditional maximum likelihood learning of the parameters θ . *Hint*: the conditional likelihood of the training data sample (x_i, t_i) is obtained by marginalizing over the unknown true label

$$p(t_i \mid x_i) = \sum_{k \in \{-1,1\}} p(t_i \mid k) q(k \mid x_i; \theta),$$

where $p(t \mid k)$ is the labelling noise model.

b) A popular practical solution is to minimize the cross-entropy loss

$$-\sum_{i}\sum_{k}p_{i}(k)\log q(k \mid x_{i};w), \qquad (1)$$

where $p_i(k)$ denote "softened 1-hot labels": $p_i(k) = 1 - \varepsilon$ for $k = t_i$ and ε otherwise. Prove that the negative cross-entropy (1) is a lower bound of the log likelihood in a). Use Jensen's inequality for log.

Assignment 2. Let q(x) and p(x) be two factorising probability distributions for random vectors $x \in \mathbb{R}^n$, i.e.

$$p(x) = \prod_{i=1}^{n} p(x_i)$$
 and $q(x) = \prod_{i=1}^{n} q(x_i)$.

Prove that their KL-divergence decomposes into a sum of KL-divergences for the components, i.e.

$$D_{KL}(q(x) \parallel p(x)) = \sum_{i=1}^{n} D_{KL}(q(x_i) \parallel p(x_i))$$

Assignment 3. Compute the KL-divergence of two univariate normal distributions.

Assignment 4 (Smooth AP). Let $f(x; \theta)$ be a feature vector obtained by a neural network with input image x and parameters θ . The network should learn an embedding from a training set \mathcal{T} of image triplets. Each triplet (a, p, n) consist of an anchor image x_a , a positive match x_p and a negative match x_n . The desired property of the learned embedding f is that $d(f(x_a), f(x_p)) < d(f(x_a), f(x_n))$ holds for all such triplets, where d(., .)denotes the distance in the embedding space. Consider the loss that counts the number of triplets violating this relation:

$$\mathcal{L}(\theta) = \sum_{(a,p,n)\in\mathcal{T}} \llbracket d(f(x_a), f(x_p)) - d(f(x_a), f(x_n)) \ge 0 \rrbracket,$$
(2)

where []] is the indicator function (Iverson bracket).

- a) Can we apply back-propagation to this loss?
- **b**) Consider injecting independent noises $Z_{a,p,n}$ and the expected loss

$$\bar{\mathcal{L}}(\theta) = \mathbb{E}_Z \Big[\sum_{(a,p,n)\in\mathcal{T}} \left[d(f(x_a), f(x_p)) - d(f(x_a), f(x_n)) + Z_{a,p,n} \ge 0 \right] \Big], \qquad (3)$$

where $Z_{a,p,n}$ follows the logistic distribution. The logistic distribution has the cumulative distribution function $F_Z(u) = \mathbb{P}(Z \le u) = \frac{1}{1+e^{-u}}$. Compute the expected loss $\overline{\mathcal{L}}(\theta)$.