DEEP LEARNING (SS2022)
SEMINAR 6

Assignment 1 (ML with noisy labels). We want to learn a binary classifier ¢(k | x; #) with
classes k = %1. It is defined as a neural network with parameters # and with the sigmoid
logistic distribution in the output.

The true labels k; of the images x; are however unknown. Instead we are given training
pairs (z;,t;) with “noisy labels” t; = +1. They might have been incorrectly assigned by
the person who annotated the data. More specifically, let us assume that the label ¢; is
correct (¢; = k;) with probability 1 — ¢ and incorrect (¢; = —k;) with probability c.

a) Formulate the conditional maximum likelihood learning of the parameters 6.
Hint: the conditional likelihood of the training data sample (x;,¢;) is obtained by
marginalizing over the unknown true label

p(ti|z;) = Z p(ti|k)a(k|i;0),

ke{-1,1}

where p(t | k) is the labelling noise model.

b) A popular practical solution is to minimize the cross-entropy loss
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where p;(k) denote "softened 1-hot labels": p;(k) = 1 — ¢ for k = ¢; and ¢ otherwise.
Prove that the negative cross-entropy (1) is a lower bound of the log likelihood in a). Use
Jensen’s inequality for log.

Assignment 2. Let ¢(x) and p(z) be two factorising probability distributions for random

vectors € R", i.e.

n n

p(z) =[] p(z:) and q(z) =[] a(z).
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Prove that their KL-divergence decomposes into a sum of KL-divergences for the compo-
nents, i.e.

Dir(q(z) || p(z) ZDKL (@) || p(x:))

Assignment 3. Compute the KL-divergence of two univariate normal distributions.



Assignment 4 (Smooth AP). Let f(x; 6) be a feature vector obtained by a neural network
with input image = and parameters #. The network should learn an embedding from a
training set 7 of image triplets. Each triplet (a, p,n) consist of an anchor image z,, a
positive match x,, and a negative match z,,. The desired property of the learned embed-
ding f is that d(f(z.), f(z,)) < d(f(xa), f(x,)) holds for all such triplets, where d(., .)
denotes the distance in the embedding space. Consider the loss that counts the number of
triplets violating this relation:

= ) [d(f(za), f(ap) = d(f(za), f(2n)) = 0], )

(a,p,n)eT
where [] is the indicator function (Iverson bracket).
a) Can we apply back-propagation to this loss?

b) Consider injecting independent noises Z, ,, ,, and the expected loss

> 1A (o). F(@) = d(f (@), () + Zag 2 01, @)

(a,p,n)eT

where Z, , ,, follows the logistic distribution. The logistic distribution has the cumulative

distribution function Fz(u) = P(Z < u) = 7= + -. Compute the expected loss £(6).



