DEEP LEARNING (SS2022)
SEMINAR 4

Assignment 1 (Weight initialization for ReLU networks). In this assignment we derive a
proper weight initialization for ReLU networks. We will assume that the components of
all vectors are statistically independent and identically distributed.

a) Let us consider a single neuron with weight vector w and input vector z. Its pre-
activation is @ = w’ z. Let us denote

Elz;] = p, E[z7] = x, E[w;] = 0, and V[w;] = v.

prove that E[a] = 0 and V[a] = nvy, where n is the dimension of the vectors = and w.
b) Show that the distribution of a is symmetric if so is the distribution of w.

¢) Consider the neuron output y = g(a), where g denotes the ReLU function. Conclude

that E[y?] = $V]a].

d) Let us denote V[a] = « and consider a ReLU network with layers & = 1,...,m.
Collecting the previous steps we get the following recursive relation for the oy

1
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and obtain the initialisation proposed by He et al. (2015): initialise the weights with zero

mean and variance 5
V]w?

zj] =
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Assignment 2 (Batch Normalization). Batch normalization after a linear layer with a
weight matrix W and bias b takes the form:
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where 13 and o denote the mean and standard deviation of the layer outputa = Wx + b
taken over a batch.

a) Show that the output of batch normalization does not depend on the bias b and also
does not change when the weight matrix W is scaled by a positive constant.

b) What is the mean and standard deviation of the BN-normalized layer, if we initialize
B = 1,v = 0? Assume, we decided to apply BN after each linear layer. Has the
weight initialization from Assignment 1. still an effect for the forward pass? Why could
it nevertheless be important for training?

¢) Consider a network without BN. Let p5 and o be the statistics of layer output a =
Wz + b. We want to introduce a BN layer at this place so that it does not change the
network predictions. How shall we initialize 5 and ~?



Assignment 3 (Dropout, Bernoulli).

a) The dropout noise model can be reformulated for a more convenient implementation.
Consider the following Bernoulli noises:

. . (2)
0, with probability 1 — p

. {a, with probability p
What should be the value of a so that E[Z] = 1 holds? This will allow to avoid rescaling
of the weights at test time by just applying this noise at training time.

b) Randomized procedures for quantized gradients are sometimes used for a faster com-
munication in distributed systems (if we want to parallelise training).

Let the gradient g € R" be computed at the worker. The worker sends a quantized gradient
g € {0, 1}™ to the server, using only 1 bit per coordinate. The worker additionally sends
two real numbers a, b and the server reconstructs the gradient as ag + b. How to chose the
quantization procedure in a randomized way so that E[ag + b] = ¢ and hence we preserve
the guarantee of an unbiased (but more noisy) gradient estimate? Is the choice of a and b
that satisfy this assumption unique? How to choose a and b such that E[ag + b] = g and
the variance of ag + 0 is minimal?

Assignment 4 (SGD + L2). Consider a regularized loss function L(6) = L(6) + 3|0|>.
Let g be a stochastic gradient estimate of L at §. Notice that the regularization part of the
objective, 2||0||?, is known in a closed form and so its gradient g, is non-stochastic.

* Design an SGD algorithm that applies momentum (exponentially weighted averaging)
to g only but not to g,..

* Is it equivalent to an SGD with the momentum applied to both g and g, but possibly
with a different settings of A\, momentum and learning rate?



