
DEEP LEARNING (SS2022)
SEMINAR 5

Assignment 1 (Receptive fields). Consider a convolutional network consisting of convo-
lution layers and max-pooling layers. Each of them is characterised by a kernel size k`
and a stride s`. The receptive field of a neuron in layer ` is the bounding box of all nodes
in the input layer that can influence its output. Similarly, the stride of the receptive field
is defined as the translation between receptive fields of two neighbouring neurons in the
same layer. Knowing the receptive field size and stride of neurons in layer l − 1 and the
type and attributes of layer l, find the receptive field size and stride of neurons in layer l.
Note: This relation will be needed for the lab on CNN visualisation & adversarial patterns.

Assignment 2 (Trust Region Problem with Box Constraints, FGSM).
Let us consider a loss function L(θ) and denote its gradient at θt by gt = ∇θL(θt).

a) Solve the following trust region problem:

arg min
θ

[
L(θt) + 〈g, θ − θt〉

]
,

s.t. |θi − θti | ≤ ε ∀i

by using the technique of Lagrange multipliers.
Hint: Make a substitution of variables ∆θ = θ − θt. Square the constraints to make their
derivative simpler. Note that the Lagrange multipliers for inequality constraints must be
non-negative.

b) Show that the fast gradient sign attack described in the lecture solves a similar con-
strained optimization problem (formulate this problem).
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Assignment 3 (Proximal Problem with Regularization).
Consider the problem of minimizing the training loss of a neural network with a weight
regularization λ

2
‖θ‖2. The normal SGD makes steps by solving the proximal problem:

θt+1 := arg min
θ

[
〈gt + λθt, θ − θt〉+

1

ε
‖θ − θt‖2

]
, (1)

where θt is the current parameter vector, gt is the stochastic gradient of the training loss
at θt, λ is the regularization strength and ε is the learning rate.

a) Verify that the solution of the proximal step problem indeed leads to a common SGD
with a weight decay.

b) Since the weight regularization is known in closed form, we do not need to approximate
it linearly by computing its derivative. Derive an “improved” SGD algorithm that makes
steps by solving the composite proximal step problem:

θt+1 := arg min
θ

[
〈gt, θ − θt〉+ λ‖θ‖2 +

1

ε
‖θ − θt‖2

]
. (2)

c) Is the SGD in b) equivalent to SGD in a) with a possibly different choice of λ, ε?

Assignment 4 (BN with Weight Decay).
We discussed in the lecture that combining Batch Normalisation with weight decay regu-
larisation leads to an ill posed optimisation problem. Let us consider this in a simplified
scenario for a single neuron. Its output is given by y = wTx

‖w‖ , where x is the input. The

regularized loss function is given by L̃(w) = L(y(w)) + R(w), where R(w) = λ
2
‖w‖2

and λ > 0.

a) Compute the gradient of R(w) and show that a step towards decreasing it can be in-
terpreted as "weight decay". Suppose that w0 is optimal for the non-regularized loss L.
What will the gradient descent on L̃ do if started at w0?

b) Consider a point w0 on the unit sphere for which the gradient g = ∇wL(y(w0)) is non-
zero. Show that g is orthogonal to w0 and hence also to ∇wR(w0). Draw these vectors
and the sphere ‖w‖ = 1.

c) Let ‖g‖ = a and ‖∇wR(w0)‖ = λ at w0 with ‖w0‖ = 1. Consider a single step of
the gradient descent for L̃ with step length α > 0. Give a condition on α that ensures a
decreasing norm ‖w‖.
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