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� Weight initialisation

� Batch normalisation

� Data augmentation

� Transfer learning
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Weight initialisation

(1) Initialising all weights and biases with zero is not a good idea. Why?

Side step: symmetries and gradients:

Consider a scalar function f(w) that is invariant to the linear
mapping B : Rn→ Rn, i.e. f(Bw) = f(w). Its gradient ∇f has
the property

∇f(Bw) =B−T∇f(w),
which follows from

〈∇f(Bw), u〉 := lim
t↓0

f(Bw+ tu)−f(Bw)
t

!
=
〈
∇f(w), B−1u

〉
What happens if SGD is started from an invariant point w0=Bw0

and B−T =B holds?

B
[
w0−α∇f(w0)

]
= w0−α∇f(Bw0) = w0−α∇f(w0)

The new point w1 will be again invariant, i.e. Bw1 = w1.
We need to break the symmetry!

Invariance
w.r.t. permutations
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Weight initialisation

(2) Initialise all weights and biases randomly from a uniform (or normal) distribution.

� o.k. for shallow networks,

� not o.k. for deep networks!
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Left: node statistics for layers of a deep FFN with ReLU units, all weights initialised from a
normal distribution.
Middle and right: this can lead to vanishing/exploding gradients and “dead units” during
learning
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Weight initialisation

(3) Proper initialisation: Initialise weights/biases so that each neuron has activation
statistic (over the dataset) with certain mean and variance.
Example 1 (Glorot & Bengio, 2010). Analyse variance of neuron outputs and backprop
gradients under the following simplifying assumptions

� Tanh activation function f(x) in linear regime, i,e, f(x)≈ x

� Neuron outputs as well as gradient components are i.i.d.

Start from a single neuron y = wTx, x ∈ Rn. Assume

� xi are i.i.d. with E[xi] = 0 and V[xi] = χ

� wi are i.i.d. with E[wi] = 0 and V[wi] = ω

It follows that E[y] = 0 and V[y] = nωχ.
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Weight initialisation

Example 1 (cont.). Consider now a feedforward network with Tanh activation and
assumptions as above. For layer k with nk nodes, denote neuron outputs by xk and
gradients by ∇k. Denote the variance of weights in layer k by ωk.

� forward: V[xki ] = nk−1ωkV[xk−1j ]

We want V[xki ]≈ V[xk−1j ], i.e. nk−1ωk = 1.

� backward: V[∇ki ] = nk+1ωk+1V[∇k+1
j ]

We want V[∇ki ]≈ V[∇k+1
j ], i.e. nkωk = 1

� Compromise: Set ωk = 2
nk−1+nk

. Assuming that
the inputs x0 have zero mean and unit variance,
initialise the weights randomly by wkij ∼N (0,

√
ωk).

Similar considerations for ReLU activation lead to a different scheme (He et al., 2015)
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Batch normalisation

(Joffe & Szegedy, 2015) Motivation:
� Keep control over neuron activation statistics during training
� Alleviate the need of specialised initialisation variants
� Regularise learning & pre-condition gradients

Batch normalisation: Denote by B ⊂ T m a mini-batch of training examples and by ai the
activation of a network unit ai =

∑
jwijxj. Re-parametrise it (stochastically) by using its

statistic over mini-batches

µB = EB[ai] σ2
B = VB[ai]

âi =
ai−µB√
σ2
B+ε

ai← γâi+β ≡BNγ,β(ai)

� γi, βi are learnable parameters
� µB and σB have to be differentiated w.r.t. network parameters
� exponentially weighted averages of µB and σB are kept during training and used for
inference.
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Batch normalisation

Technical implementation of batch normalisation in PyTorch: A layer BatchNorm1d that
� takes a tensor x with dimension [batchsize, channels] on input and returns a
tensor y with same dimension on output,

� has learnable parameters γ and β for each channel (init: γ = 1, β = 0)
� keeps running averages of the batch statistic µB and σB for each channel,
� depending on its state (train, eval) uses either the batch statistics or the saved
running averages to compute its outputs.

For convolutional networks: use the layer BatchNorm2d, which computes statistics over
batchsize and spatial dimensions.

Batch normalisation:
� alleviates the need of special weight initialisation since it implements the scheme (3)
discussed above for the first mini batch,

� the neuron outputs for a particular training example depend on the outputs of the other
examples in the mini-batch, which in turn is stochastic.

� can be seen as stochastic re-parametrisation of weights and gradient preconditioning

w→ γ
w

σB
b→ γ

(b−µB)
σB

+β
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Data augmentation

Goals of data augmentation:

� Artificially enlarge the training set – an attempt to bound the generalisation error
(i.e. prevent overfitting).

� Enforce invariance of the predictor w.r.t. certain transformations of the input space.

Technically: online augmentation generates new data on the fly, whereas offline
augmentation stores augmented datasets.

We discuss it here in context of image processing (classification, segmentation . . . )

(Image) data augmentation: Create new images from a single training image

� geometric transformations: flip, crop, rotate, non-linear transformations,. . .

� photometric transformations: color space transformations, histogram changes,. . .

� kernel transforms: sharpening, blurring,. . .

� noise: pixel-wise independent noise, jitter, random erasing,. . .
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Data augmentation

Available libraries & methods: Augmentor, Albumentations, DeepAugment, GAN based style
transfer, ...

http://cmp.felk.cvut.cz


10/11
Transfer Learning: pre-training & fine-tuning

Transfer learning: pre-training + fine-tuning

� You want to train a predictor for a complex recognition task, but suffer from lack of
training data.

� A predictor for a different task has been successfully trained on a large dataset.

� The domains of the two tasks are similar.

We can use the following approach

� Use the first layers of the network that implements the predictor for the other task.

� Add your layers on top

� Learn the network on your data, if necessary apply early stopping to prevent overfitting.
This can be done in two ways

(1) freeze the parameters of the transferred layers

(2) fine-tuning: learn parameters of all layers
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Transfer Learning: pre-training & fine-tuning

Example 2 (Yosinski et al., NIPS 2014). Randomly split the 1000 Image-Net classes into
two groups with 500 classes: datasets A and B. Learn BnB, BnB+, AnB and AnB+

networks. Here: letters indicate the task of the pre-trained/transfer network, n is the layer
number and + indicate the fine-tuning variant.

blue: BnB, BnB+ red: AnB, AnB+
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