Deep Learning (BEV033DLE)
Lecture 9 Adversarial examples & robust learning

Czech Technical University in Prague

® Adversarial examples
€ Adversarial attacks

¢ Robust learning
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Adversarial examples

A purely discriminatively learned predictor has by itself no notion of the underlying data
distribution.

¢ Consider a linear classifier shown to the right. The outlier
point is classified in the same way as inlier points.

¢ Consider an age predictor trained on face images. What
happens if it is presented an image of an amoeba?

outlier

However, we expect that a deep network predictor trained to classify images with high
accuracy, will predict correct classes for distorted images, provided that the distortions are

visually imperceptible.

Unfortunately, this is not true!
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Given a clean image x, compute the gradient of the loss w.r.t. x and add a small,
imperceptible distortion in this direction

+.007 x

I =

T sign{‘?z.![ﬂ,:n. y}] Esign(‘?m..f(ﬂ,m,y])
“panda™ “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Given a clean image and a “nonsense” target, find the smallest distortion of x such that the
network will predict this target

Adding targeted but imperceptible distortions fools networks completely. Unfortunately, this
holds across network architectures, training sets and tasks.
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What are adversarial examples? Simplified illustration:

Left to right: training data, classifiers with different susceptibility to adversarial examples

Side step: Gheiros et al., ICLR 2019, CNNs trained on ImageNet are strongly biased towards
recognising textures rather than shapes.

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% 1Indian elephant 71.1% tabby cat 63.9% Indian elephant
103% indri 17.3% grey fox 264% indri

8.2% black swan 3.3% Siamese cat 9.6% black swan
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(Szegedy et al. 2013) Consider the context of classification networks and denote by ¢(x,y)
the network loss for predicting class y for the input . E.g.

((z,y) = —logp(y | ¥) = —ay(x)+log » e,
k

where a(x) denotes the activations of the last linear layer of the network.
Fast gradient sign attack: (FGSM)

Compute the gradient of the loss for the true class y;4e and distort the input by

T=ux+ 8sign(Vx€(:U, ytrue))
with some small €. lterative variant of FGSM

:1;; = Ti_1+ &Sigﬂ<vx€(xt—laytrue))
Lt = P(iU;),

where P projects x into a specified domain, e.g. [0,1]™.
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Adversarial attacks

Targeted attack:

Given x and the true class ¥y, choose a target class, e.g. Yiarg = argmin, p(y|z) and set

T =71 — €Sign(vx€(:€7 ytaﬂ“g))

lterative variant

x; = x;_1 — asign (fo(fb“t—l, ytarg))

x; = P(x})
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Adversarial attacks

Meanwhile there exists an array of different adversarial attacks with “dimensions”:
¢ targeted, untargeted
¢ access to architecture + weights (white box), architecture (grey box), oracle (black box)
¢ gradient based, score based, decision based

Adversarial attacks can take quite creative and strange forms: Query a database without
revealing your query image: Tolias et al., ICCV 2019

| —.

Similar descriptors
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(Kurakin, et al. 2017) Regularise loss by adversarial terms.

(m_]; yy [Z U(zi,y:) + A Z E(fﬂgdvyyz‘)}

'LEBC ]EBG,

L(B) =

read a mini-batch B, = {(x1,y1),---,(l’m,ym)}'

generate k adversarial examples B, = {(z{%,y1),..., (%%, yx) } from k randomly

chosen clean examples,

compose a new mini-batch B = B,UB. and do one training step
improves robustness against one-step attacks,

less successful w.r.t. iterative attacks,

“label leaking effect”: accuracy on adversarial examples can become higher than
accuracy on clean examples.
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(Madry et al. ICLR 2018) A more principled approach: augment ERM in an universal way.

Let B, denote the [, ball with radius € centered at 0. Consider the following learning task

R(w) =E; y~D max K(w,az—|—5,y)} o mui)n

This is a minimax task.

Analysis the inner maximisation task:
¢ has many equally good maxima,
® can be solved by projected gradient ascent w.r.t. §

©® maximum reached after moderate number of iterations.
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R(w) =E; y~D max E(w,x—l—é,y)} — mui}n

How to minimise w.r.t. the model parameters w?

Convex analysis: What are descent directions for a function f(w) defined by
f(w) = maxg;(w)

at a point wy? If g-s are convex and differentiable:
(1) denote by I(wy) the set of functions g; that are “active” in wy, i.e. g;(wy) = f(wy).

(2) Any of the negative gradients —Vg;(wy), © € I(wy) is a descent direction of f(w) at wy,
provided that the vector 0 is not in their convex hull.

All together a training step reads
® read a mini-batch B = {(a:l,yl),...,(a:m,ym)}
® solve the inner maximisation task for each example x; and replace it by x?d"’ —x;+0;

# do a subgradient step for the modified mini-batch B, = {(z{%,v1),..., (2%, ypm,) }



http://cmp.felk.cvut.cz

Sl o
Adversarially robust learning @
11/11

Adversarially robust learning is an ongoing research area. Interesting directions to follow:

¢ Maximum margin learning approaches e.g. Elsayed et al., NeurlPS 2018), Ding et al.,
ICLR 2020 try to generalise max-margin approaches from SVM to Deep networks,

¢ Stochastic neural networks with entropy regularisers or variants of Bayesian inference,

(Wu et al., 2019):

“This stylish pullover is a great way to stay warm this winter, whether in the office or
on-the-go. It features a stay-dry microfleece lining, a modern fit, and adversarial patterns
the evade most common object detectors”
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