Deep Learning (BEV033DLE)
Lecture 8
Adaptive SGD Methods

Czech Technical University in Prague

4 Geometry of Neural Network Loss Surfaces

® [ocal minima and saddle points in nD

e Parameter redundancy helps optimization

4 Understanding Adaptive Methods
e Proximal Problems, Convex vs non-convex, Stochastic optimization
e Adam, RMSprop, Adargad

4 Changing the Space Metric

e Change of Coordinates, Preconditioning, Equivalent reparameterizations, Constraints

Local Minima @

4 There are several reasons for local minima 3

e Symmetries (Permutation invariances)

- Fully connected layer with n hidden units:

n! permutations

- Convolutional layer with ¢ channels:

c! permutations

- In a deep network many equivalent local minima, ; . A
. 1 A L\
but all of them are equally good -- no need to avoid -
e Loss function is a sum of many non-convex terms: LA
M ~
L(O) = Iy f(x::0)) LT e

-4 ’,_, 4"4
. X -6 -6
1 \ :

often convex non-linear

Stationary Points in High Dimensions @ o

1D 2D

local max saddle point

local min

- local min in one dimension

- it is still possible to descend in other dimension

- but can be getting stuck

nD

Let f(x+Az) =~ f(x)+ JAx+Ax' HAx,

where H has eigenvalues Aq,... A,.

Important characteristic (index): o — the fraction of negative eigenvalues.
A point x is

A Stationary if the gradient at x is zero

A Saddle: if it is stationary and 0 < a < 1

A Local minnimum: if it is stationary and o = 0.

Stationary Points in High Dimensions @

5
4 Insights from Theoretical Physics --- Gaussian Fields:
¢ |ocal minima are exponentially more rare than saddle points
e they become likely at lower energies (loss values)
fraction of negative ¢ 5
eigenvalues o~ W2 |E—E" 2
37 | E*
///“
/
/
//
E—FE*

average energy of st. point

[Bray & Dean (2007) The statistics of critical points of Gaussian fields on large-dimensional spaces]

Stationary Points in High Dimensions @

4 Experimental Confirmations in Neural Networks 6
30 ,
" S | MNIST ¢
o ¢ _ #parameters Y20 AN
0.25/ H#samples O
5 10
0.20 ** 0=23 c .‘
. ¢ =172 If_g 0,’." |
0.15| ¢ j/i 0.00 0.12 0.25
:$;1f8 Index of critical point «
0.10/ ¢ =1/16
" 260 CIFAR-10 8
0.09 . - ~ . ‘ 555, o° |
. 5 50- 'J ..‘ |
[Pennington & Bahri 2017] s jg'ﬂ' ‘
0.05 0.10 0.15 0.20
e 1 hidden |ayer Index of critical point «
e« good agreement for small alpha (as expected) [Dauphin et. al. 2017]

[Pennington & Bahri (2017) Geometry of Neural Network Loss Surfaces via Random Matrix Theory]
[Dauphin et. al. (2017) Identifying and attacking the saddle point problem in high-dimensional non-

convex optimization]

High Dimensionality Helps Optimization @

Achieve 0 training error
with sufficiently large networks Histogram of SGD trials (MNIST)
0.7r S ‘
—Training
0.6\ —Test (at convergence) 60 -
0.5¢ \ nhidden
40- ’ 25

§0_4,] _,g, ”
Wo3 8 .;gg

0.2 f 20- 500

0.1

l 1

4 8 16 32 64 128 256 512 1K 2K 4K . . .
Hidden Units 0.08 loss 0.09 o-10

[Neyshabur (2015)] [Choromanska et al. (2015):

The Loss Surfaces of Multilayer Networks]
4 Summary:

e Local minima are rare and appear to be good enough
(note, we just waved an NP-hard non-convex optimization problem)

e But we need (highly) overparametrized models to have this easy training
e We hope that overparametrized models will still generalize well

e Maybe, optimization should worry a bit about efficiency around saddle points

Adaptive Methods

Gradient Descent under Reparameterization

¢ Basic Example
e Want to minimize f(x)
By gradient descent: x'™! = 2! — o f’(2?), starting from z"
e Make a change of variables: y =2«
0 = 240
9(y) = f(y/2)
9'(y) =1/2f"(y/2) =1/2f(z)

e Perform gradient descent on g:

y =y —ag'(y)

e Express back in x:
t+1 _ ot 1 t
20" =2z — a5 f'(x")
t+1 _ ot 1 t
o' =2 —agf(z").
¢ Substitution preserved the forward pass (equivalent initialization, same output)
¢ Substitution resulted in a different gradient

¢ We have many parameters, whose scales are chosen by architecture design and
initialization

Need for Adaptive Methods @

4 In deep models we have:

- different kinds of parameters: weights, biases, normalization parameters

- located in different layers

e Some parameters may be more sensitive than other

e Some directions in the parameter space may be more sensitive (e.g. due to high

curvature)
4 Gradient Step Depends on the Choice of Coordinates

e |t is not necessarily the best direction for a step

4 Many adaptive methods have emerged:

RMSProp PAdam AdamHD
Adagrad NAdam AmsGrad
Adam AdamW AdaDelta
BAdam AdamX Yogi
VAdam Adamax

Common Adaptive Methods @

11
¢ Adagrad: ¢ RMSProp: ¢ Adam:
9t+1a73 — 975,?3 — = 9. 9t+1,z’ — et,i — & It Ht+1,i = 975,7; — € WA, (gl:t’i)
x/f\/lvlean (éit,z—) \/EWA (g%zt,i) \/EWAB2 (g%zt’i)

e All updates work per coordinate 7 independently
® g1+, denotes the sequence of all past gradients
e They are adaptive because each coordinate is rescaled differently

e Mostly differ in the running averages used

4+ While they do work better for functions with valleys,
explaining them as second order methods has quite some gaps

4 This lecture:

e consider some general useful optimization ideas

e that (hopefully) will provide insights for this design as well

Proximal Problem and Trust Region Problem @

12

¢ Let's revisit how do we find the step Ax for SGD
e Approximate: f(xo+ Ax)~ f(xg)+ JAx. This approximation is local.

¢ Find the step by solving Proximal Problem:

min (f(:l:o) + JA:C) —I—%HA:UH%

Ax
Ar=—aJ'
¢ Alternatively, find the step by solving Trust Region Problem:

min (f(zo) + JAz)

[Az||2<e

Equivalent to:

max min (JAa; +)\(HAQSH% — 52))
A>0 Ax

Step direction: Az = —%JT

/Trust region ||Az| <e
Az =e* = A= 5|l |2 ~— "1

.
Trust region step: Ax = —€H‘§H2

4 We can choose the metric / trust region differently from Euclidean

Differences of Convex vs. Non-Convex @ o

Why to step proportional to the gradient: Why to normalize: 13

Convex Non-Convex

accelerate here

\\\../ be careful here

® No other stationary points than global ¢ Gradient carries no global information
minima e Need bigger steps where gradient and
¢ The further we are from the optimum, curvature are low
the larger is the gradient: du >0 e Need smaller steps when gradient and
o |[Vf(x)||*>pu(f(x)—f*) curvature are high
o |Vf(z)|>plz—2ar ¢ Makes sense to use trust region steps:
® Negative gradient points towards the) Aa::—%
optimum: e |f the trust region is ok, should guarantee
o (—Vfx*—z)>f—f"+illz—a*]? a steady progress

e Optimization need not be monotone in f

Box Trust Regions @

="

Trust region ||z]|cc <€
> T

¢ This time solve for step as:

e min (f(x)+JAx)

| Az;|[<e Vi

(In overparametrized models expect many parameters to have independent effect)

e Equivalent to:

maxmin (JAQC +> Ai([| Az ||* — 52))

A>0 Ax
2)\1sz — —Ji
Step direction: Az; = —2§i(Vf(at))7;

Trust region step: Az; = —elggﬁggfl

14

Non-Convex Stochastic @

® Trust region steps: Ax = —5”gﬁgn =

¢ Problem: breaks in the stochastic setting

¢ Example
f(x) = (—3x)+ (x)+ (x+1), chose 1 summand at a time with equal probability
- N Slope 1

will move in the wrong direction! Slope -3

\szl

If we normalize stochastic gradients,

4 Want the steps to follow the descent direction on average
e (Cannot adjust the stochastic gradient “too much nonlinearly”

® This example was used to show that Adam may fail to converge to a stationary point and
motivate theoretical improvements

Non-Convex Stochastic @

16
¢ Practical Solution: approximate expectations with running averages:
_ _ ~ EV/f]
AT = —ETERT]

Also note that ||[E[Vf]|| = /(E[Vf])2 <V (E[(VS)?])

— may be interpreted as a more robust setting

¢ Adagrad: ¢ RMSProp: ¢ Adam:

~

gt.i gt.i

EWAg, (gl:t,z’)

9t+1,7; = 975,7; —¢&

_ 3 _
9t+1,z‘ — 9t,z' — 9t+1,z‘ — 91&,7; —c
Mean (glzt,i) EWA (gl:t,z’)

Jewns, (3,)

e In Adagrad:

\/i% guarantees convergence. Other methods would also need this in theory but are
typically presented and used with constant ¢

The flat average appears not very practical
e In Adam:
EWA with £8; = 0.9 works as common momentum (20 batches averaging)

EWA with 85 =0.999 (2000 batches averaging) makes the normalization smooth
enough

Changing the Metric

General Change of Coordinates

¢ Consider the simple gradient descent for a function f: R"” — R:

e min f(z)

® I 1 =1T4— onJI(aj)
¢ Make a substitution: z = Ay (change of coordinate) and write GD in y:
e min f(Ay)

yeR”™
® Yt+1 = Yt — @ATJJI(A%)
¢ Substitute back y = A" 'z
o A7ty 1 = Aty — ozATJ}r(xt)
e Obtained preconditioned GD: z;,; =z, — a(AA")J; (z)
o P=AA" — positive semidefinite
e PV f(x)—is a descent direction

1 =Y Y2

i o

x2 A

=x1

¢ Similar for non-linear change of coordinates, e.g. normalization

:yl

18

Mahalanobis Metric @

19

¢ Adjust the proximal problem for sensitivity in different parameters:
o an%jn (f(xo) + JA:I:) + 5| Az s
o |[Az|y = (AxTMA:z:)% — Mahalanobis distance
Optimal step: Az = —5:M 'V f(z) Tt

e

Adjusted trust region

|zl <e

4 Equivalent to change of coordinates/ preconditioning
e More intuitive, when setting M for each step differently
o If we set M to (approximate) Hessian — Newton Methods

e (Can set M using statistics of gradient oscillations (directions in which the gradient
changes fast need a slower learning rate), e.g.

Adagrad: M = Diag(\/Mean(g%zt))

Mirror Descent

¢ Mirror Descent (MD)
e General step proximal problem:
m:gn(Vf(xo),x —x0) + AD(x,)
where D is Bregman divergence. Properties:
D(x,xy) >0
D(x,xo) =0 iff x = x
D(x,x) is convex in x
e We will consider algorithms using unnormalized steps (not solving for).
e Generalizes cases considered so far:
D = ||x — xy||* — (steepest) SGD

D = ||z — xy||3; — preconditioned SGD

20

Implicit Regularization by SGD / SMD

. . : 21
¢ Consider step proximal problem: min(V f(xg),x — xo) + Al|z — 20/}
XT
e i.e., p-norm stochastic mirror descent
® Using different p leads to solutions with different properties
. . wo 300000 1 l 1 :
Initial point mmm [1-norm
,',’,' \ 250000 B 12-norm
/,’ . \ B 13-norm
R | \ 200000 @ 110-norm
o I,’ ’,' \ 2150000
l,' N 100000
' Manifold of 50000
Woc wSMD—l10 optimal solutions
> 8.00 0.01 0.02 0.03 0.04 0.05

Absolute Value of Weights

e Different sparsity and generalization

e lterates tend to argmin, c ||w —wyl|Z,

the closest point in the respective norm a §
§
" SMD I-norm SMD 2-norm (SGD) SMD 3-norm SMD 10-norm 3 p= 10
1-norm BD 141 9.19 x 10° 4.1 x 10* 2.34 x 10° = % o Y
2-norm BD 3.15 x 10° 562 1.24 x 103 6.89 x 10° = : $ p = 3
3-norm BD 4.31 x 10* 107 53.5 1.85 x 102 > 8 Gl
10-norm BD 6.83 x 10" 972 791 x107° 2.72x107° 7 92 D=)
[
- - . o p=1
[Azizan et al. (2019) Stochastic Mirror Descent on Overparameterized o
Nonlinear Models: Convergence, Implicit Regularization, and Generalization] g
an 1 L - 1

Path-SGD ®

4 In ReLU networks we can rescale the weights without affecting the output: 22
e RelLU units are I-homogenous: C)@\ @
for s > 0: ReLU(sx) = max(0,sx) = smax(0,x)

e Can rescale inputs and outputs of each unit Q ‘@%_,

(channels in conv networks)
f(Ay) = f(y), but Jy(Ay) # Jr(y) <

4 Can lead to completely different SGD behavior

©
—0©

—0©
N
(4)]

Jm 4100 A~100 —Balanced
é é 2 —Unbalanced||
VQ | f 60 Y Q
Re:C\alng Update o 15
11 ~ 104 A~10? B
U u u éﬁ 8 1
A 100 ~100 0.5L
! ! :
0 100 200 300
Epoch
(a) Training on MNIST
4 Path-SGD considers metric invariant to equivalent transformations.
2
. . /P
Prox. problem: argrrgn 77<VL(w(t)),w>—|— Z (H We, — Hw(t))
k=1

vm[z’]gvlzvz...@)vout[ﬂ
[Neyshabur et al. (2015) Path-SGD: Path-Normalized Optimization in Deep Neural Networks]

Constrained Optimization with Mirror Descent

Let us use a proximal problem with an appropriate trust region

Mirror Descent (MD)

e Use step proximal problem: mggn(Vf(xo),a;—a:()) +AD(z,x)
with a suitable divergence D
(recall previous choices D = ||z — xo||?, D = ||x — zo||5,)

e Very elegant solutions in simple cases

Example: constrained parameter x > 0 1.2
D(z,x0) = xlog ;- — 2+ xo (Generalized KL divergence)
Update: logzss1 = logay — +Va f ()

Note: gradient in x is added to logx

Can implement as:

Y1 =Yt — 5 Vaf(z¢)

23

Constrained Optimization with Mirror Descent

4 Let us use a proximal problem with an appropriate trust region

¢ Mirror Descent (MD)
e Use step proximal problem: mg}n{Vf(a:o),a;—a:()) +AD(z,x)
with a suitable divergence D
(recall previous choices D = ||z — xo||?, D = ||x — zo||5,)

e Very elegant solutions in simple cases

¢ Constraint x € (0,1)

D(z,z9) = xlog L + (1 — x)log =% (KL divergence
oy |

1—x

Vi1 = Yo — Vo f () —

Lt4+1 = S(yt—i—l) — 1+€}yt+1

24

