Problem solving by search

Tomas Svoboda and Maté&j Hoffmann

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

May 23, 2022

Notes

1/34

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

Outline

Search problem.

State space graphs.

Search trees.

Strategies: which tree branches to choose?
Strategy/Algorithm properties.

Programming infrastructure.

2/34
Notes

Example: Traveling in Romania
[]Oradea

92
g9 Fagaras

[JVaslui

[JHirsova

86
Dobreta]

Eforie

3/34

Notes

Ok, start with a simple one, almost everybody knows about the navigation - path planning problem. Waze,
Garmin, ...

Can you think about more problems?

For example:

e Touring problems. Special case: Traveling salesperson problem — each city must be visited exactly once.
e Planning robot movements — mobile robot or manipulator.
e VLSI (chip) layout.

Example: Map of Romania

Goal:
be in Bucharest
Problem formulation:
states: position in a city (cities) o Fegaras -
actions: drive between cities
Solution:
Sequence of cities (path)
(action sequence [2])

92
Sibiu
]

[JHirsova

Dobreta]

Eforie

4/34
Notes

Classical problem from the Book [2], we use it, too.

states and actions will be frequently discussed in several lectures and algorithms. It is important to fully

understand them.

Example: The 8-puzzle

7 2 4
5 6
8 3 1
Start State

states?

actions?

solution?

cost?

1 2

4 5

7 8
Goal State

5/34

Notes
Also known as n — 1 puzzle.

e States: Location of each of the 8 tiles and the blank.

e Number of states: 9!

e Initial state: any state. (Note that any given goal state can be reached from exactly half of the initial

states.)

e Actions: Movements of the blank space: Left, Right, Up, Down (or a subset of these)

e Solution / goal test: Check whether state matches the goal configuration.

e Path cost: nr. steps in the path (each step costs 1)

Toy problem (3.2.1) from [2].

Example: Vacuum cleaner

0

=)
’% L
- s

states?
actions?
solution?

cost?
6/34

Notes

e States: Determined by agent location and dirt location. The agent is in one of two locations, each of
which may or may not contain dirt.

e Number of states: 2 x 2° (two possible choices for agent location; for every location, choice dirt vs. no
dirt). For n locations: n x 2"

e |nitial state: any state
e Actions: Left, Right, Suck (larger envs. can have also Up and Down)
e Solution / goal test: Are all squares clean?

e Path cost: nr. steps in the path (each step costs 1)

Toy problem (3.2.1) from [2].

A Search Problem

State space (including Start/Initial state): position, board configuration,
Actions : drive to, Up, Down, Left ...

Transition model : Given state and action return state (and cost)

vvyyVvVyy

Goal test : Are we done?

7/34
Notes

We will use the terminology throught the next 5-6 lectures; also for Markov (Sequential) Decision Processes,
Reinforcement Learning.

Make a mental test: You are a robot, going from home to school. What would be states, actions, transition

model, goal test?

State Space Graphs

State space graph: a representation of a search problem

» Graph Nodes — states — are abstracted world

configurations

» Goal test — a set of goal nodes

Each state occurs only once in a state (search) space.

> Arcs represent action results ’e @

8/34
Notes

Formalizing a real world problem — (creating) a state space graph — could be a problem in itself. | put creating
into brackets as it may be also infinite.
Close connection to graph algorithms like Dijkstra, Floyd-Warshall.

Graph algorithms assume complete info about the graphs - the main input.
For many real-world problems, the graph is not known in advance.

The state space graph is revealed during the search. The graph serves as an abstraction - mental model -
rather than as an actual data representation.

Many real world problems have too many vertices, think about n — 1 puzzle or chess, number of possible
configurations is enormous.

A solution can be actually quite shallow.

Search Trees

(s)
e @ ’Possible futures‘

> A “what if" tree of plans and their outcomes
» Start node is the root
» Children are successors

» Nodes show/contains states, but correspond to plans that achieve those states

9/34

Notes

e What if decision about an action, repeats ...

e Nodes in the search tree are not the same as the nodes in the state space graph.

State Space Graphs vs. Search Trees

(SHHD
OpC) : :e
@) o[0lC e

How big is the search tree?

10/34

Notes

e 'S’ denotes Start; 'G’' denotes Goal.
e There could be multiple search trees above one state space, depending on the algorithm.

e When going through the unfolding of the search tree (on the right), one may already introduce that there
are leaf nodes at the frontier; one of them always gets expanded.

e A search tree can be much bigger than the state space. (E.g., states 'S’, 'a’,... appear more than once in
the search tree...)

e Note also that search does not have stop when 'G’ is reached for the first time. We may need the shortest
path...

e These properties will be discussed next.

From problem /transition graph to search tree (Romania)

(a) The initial state

Csibin > Climisour Cerind >

(c) After expanding Sibiu

Dobreta [

Problem /transition graph is revealed incrementally.
The revealing strategy can be visualized as a search tree.

11/34
Notes

Images from [2].

Search elements - unvisited, dead, alive states

(c) After expanding Sibiu

Rimnicu Vilcea

» Expand plans - possible ways (tree nodes).
» Manage/Maintain fringe (or frontier) of plans under consideration.

» Expand new nodes wisely(?).

12/34
Notes

Tree search algorithm

(c) After expanding Sibiu

function TREE_SEARCH(problem) return a solution or failure
initialize by using the initial state of the problem
loop
if no candidates for expansion then return failure
else choose a leaf node for expansion

end if

if the node contains a goal state then return the solution

end if

Expand the node and add the resulting nodes to the tree
end loop

end function

13/34

Notes

A general tree search algorithm. Individual search algorithms vary primarily in how they choose which state to

expand next — the “search strategy”.

Example of a tree search

000 ©
- ® ©
20

® (@)
(b)
Ol0,

©

Which nodes to explore?
What are the properties of a strategy/algorithm?

14/34

Notes
Before going to the next slide, think about algorithms. What properties of an algorithm would you want?

Search (algorithm) properties

» Guaranteed to find a solution (if exists)? Complete?

» Guaranteed to find the least cost path? Optimal?

» How many steps - an operation with a node? Time complexity?
» How many nodes to remember? Space/Memory complexity?

How many nodes in a (search) tree? What are tree parameters?

15/34

Notes
Draw a (symbolic—think about a triangle) sketch of a (search) tree. It may grow upwards or downwards. How
would you characterize/parametrize size of a tree.

1 node
e Depth of the tree d.

b nodes
e Max-Depth of the tree m. Can be .

b? nodes

0.

e Branching factor b.
e s denotes the shallowest Goal.
e How many nodes in the whole tree? b* nodes

b™ nodes

Strategies

How to traverse/build a search tree?

1 nod
» Depth of the tree d. node
b nod
» Max-Depth of the tree m. Can nodes
b b? nodes
e o0.
» Branching factor b.
» s denotes the shallowest Goal

» How many nodes in the whole
tree?

b® nodes

b™ nodes

16/34

Notes
It is perhaps worth to remember that the search tree is built as the algorithm goes. Or better said, the tree is a

human friendly representation of the machine run.

Depth-First Search (DFS)

0200,
\
UG eoe 0
OAC) 000 OaE-
®

What are the DFS properties (complete, optimal, time, space)?

17/34

Notes

e |n animation, we will do the expansion step at once.

Expanded (explored) nodes become darker gray.

e frontier - set of nodes are light gray.

When to stop the search?

Thinking about optimality, what is the best solution we seek?

DFS properties

b, m,s, Time complexity?

> Time complexity? A O(bm)
» Space complexity? B O(b™)
» Complete? C O(mb)
» Optimal? D

18/34

Notes

e Time, can process the whole tree: b™

e Space, only the path so far: bm (a path from root to leaf (m), plus siblings on the path are also on the
frontier (b x m))

e Completness: m may be co hence, not in general

e Optimality: No! It just takes the first solution found.

1 node

b nodes

b? nodes

b® nodes

m

b™ nodes

DFS properties

b, m, s, Space complexity?

> Time complexity? A O(bm)
» Space complexity? B O(b™)
» Complete? C O(mb)
» Optimal? D

19/34

Notes

e Time, can process the whole tree: b™

e Space, only the path so far: bm (a path from root to leaf (m), plus siblings on the path are also on the
frontier (b x m))

e Completness: m may be co hence, not in general

e Optimality: No! It just takes the first solution found.

1 node

b nodes

b? nodes

b® nodes

m

b™ nodes

Breadth-First Search (BFS)

DRORC P

OROR 2
D (@ OO ®

What are the BFS properties?

Notes

BFS properties

b, m,s, Time complexity?

> Time complexity? A O(bm)
» Space complexity? B O(b™)
» Complete? C O(mb)
» Optimal? D O(b°%)

21/34

Notes

e Time, can process the whole tree until s: b°, well actually b+ b> + b> + - - - + b° but the last layer vastly
dominates. Try some calculations for various b.

e Space, all the frontier: b*

e Completness: Yes!

Optimality, it does not miss the shallowest solution, hence if all the transition costs are 1: Yes!

1 node

b nodes

b? nodes

b® nodes

m

b™ nodes

BFS properties

b, m, s, Space complexity?

> Time complexity? A O(bm)
» Space complexity? B O(b™)
» Complete? C O(mb)
» Optimal? D O(b°%)

22/34

Notes

e Time, can process the whole tree until s: b°, well actually b+ b> + b> + - - - + b° but the last layer vastly
dominates. Try some calculations for various b.

e Space, all the frontier: b*

e Completness: Yes!

Optimality, it does not miss the shallowest solution, hence if all the transition costs are 1: Yes!

1 node

b nodes

b? nodes

b® nodes

m

b™ nodes

DFS vs BFS

What are (dis)advantages of the individual strategies?

% @%@ Y Sedte %
GG @

23/34

Notes
What is the impression from the animation? BFS seems better.

e However, let's not jump to conclusions!
e Draw for yourself a different graph and contruct appropriate trees.
e Not everything is visible from the animations.

e Draw a comparison table.

Complete Optimal | Time Space
DFS | N (Y if no cycles) N O(b™) | O(mb)
BFS Y Y o(b™) | O(b™)

e Exponential complexity is scary.

e Practically, space complexity is even more critical. It is not about “waiting longer” but “memory
overflow” ... (and freezing the machine)

e This motivates the algorithm modification we look at next.

DFS with limited depth, maxdepth=2

Do not follow nodes with depth > maxdepth

24 /34
Notes

e Remedy to DFS failing in infinite state spaces.

e Supplying a predetermined max depth — nodes at this depth are treated as if they had no successors.

e However, an additional source of algorithm incompleteness. Solution can obviously be deeper than
maxdepth — unless we know something about the problem. Think about our map of Romania. There are
20 cities. Hence, maxdepth = 19 is a possible choice. Taking a closer look, any city can be reached from
any other city in max. 9 steps (state space diameter), giving a more strict and hence better limit.

lterative deepening DFS (ID-DFS)

» Start with maxdepth = 1

» Perform DFS with limited depth. Report success or failure.

> If failure, forget everything, increase maxdepth and repeat DFS
Is it not a terrible waste to forget everything between steps?

25 /34

Notes

Really, how much do we repeat/waste? The “upper levels”, close to the root, are repeated many times. However,

in a tree, most nodes are the bottom levels and nr. nodes traversed is what counts. More specifically, for a

solution at depth s, the nodes on the bottm level are generated only once, those on the next-to-bottom level 2x
.. children of the root are generated sx. Compare the number of nodes generated ID-DFS vs. BFS:

N(ID-DFS) = (s)b+ (s — 1)b* + (s = 2)b> + - -- 4 (1)b°

N(BFS) = b+ b+ b>+ -+ b°

Try some calculations for various s and b. For b =10 and d = 5:
N(ID-DFS) = 50 + 400 + 3000 + 20000 + 100000 = 123450

N(BFS) = 10+ 100 + 1000 + 10000 + 100000 = 111110

(Example from [2].)

Cost sensitive search

oo
@1@ 0
9@

Soc6n 6

» In BFS, DFS, node +depth was the node-value.
» How was the depth actually computed?

» How to evaluate nodes with path cost?

26 /34
Notes

Uniform Cost Search (UCS)
1.5
20 /’\
by @
@ (2 @
CONNNC

When to check the goal (and stop) the search? When visiting or expanding the node?

27 /34

Notes
Simple extension of BFS. Instead of expanding shallowest node, the node with smallest path cost so far is
expanded.
Two differences:

e Goal test applied to a node when selected for expansion — not when first generated. (First goal generated
may be on a suboptimal path.)

e Test is added in case a better path is found to a node currently on the frontier.

When to stop, when visiting or expanding?

G
@;&%}1.2??
OO,

28/34

Notes

UCS properties

» Time complexity?
» Space complexity?
» Complete?
» Optimal?

29/34

Notes
Solution cost C*, transition cost at least e. Effective depth, roughly C*/e.

e Time: bC/¢
e Space: pC" /e
e Completness: Yes!

e Optimality: Yes! Why?
1 node

b nodes

b? nodes

b® nodes

m

b™ nodes

Example: Graph with costs

30/34

Notes

Try it on paper, mark which nodes are in frontier, mark lines of equal cost.

Infrastructure for (tree) search algorithms

What should a tree node n know?
> n.state
> n.parent
> n.pathcost

Perhaps we may add something later, if needed ...

31/34
Notes

How to organize nodes?

The Python examples are just suggestions, ...
» A dynamically linked structure (1ist()).
» Add a node (list.insert(node)).
» Take a node and remove from the structure (node=list.popQ)).

» Check the Python modules heapq' and queue? for inspiration.

https://docs.python.org/3.5/library/heapq.html

2https: //docs.python.org/3.5/library /queue.html
32/34

Notes

Very likely, you discussed heapq and queue in some programming, algorithms or data structures related courses.

https://docs.python.org/3.5/library/heapq.html
https://docs.python.org/3.5/library/queue.html

What is the solution?

> We stop when Goal is reached.

» How do we construct the path?

33/34
Notes

References, further reading

Some figures if from [2]. Chapter 2 in [1] provides a compact/dense intro into search
algorithms.

[1] Steven M. LaValle.
Planning Algorithms.
Cambridge, 1st edition, 2006.
Online version available at: http://planning.cs.uiuc.edu.

[2] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

34/34
Notes

http://planning.cs.uiuc.edu
http://aima.cs.berkeley.edu/

	Introduction
	Search problem
	State space graphs
	Search Trees
	State Graphs vs. Search Trees

	Search strategies
	DFS
	BFS
	Limited depth
	Search with costs
	When to stop the search?

	Programming search
	References

