Consider problem of classification into three classes and a 2D space of signs $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}$. Foe each class we have following data (transposition will be left out for simplified notation, but all vectors are implicitly in columns.

A: $\mathcal{T}=\{[-1,-0.5],[2,0.0]\}$
B: $\mathcal{T}=\{[3,0.0],[5,3.5]\}$
$\mathrm{C}: \mathcal{T}=\{[6,-1.0],[7,4.0]\}$
Find parameters of discrimination function so that

$$
\begin{equation*}
s^{*}=\underset{s \in S}{\arg \max } f_{s}(\mathbf{x}) \tag{1}
\end{equation*}
$$

will clasificate these data without mistakes. Discrimination function is linear (affine), in form of

$$
\begin{equation*}
f_{s}(\mathbf{x})=\mathbf{w}_{s}^{\top} \mathbf{x}+w_{s 0} \tag{2}
\end{equation*}
$$

For every class, we are trying to find three numbser. For completeness we point out, that valid result is not a drawing lines into graph, but finding three numbers for each of these classes.

