h^{FF} and other exercises

Michaela Urbanovská

PUI Tutorial Week 6

Lecture check

Any questions regarding the lecture?

Organization info

Next week

- Assignment 1 consultations
- Little talk on neural networks in planning

- "Fast Forward" heuristic
- Relaxation
- Generates relaxed plans
- Length of said plans is the heuristic value

$$F = \{a, b, c, d, e, f, g, h\}$$

$$s_I = \{a\}$$

$$s_G = \{c, d, e, f, g\}$$

		pre	add	del	С
<i>O</i> =	01	а	b,c	Ø	1
	02	a,c	d	Ø	1
	03	b,c	e	Ø	1
	04	b	f	Ø	1
	<i>0</i> 5	d	e,f	Ø	1
	06	d	g	Ø	1

h^{FF} example

Algorithm description

- Create reachability graph
- Mark the final G atom node
- Apply rules layers by layer until every marked node is justified

Justified node definitions

- Action node is justified if all precondition fact nodes are marked
- Atom node is justified if at least one predecessor node is marked
- Starting with marked goal node, apply the following rules layer by layer until all marked nodes are justified
- 1) Mark all immediate predecessors of a marked unjustified action node
- Mark the immediate predecessor of a marked unjustified atom node with only one immediate predecessor
- 3) Mark an immediate predecessor of a marked unjustified atom node connected via an idle arc (to the same atom in the previous layer)
- 4) Mark any immediate predecessor of a marked unjustified atom node

h^{FF} example

Value of h^{FF} is

- number of justified actions in the reachability graph
- cost of justified actions in the reachability graph

The ultimate exercise

Compute

- $h^{lm-cut} + h^{max}$
- h^{add}
- h^{FF}
- h^{flow}
- h^{pot}

The ultimate exercise

```
STRIPS problem \Pi = \langle F, O, s_l, s_G, c \rangle

F = \{aA, aB, tB, tC, pA, pB, pC, pa, pt\}

s_l = \{aA, pA, tC\}

s_G = \{pC\}
```

				i	i
		pre	add	del	С
<i>O</i> =	fAB	aA	aB	aA	1
	fBA	aB	aA	aВ	1
	dBC	tB	tC	tΒ	1
	dCB	tC	tB	tC	1
	laΑ	pA, aA	ра	pА	1
	ΙaΒ	pB, aB	ра	рΒ	1
	ltΒ	pB, tB	pt	рΒ	1
	ltC	pC, tC	pt	рC	1
	uaA	ра, аА	pА	pa	1
	uaB	pa, aB	pВ	pa	1
	utB	pt, tB	рΒ	pt	1
	utC	pt, tC	рС	pt	1

The ultimate exercise

FDR problem
$$P = \langle V, O, s_I, s_G, c \rangle$$

 $V = \{a, t, p\}$
 $D_a = \{A, B\} \ D_t = \{B, C\} \ D_p = \{A, B, C, a, t\}$
 $s_I = \{a = A, t = C, p = A\}$
 $s_G = \{p = C\}$

		pre	eff	С
<i>O</i> =	fAB	a=A	а=В	1
	fBA	a=B	a=A	1
	dBC	t=B	t=C	1
	dCB	t=C	t=B	1
	laΑ	a=A, p=A	p=a	1
	ΙaΒ	a=B, p=B	p=a	1
	ltΒ	t=B, p=B	p=t	1
	ltC	t=C, p=C	p=t	1
	uaA	p=a, a=A	p=A	1
	uaB	p=a, a=B	p=B	1
	utB	p=t, $t=B$	p=B	1
	utC	p=t, $t=C$	p=C	1

Michaela Urbanovská PUI Tutorial 6

The ultimate exercise - h^{FF} reachability graph

Recap

- You should be able to compute all heuristics we talked about up until now
- If we didn't manage to finish all exercises we will finish them next week:)

Michaela Urbanovská PUI Tutorial 6 12 / 1:

Feedback form link

