Jan Mrkos

Value lteration Algorithm

and its extensions

Jan Mrkos

PUI Tutorial
Week 10

PUI Tutorial 10

@ Review of MDP concepts
@ Value lteration algorithm

@ VI extensions

Jan Mrkos PUI Tutorial 10 2/17

Value function of a policy

Look at the following definition of a value function of a policy for inifnite-horizon MDP. It
contains multiple mistakes, correct them on a piece of paper:

Def: Value function of a policy for infinite-horizon MDP

Assume infinite horizon MDP with € [0,100]. Then let Value function of a policy 7 for every
state s € S be defined as

V7(s) = > R(s.m(s),s")R(s,m(s),s") + ym(s’)
s'eS

Value function of a policy

Look at the following definition of a value function of a policy for inifnite-horizon MDP. It
contains multiple mistakes, correct them on a piece of paper:

Def: Value function of a policy for infinite-horizon MDP

Assume infinite horizon MDP with € [0,100]. Then let Value function of a policy 7 for every
state s € S be defined as

V7(s) = > R(s.m(s),s")R(s,m(s),s") + ym(s’)

s’eS
7 €1[0,1)
Vi(s) =Y T(s,7(s),s)[R(s,7m(s),s") +vV7(s")]
s’eS

Value function of a policy

Look at the following definition of a value function of a policy for inifnite-horizon MDP. It
contains multiple mistakes, correct them on a piece of paper:

Def: Value function of a policy for infinite-horizon MDP

Assume infinite horizon MDP with € [0,100]. Then let Value function of a policy 7 for every
state s € S be defined as

V7(s) = > R(s.m(s),s")R(s,m(s),s") + ym(s’)

s’eS
7 €1[0,1)
Vi(s) =Y T(s,7(s),s)[R(s,7m(s),s") +vV7(s")]
s’eS

Question: Difference to def. of an optimal value function?

Solving MDPs

From last time:
Optimal value function Vx in acyclic MDP can be found by:

Jan Mrkos PUI Tutorial 10 4/17

Solving MDPs

From last time:
Optimal value function Vx in acyclic MDP can be found by:

@ substituting values in order from terminal states to the initial state.

Jan Mrkos PUI Tutorial 10 4/17

Solving MDPs

From last time:
Optimal value function Vx in acyclic MDP can be found by:

@ substituting values in order from terminal states to the initial state.
Value function of a policy V™ in ANY MDP can be found by:

Jan Mrkos PUI Tutorial 10 4/17

Solving MDPs

From last time:
Optimal value function Vx in acyclic MDP can be found by:

@ substituting values in order from terminal states to the initial state.
Value function of a policy V™ in ANY MDP can be found by:

@ solving a system of linear equations.

Jan Mrkos PUI Tutorial 10 4/17

Solving MDPs

From last time:
Optimal value function Vx in acyclic MDP can be found by:

@ substituting values in order from terminal states to the initial state.
Value function of a policy V™ in ANY MDP can be found by:

@ solving a system of linear equations.
Optimal value function Vx in ANY MDP can be found by:

Jan Mrkos PUI Tutorial 10

Solving MDPs

From last time:
Optimal value function Vx in acyclic MDP can be found by:

@ substituting values in order from terminal states to the initial state.
Value function of a policy V™ in ANY MDP can be found by:

@ solving a system of linear equations.
Optimal value function Vx in ANY MDP can be found by:

@ solving a system of non-linear equations (max)?

Hard stuff to do analytically — iterative methods.

Jan Mrkos PUI Tutorial 10 4/17

Value lteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
Algorithm: Value Iteration

1 n<+0;
2 Vs, W(s) < 0;

// arbitrarily chosen initialization

Jan Mrkos PUI Tutorial 10

Value lteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:

Algorithm: Value Iteration

1 n<+0;
2 Vs, Vo(s) « 0; // arbitrarily chosen initialization

3 while running do

Jan Mrkos PUI Tutorial 10

Value lteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:

Algorithm: Value Iteration

1 n<+0;

2 Vs, Vo(s) « 0; // arbitrarily chosen initialization
3 while running do

4 Set n=n+1;

5 foreach state s € S do

Jan Mrkos PUI Tutorial 10 5/17

Value lteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
Algorithm: Value Iteration

n<+0;
Vs, Vo(s) < 0; // arbitrarily chosen initialization
while running do
Set n=n+1;
foreach state s € S do
L Vi(s) <~ maxaea > gcs T(s,a,5)[R(s,a,s") +vVa_1(s')]; // Bellman backup

o A W N =

-

return V, and greedy policy 7"

Jan Mrkos PUI Tutorial 10 5/17

Value lteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
Algorithm: Value Iteration
n<+ 0;

Vs, Vo(s) < 0; // arbitrarily chosen initialization
while running do

Set n=n+1;
foreach state s € S do

L Vi(s) <~ maxaea > gcs T(s,a,5)[R(s,a,s") +vVa_1(s')]; // Bellman backup

o A W N =

-

return V, and greedy policy 7"

Basic version alternates 2 arrays to store state values.

Jan Mrkos PUI Tutorial 10 5/17

Value lteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:

Algorithm: Value Iteration

n<+0;
Vs, Vo(s) < 0; // arbitrarily chosen initialization
while running do
Set n=n+1;
foreach state s € S do
L Vi(s) <~ maxaea > gcs T(s,a,5)[R(s,a,s") +vVa_1(s')]; // Bellman backup

o A W N =

-

return V, and greedy policy 7"

Basic version alternates 2 arrays to store state values.

Q: What is greedy policy?

Jan Mrkos PUI Tutorial 10 5/17

Value lteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:

Algorithm: Value Iteration

n<+0;
Vs, Vo(s) < 0; // arbitrarily chosen initialization
while running do
Set n=n+1;
foreach state s € S do
L Vi(s) <~ maxaea > gcs T(s,a,5)[R(s,a,s") +vVa_1(s')]; // Bellman backup

o A W N =

-

return V, and greedy policy 7"

Basic version alternates 2 arrays to store state values.

Q: What is greedy policy?
A: 7Vo(s) = arg max,. 4 Qu(s, a)

Jan Mrkos PUI Tutorial 10 5/17

Value lteration algorithm

Basic algorithm for finding solution of Bellman Equations iteratively:
Algorithm: Value Iteration

n<+0;
Vs, Vo(s) < 0; // arbitrarily chosen initialization
while running do
Set n=n+1;
foreach state s € S do
L Vi(s) <~ maxaea > gcs T(s,a,5)[R(s,a,s") +vVa_1(s')]; // Bellman backup

o A W N =

-

return V, and greedy policy 7"

Basic version alternates 2 arrays to store state values.

Q: What is greedy policy?
A: Vo(s) = argmax,c 4 Qu(s, a) = argmax,cp Soes T(s,a,5)[R(s, a,s") + 7 Vio_1(s).

Jan Mrkos PUI Tutorial 10 5/17

Example - gridworld

Gridworld domain. Assuming v = 1.

Using VI and initializing Vs Vy(s) = 0, calculate
Vi, Vo, V3 for the nine states around the 410 tile.

Domain rules:

@ Moving into edges gives -1 reward

@ Moving onto marked tiles gives corresponding

reward

Jan Mrkos

0.1

D.14—I‘ 0.7

0.1

Example from https://artint.info

PUI Tutorial 10

https://artint.info/2e/html/ArtInt2e.Ch9.S5.html#Ch9.Thmciexamplered28

Value lteration algorithm

S G W=

-

Basic algorithm for finding solution of Bellman Equations iteratively.
Algorithm: Value lteration
n<+0;

Vs, Vo(s) < 0; // arbitrarily chosen initialization
while running do

Setn=n+1;

foreach state s € S do

| Va(s) < maxaea Y ges T(s,a,5)[R(s,a,5") +7Va1(s)]; // Bellman backup

return V,, and greedy policy 7"

Question: Does it converge? How fast? When do we stop?

Jan Mrkos PUI Tutorial 10 7/17

Residual - definition

Def: Residual

Residual of value function V,, from V11 at state s € S is defined by:

Resvn(s) = |Vn(5) - Vn+1(5)|

Jan Mrkos PUI Tutorial 10 8/17

Residual - definition

Def: Residual
Residual of value function V,, from V11 at state s € S is defined by:

Resvn(s) = |Vn(5) - Vn+1(5)|

Residual of value function V' from V' is given by:

Res"" = ||V — Vatlloo = e IVals) = Vi (s)]

VI stopping criterion?

Stopping criterion: When residual of consecutive value functions is below low value of e:
[V = Vsl <€

However, this does not imply € distance of value of greedy policy from optimal value function.

'@ for proof, see: [Singh, Yee: An Upper Bound on the Loss from Approximate Optimal-Value Functions,
p.229]

Jan Mrkos PUI Tutorial 10 9/17

https://web.eecs.umich.edu/~baveja/Papers/approx-rl-loss.pdf
https://web.eecs.umich.edu/~baveja/Papers/approx-rl-loss.pdf

VI stopping criterion?

Stopping criterion: When residual of consecutive value functions is below low value of e:
[V = Vsl <€

However, this does not imply € distance of value of greedy policy from optimal value function.
Theorems for general MDP exist of form:

Vp, V*as above = Vs |V,(s) — V*(s)| < € x (Some MDP dependent term)

'@ for proof, see: [Singh, Yee: An Upper Bound on the Loss from Approximate Optimal-Value Functions,
p.229]

Jan Mrkos PUI Tutorial 10 9/17

https://web.eecs.umich.edu/~baveja/Papers/approx-rl-loss.pdf
https://web.eecs.umich.edu/~baveja/Papers/approx-rl-loss.pdf

VI stopping criterion?

Stopping criterion: When residual of consecutive value functions is below low value of e:
[V = Vsl <€

However, this does not imply € distance of value of greedy policy from optimal value function.
Theorems for general MDP exist of form:

Vp, V*as above = Vs |V,(s) — V*(s)| < € x (Some MDP dependent term)

In case of discounted (v < 1) infinite-horizon MDPs:

Vp, V*as above = Vs |V,(s) — V*(s)| < 2%

'@ for proof, see: [Singh, Yee: An Upper Bound on the Loss from Approximate Optimal-Value Functions,
p.229]

Jan Mrkos PUI Tutorial 10 9/17

https://web.eecs.umich.edu/~baveja/Papers/approx-rl-loss.pdf
https://web.eecs.umich.edu/~baveja/Papers/approx-rl-loss.pdf

VI with stopping criterion

Algorithm: Value lteration with epsilon stop
n < 0;

Vs, Vo(s) < 0; // arbitrarily chosen initialization
while Res" > ¢ do
Setn=n+1;
foreach state s € S do
Via(s) < maxaeadogcs T(s, a,8')[R(s,a,s") + v Va_1(s)];
ResY(s) « |Va(s) — Va_1(s)]; // Update residual

return V, and greedy policy 7"

N o s W N =

[--]

Jan Mrkos PUI Tutorial 10 10 /17

Value iteration properties

e Convergence: VI converges from any initialization (unlike PI)

@ Termination: when residual is "small”

Jan Mrkos PUI Tutorial 10 11/17

Value iteration properties

e Convergence: VI converges from any initialization (unlike PI)

@ Termination: when residual is "small”

Q: What are the memory requirements of VI?

Jan Mrkos PUI Tutorial 10 11/17

Value iteration properties

e Convergence: VI converges from any initialization (unlike PI)

@ Termination: when residual is "small”

Q: What are the memory requirements of VI?
A: Value of each state needs to be stored twice, residual can be calculated on the fly.

Jan Mrkos PUI Tutorial 10 11/17

MDP example

@ All undeclared rewards are -1

Task: Initialize VI with negative distance to Ss and calculate first 3 iterations of VI, with state
ordering Sp to Sy

Jan Mrkos PUI Tutorial 10 12 /17

N oA W N =

[=-]

Gauss-Seidel (Asynchronous) VI

Algorithm: Gauss-Seidel VI

n<+ 0;
Vs, Vo(s) < 0;
while Res" > ¢ do
Setn=n+1;
foreach state s € S do
Vi(s) < maxaea D oes T(s, a,s')[R(s,a,s") +vViu(s)];
ResY(s) + |Va(s) — Va_1(s)];

return V,, and greedy policy 7"

Jan Mrkos PUI Tutorial 10

13 /17

N oA W N =

[=-]

Gauss-Seidel (Asynchronous) VI

Algorithm: Gauss-Seidel VI

n<+ 0;
Vs, Vo(s) < 0;
while Res" > ¢ do
Setn=n+1;
foreach state s € S do
Vi(s) < maxaea D oes T(s, a,s')[R(s,a,s") +vViu(s)];
ResY(s) + |Va(s) — Va_1(s)];

return V,, and greedy policy 7"

Q: Memory requirements compared to VI?

Jan Mrkos PUI Tutorial 10

13 /17

N oA W N =

[=-]

Gauss-Seidel (Asynchronous) VI

Algorithm: Gauss-Seidel VI

n<+ 0;
Vs, Vo(s) < 0;
while Res" > ¢ do
Setn=n+1;
foreach state s € S do
Vi(s) < maxaea D oes T(s, a,s')[R(s,a,s") +vViu(s)];
ResY(s) + |Va(s) — Va_1(s)];

return V,, and greedy policy 7"

Q: Memory requirements compared to VI?
Q: Is order of states in line 5 important?

Jan Mrkos PUI Tutorial 10

13 /17

Asyncchronous VI

Algorithm: Asynchronous VI
1 Vs, V(s) «0;
2 while Res > ¢ do
3 s < select s € S;
4
5

V(s) < maxaea > gcs T(s,a,5)[R(s,a,s") + vV (s)];
ResY(s) + |Voia(s) — View(s)];

6 return V and greedy policy 7"

Jan Mrkos PUI Tutorial 10 14 /17

Asyncchronous VI

Algorithm: Asynchronous VI
1 Vs, V(s) «0;
2 while Res > ¢ do
3 s < select s € S;
4
5

V(s) < maxaea > gcs T(s,a,5)[R(s,a,s") + vV (s)];
ResY(s) + |Voia(s) — View(s)];

6 return V and greedy policy 7"

Q: Convergence condition?

Jan Mrkos PUI Tutorial 10 14 /17

Asyncchronous VI

Algorithm: Asynchronous VI
1 Vs, V(s) «0;
2 while Res > ¢ do
3 s < select s € S;
4
5

V(s) < maxaea > gcs T(s,a,5)[R(s,a,s") + vV (s)];
ResY(s) + |Voia(s) — View(s)];

6 return V and greedy policy 7"

Q: Convergence condition? A: Asymptotic as VI if every state visited oo often.

Jan Mrkos PUI Tutorial 10 14 /17

Asyncchronous VI

Algorithm: Asynchronous VI
1 Vs, V(s) «0;
2 while Res > ¢ do
3 s < select s € S;
4
5

V(s) < maxaea > gcs T(s,a,5)[R(s,a,s") + vV (s)];
ResY(s) + |Voia(s) — View(s)];

6 return V and greedy policy 7"

Q: Convergence condition? A: Asymptotic as VI if every state visited oo often.
Q: How to pick s on line 57

Jan Mrkos PUI Tutorial 10 14 /17

Asyncchronous VI

Algorithm: Asynchronous VI
1 Vs, V(s) «0;
2 while Res > ¢ do
3 s < select s € S;
4
5

V(s) < maxaea > gcs T(s,a,5)[R(s,a,s") + vV (s)];
ResY(s) + |Voia(s) — View(s)];

6 return V and greedy policy 7"

Q: Convergence condition? A: Asymptotic as VI if every state visited oo often.
Q: How to pick s on line 57 A: Simplest is Gauss-Seidel VI, that is run AVI over all
states iteratively.

Jan Mrkos PUI Tutorial 10 14 /17

Prioritized VI

Q: How else can we pick states to update? (A: by ordering them in clever ways)

Jan Mrkos PUI Tutorial 10 15 /17

Prioritized VI
Q: How else can we pick states to update? (A: by ordering them in clever ways)

E.g.: build priority queue of states to update — Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priority ps(s) <— max{priority ps(s), mea/>\<{ T(s,a,s')ResV(s')}}
a

Jan Mrkos PUI Tutorial 10

15 /17

Prioritized VI
Q: How else can we pick states to update? (A: by ordering them in clever ways)

E.g.: build priority queue of states to update — Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priority ps(s) <— max{priority ps(s), mea/>\<{ T(s,a,s')ResV(s')}}
a

EXAMPLE ON BOARD

Jan Mrkos PUI Tutorial 10

15 /17

Prioritized VI
Q: How else can we pick states to update? (A: by ordering them in clever ways)

E.g.: build priority queue of states to update — Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priority ps(s) <— max{priority ps(s), mea/>\<{ T(s,a,s')ResV(s')}}
a

EXAMPLE ON BOARD

Convergence?

Jan Mrkos PUI Tutorial 10

15 /17

Prioritized VI
Q: How else can we pick states to update? (A: by ordering them in clever ways)

E.g.: build priority queue of states to update — Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priority ps(s) <— max{priority ps(s), mea/>\<{ T(s,a,s')ResV(s')}}
a

EXAMPLE ON BOARD

Convergence?
o If all states start with non-zero priority

Jan Mrkos PUI Tutorial 10

15 /17

Prioritized VI
Q: How else can we pick states to update? (A: by ordering them in clever ways)

E.g.: build priority queue of states to update — Prioritized Sweeping VI. Update states in the
order of the queue. Priority function:

priority ps(s) <— max{priority ps(s), mea/>\<{ T(s,a,s')ResV(s')}}
a

EXAMPLE ON BOARD

Convergence?
o If all states start with non-zero priority

@ OR If you interleave regular VI sweeps with Prioritized VI

Jan Mrkos PUI Tutorial 10

15 /17

Partitioned VI

Subdivide state space into partitions. Pre-solve parts independently.

@ Example is Topological VI

Jan Mrkos PUI Tutorial 10 16 /17

Partitioned VI

Subdivide state space into partitions. Pre-solve parts independently.
@ Example is Topological VI

Topological VI:
@ Find acyclic paritioning (by finding strongly connected components in the graph)
@ Run VI in each partition to convergence backward from terminal states

Jan Mrkos PUI Tutorial 10 16 /17

Partitioned VI

Subdivide state space into partitions. Pre-solve parts independently.
@ Example is Topological VI
Topological VI:

@ Find acyclic paritioning (by finding strongly connected components in the graph)
@ Run VI in each partition to convergence backward from terminal states

Q: Why acyclic partitioning?

Jan Mrkos PUI Tutorial 10 16 /17

Partitioned VI

Subdivide state space into partitions. Pre-solve parts independently.
@ Example is Topological VI
Topological VI:

@ Find acyclic paritioning (by finding strongly connected components in the graph)
@ Run VI in each partition to convergence backward from terminal states

Q: Why acyclic partitioning?

EXAMPLE ON BOARD

Jan Mrkos PUI Tutorial 10 16 /17

Thank you for
participating in the
tutorials :-)

Please fill out the
feedback form —

Jan Mrkos

https://forms.gle/JxJBaGeLgwxVbKiNA

17 /17

https://forms.gle/JxJBaGeLgwxVbKiNA
https://forms.gle/JxJBaGeLgwxVbKiNA

	Review of previous tutorial
	Value Iteration
	VI extensions

