

Markov Decision Process

based on slides of Branislav Bošanský and Jan Mrkos

Markov Decision Processes

- Main formal model
- $\langle S, A, D, T, R \rangle$
 - states a finite set of states of the world
 - actions a finite set of actions the agent can perform
 - horizon a finite/infinite set of time steps (1,2,...)
 - transition function
 - $T: S \times A \times S \rightarrow [0,1]; \sum_{s' \in S} T(s, a, s') = 1$
 - reward function
 - $R: S \times A \times S \to \mathbb{R}$
 - typically bounded

MDP – policy

- history-dependent policy
 - $\pi: H \times A \rightarrow [0,1]; \sum_{a \in A} \pi(h,a) = 1$
- for simple cases we do not need history and randomization
 - Markov assumption
 - finite-horizon MDPs
 - infinite-horizon MDPs with reward discount factor $0 \leq \gamma < 1$
 - stochastic shortest path
 - (... and some others)
- from now on, policy is an assignment of an action in each state and time

MDP – policy (2)

• $\pi: S \to A$

• stationary policy

- when the policy is same every time state s is visited
- otherwise **nonstationary policy**

• positional policy

• deterministic and stationary policy

MDP – value of a policy

- we can express an expected reward for every state and time-step when specific policy is followed
- $V_{\pi}^{k}(s) = \mathbb{E}\left[\sum_{t=0}^{k} \gamma^{t} \cdot R(s_{t}, a_{t}, s_{t+1}) | s_{0} = s, a_{t} = \pi(s_{t})\right]$
 - optimal policy : $\pi^{*,k}(s) = \operatorname{argmax}_{\pi} V_{\pi}^{k}(s)$

- for large (infinite) k we can approximate the value by dynamic programming
 - $V_{\pi}^0(s) = 0$
 - $V_{\pi}^{k}(s) = \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V_{\pi}^{k-1}(s')] \qquad a = \pi(s)$

MDP – towards finding optimal policy

- we can exploit the concept of dynamic programming to find an optimal policy
- basic algorithm for solving MDPs based on Bellman's equation
- value iteration

• $V^0(s) = 0 \quad \forall s \in S$

•
$$V^{k}(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left[R(s, a, s') + \gamma V^{k-1}(s') \right]$$

Q-function (Q(s, a))

• for $k \to \infty$ values converge to optimum $V^k \to V^*$

Basic algorithm for finding solution of Bellman Equations iteratively.

- 1. initialize V_0 arbitrarily for each state, e.g to 0, set n = 0
- 2. Set n = n + 1.
- 3. Compute Bellman Backup, i.e. for each $s \in S$:
 - 3.1 $V_n(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V_{n-1}(s')]$
- 4. GOTO 2.

Question: Does it converge? How fast? When do we stop?

MDP – convergence of value iteration

- value iteration converges
 - for finite-horizon MDPs: |D| steps
 - for infinite-horizon: asymptotically
 - we can measure residual r and stop if it is small enough $(r \le \varepsilon (1 \gamma) / \gamma)$

•
$$r = \max_{s \in S} |V_{i+1}(s) - V_i(s)|$$

• convergence depends on γ

- 1. initialize V_0 arbitrarily for each state, e.g to 0, set n = 0
- 2. Set n = n + 1.
- 3. Compute Bellman Backup, i.e. for each $s \in S$:
 - 3.1 $V_n(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V_{n-1}(s')]$
 - 3.2 Calculate residual $Res = \max_{s \in S} |V_n(s) V_{n-1}(s)|$
- 4. if $res > \epsilon$ GOTO 2. else TERMINATE

- 1. initialize V_0 arbitrarily for each state, e.g to 0, set n = 0
- 2. Set n = n + 1.
- 3. Compute Bellman Backup, i.e. for each $s \in S$:
 - 3.1 $V_n(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V_{n-1}(s')]$
 - 3.2 Calculate residual $Res = \max_{s \in S} |V_n(s) V_{n-1}(s)|$
- 4. if $res > \epsilon$ GOTO 2. else TERMINATE

Question: What is the policy?

- 1. initialize V_0 arbitrarily for each state, e.g to 0, set n = 0
- 2. Set n = n + 1.
- 3. Compute Bellman Backup, i.e. for each $s \in S$:
 - 3.1 $V_n(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V_{n-1}(s')]$
 - 3.2 Calculate residual $Res = \max_{s \in S} |V_n(s) V_{n-1}(s)|$
- 4. if $res > \epsilon$ GOTO 2. else TERMINATE

Question: What is the policy?

• Greedy policy π_n^V is the policy given as argmax of V_n .

MDP – extracting policy and policy iteration $\Delta = \sum_{renter}$

- value iteration calculates only values
- the optimal policy can be extracted by using a greedy approach
 - $\pi^k(s) = \arg \max_{a \in A} \sum_{s' \in S} T^k(s, a, s') \left[R^k(s, a, s') + \gamma V^k(s') \right]$

- alternative algorithm **policy iteration**
 - starts with an arbitrary policy
 - **policy evaluation:** recalculates value of states given the current policy π^k
 - **policy improvement:** calculates a new maximum expected utility policy π^{k+1}
 - until the strategy changes

MDP – VI/PI improvements

- value iteration is very simple
 - updates all states during each iteration
 - curse of dimensionality (huge state space)
 - asynchronous VI
 - select a single state to be updated in each iteration separately
 - each state must be updated infinitely often to guarantee convergence
 - lower memory requirements
- Q: Can we use some heuristics to improve the convergence?

- 1. initialize V_0 arbitrarily for each state, e.g to 0
- 2. While $Res^V > \epsilon$, do:
 - 2.1 pick some state s
 - 2.2 Bellman backup $V(s) \leftarrow \max_{a \in A} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V(s')]$
 - 2.3 Update residual at $s \operatorname{Res}^{V}(s) = |V_{old}(s) V_{new}(s)|$

- 1. initialize V_0 arbitrarily for each state, e.g to 0
- 2. While $Res^V > \epsilon$, do:
 - 2.1 pick some state s
 - 2.2 Bellman backup $V(s) \leftarrow \max_{a \in A} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V(s')]$
 - 2.3 Update residual at $s \operatorname{Res}^V(s) = |V_{old}(s) V_{new}(s)|$

Question: Memory requirements compared to VI?

- 1. initialize V_0 arbitrarily for each state, e.g to 0
- 2. While $Res^V > \epsilon$, do:
 - 2.1 pick some state s
 - 2.2 Bellman backup $V(s) \leftarrow \max_{a \in A} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V(s')]$
 - 2.3 Update residual at $s \operatorname{Res}^V(s) = |V_{old}(s) V_{new}(s)|$

Question: Memory requirements compared to VI?

Question: Convergence condition?

 \bullet Asymptotic as VI under condition that every state visited ∞ often.

- 1. initialize V_0 arbitrarily for each state, e.g to 0
- 2. While $Res^V > \epsilon$, do:
 - 2.1 pick some state s
 - 2.2 Bellman backup $V(s) \leftarrow \max_{a \in A} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V(s')]$
 - 2.3 Update residual at $s \operatorname{Res}^V(s) = |V_{old}(s) V_{new}(s)|$

Question: Memory requirements compared to VI?

Question: Convergence condition?

 \bullet Asymptotic as VI under condition that every state visited ∞ often.

Question: How to pick s in 2.1?

• Simplest is Gauss-Seidel VI, that is run AVI over all states iteratively

MDP – VI/PI heuristics

- initial values can be assigned better
 - we can use a heuristic function instead of 0

• Q: Can you think of any heuristic function?

- e.g., remember FFReplan/Robust FF?
- we can use a single run of a planner on the determinized version

• Q:What if the values V are initialized incorrectly?

MDP – VI/PI with priority

- initialize V and a priority queue q
- select state s from the top of q and perform a Bellman backup
- add all possible predecessors of s to q
- repeat until convergence
 - priorities: changes in utility, position in the graph, ...

- but, values are still updated regardless on the current values
- consider a typical probabilistic planning problem
 - finite-horizon MDP with some goal states

MDPs – Find and Revise

- we can further combine selective updates with heuristic search
 - starts with admissible $V(s) \ge V^*(s)$ for all states
 - select next state s' that is:
 - reachable from s_0 using current greedy policy π_V , and
 - residual $r(s') > \varepsilon$
 - update s'
 - repeat until such states exist
- many further improvements and algorithms ...

MDPs – Real-Time Dynamic Programming

- updates the values only on the path from the starting state to the goal
- during one iteration updates one rollout/trial:
 - start with $s = s_0$
 - evaluate all actions using Bellman's Q-functions Q(s, a)
 - select action that maximizes current value: $\arg \max_{a \in A} Q(s, a)$
 - set $V(s) \leftarrow Q(s, a)$
 - get resulting state s'
 - if s' is not goal, then $s \leftarrow s'$ and go to step 2
- can be further improved with labeling (LRTDP) to identify solved states