NI

CENTER

Value Iteration and Monte
Carlo

Tutorials PUI 2017/2018

Jan Mrkos

NI

CENTER

MDP

« Method for solving MDPs iteratively

Value function of a policy:

Vi (s) = E[X¢0¥" - R(St, t, St41) IS0 = S, ap = (S¢)]
from state s, policy 7, reward function R

« Optimal value function:
V*(s) = max E[R(s,m)]
A

« Optimal policy — gives max value in each state

MDP

az

0.9

0.1

0.6

0.4

az

0.7

0.3

NI

CENTER

Value Iteration AN

CENTER

« basic algorithm for solving MDPs based on Bellman’s equation

« Value iteration (Bellman backup)
e Vo()=0 Vs€eS
e Vi(s) = mgi(ZS,EST(S, a,s') [R(s, a,s')+yV (s’)]
a

R/—/

Q-function (Q(s, a))

o for k — oo values converge to optimum V¥ — /*

Value Iteration — example

Step: 0
! 0
0
0

+3

Step: 1
0
1 . 1 IO
0

. 410 Step: 2
0 63
6.3 9.8
' 0 63

0.1 Step: 3
0.14—1-}0_7 45 6.2
0.1 6.2 9.7
45 6.1

From http://artint.info/html/Artint_224.html#gridworld-ex

-0.1
-0.1
-0.1

-0.1
6.2
-0.1

4.4
6.6
4.4

NI

CENTER

»
yaN
CENTER

Value Iteration - questions

e WhyV%(s) =02

o “for k — oo values converge to optimum V% — V*

7

o 002??Yeah, that sounds useful

o How fast is this?

 Value iteration stopping criterion (Bellman error):
WV =V'|| <e

Gives e-optimal value functionV

Relation between policy and value function AN

CENTER

 Distance between value functions:
v —vi| = [Iv=V'I] , = max [V (s) = V'(s)]

Theorem:

The value function V" of greedy policy derived from e-optimal value
functionV satisfies following:

* .
WV =v*| <2ey/(1-y)
+ .'II
/
- /
G | agreedy e
S i -
L—% v * 1
v li‘_ evall_!?j:_g,. ######## my -
VG ---------
X qu
Value function space Policy space 4

Image from Singh and Yee, An Upper Bound on the Loss from Approximate Optimal-Value Functions

Proof AN

CENTER

Theorem:

The value function V" of greedy policy m derived from e-optimal value

functionV satisfies following:
[V — v~

<Z2ey/(1-vy)

Proof:

Value iteration - options NI
* Can keepV or Q in memory

*Saving V(s) arrays — less storage

*Saving Q(s, a) — less iterations
* Asynchronous value iteration

*Keep only one array of value functions, update online

*Less space and faster convergence

*Difficulty with the stopping condition

Order of Backups i

CENTER

* Heuristic search VI

* Uses heuristics to dynamically determine the order of updates
(lecture)

* Even static ordering beforehand can have huge impact

* Prioritized sweeping

*Updates states that will produce largest delta in value function

* Topological value iteration

*Builds a graph of “casually dependent” states to find optimal order of
backups.

Best Action Only NI

CENTER

* InVl,all actions have to be backed up
* Policy iteration — actions according to one policy only

 Requires “optimistic estimate” of Q*: Q(x,a) > Q*(x,a)

Monte Carlo NI

CENTER

* Non-Adaptive Monte-Carlo
*Single state case (PAC Bandit)

*Policy rollouts

* Adaptive Monte-Carlo
*Single state case (UCB Bandit)
*UCT MCTS

Following slides used from from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer

Monte-Carlo and MDPs AN

CENTER

Exact state space description not available in large state spaces, but
there exist simulators:

*Traffic simulations

Robotics simulators
°Go

Monte-Carlo in MDPs

*Use simulator to evaluate stochastically selected actions
*Finite (but large) state set S

*Finite action set A

*Stochastic, real-valued, bounded reward function R(s, a)=r

*Stochastic transition function T(s,a)=s’

Planning in single state N\i

CENTER

e Multi-Armed Bandit Problem

*Which action will yield best expected reward?

*Simulator returns reward R(s, a)

Multi-Armed bandit - PAC objective C/EN%FI!

* PAC = Probably Approximately Correct

* Select arm that probably (prob. 1 — §) has approximately (within €)
the best expected reward.

* Use least possible number of runs.

Uniform Bandit Algorithm N\i

CENTER

|. Pull each arm w times
2. Return arm with best average reward

Q: How many times do we have to pull?

Naive bandit from Even-Dar et. al., 2002

Uniform Bandit PAC bound AN

CENTER

* Markov’s (and then Chebyshev’s) inequality:

Random variable X = 0 and ¢ > 0. Then for any real c,

P(X>c)< E(CX)

Random variable X with finite E(X) and variance g% > 0.
Then for any ¢ > 0,

1
P(IX —EX)| 2 ko) < 15

* Markov’s inequality gives Chernoff Bound that can be used to calculate
the probability of within close to some value

PAC Object

ive and Bound

NI

CENTER

* Select arm that probably (prob. 1 — §) has approximately (within €)
the best expected reward.

If W > (Rmax
_ €

2
) ln% then for all arms with probability 1 — &

w

1
E[R(s,a;)] — ;z Tij

j=1

<

€

* Meaning all action estimates are € accurate with probability 1 — §,

R, 45 is maximal reward.

Uniform Bandit Algorithm N\i

CENTER

For PAC, we need this many calls:

Naive bandit from Even-Dar et. al., 2002

Monte Carlo

* Non-Adaptive Monte-Carlo
*Single state case (PAC Bandit)

*Policy rollouts

* Adaptive Monte-Carlo
*Single state case (UCB Bandit)
*UCT MCTS

Slides from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer

NI

CENTER

Policy Improvement using Monte-Carlo NI

CENTER

* Assume non-optimal policy and simulator

* How can you improve the policy!?

Policy Improvement Theorem NI

CENTER

Q-function Q. (s, a) is defined as:

Qr(s,a) = E lz VtR(St; a:)|so = s,a; = w(st)
t=0

That is, expected total discounted reward of starting in s, taking action
a and then following policy .

Let 7'(s) = argmax,Q,(s,a)

Theorem (Howard, 1960)

For any non-optimal policy 1 the policy 7’ is a strict
improvement over T,

Computing ™' amounts to finding action that maximizes Q-function of
7 (similar to policy iteration).

*How do we apply the bandit idea?

Policy Improvement via Bandits NI

CENTER

* ldea: define stochastic function SimQ (s, a,) that we can implement
and that will have expected value Q (s, a)

* Next, just use bandit algorithm to determine best action

* How to implement SImQ?

SimQ(s, al,n) SimQ(S, azjr[) SimQ(Sr Clk,Tl,')

Q-value Estimation NI

CENTER

* SimQ might be implemented by simulating the execution of action a in
state s and then following 7 thereafter.

*For infinite horizon, this would never stop!

*We approximate using finite horizon

* For horizon h, Q-functj}cl)n Q. (s,a, h) is defined as:

Qn(s,a,h) = Z YRG5t @) Iso = 5,0 = m(se)

That is, expected total dlscounted reward of starting in s, taking action
a and then following policy 7 for h-1 steps.

* What is the approximation error?! Exponential in h:

|QTL’(SJ a) o QTL’(S) a, h)l S Vthax Vmax —

(prove in class for | point (5 minutes))

Policy Improvement via Bandits NI

CENTER

* Better idea: redefine stochastic function SimQ (s, a, , h) that we can
implement and that will have expected value Q. (s, a, h)

* Next, just use bandit algorithm to determine best action

* How to implement SImQ?

SimQ(s, al,n) SimQ(S, azjr[) SimQ(Sr Clk,Tl,')

Policy improvement via Bandits C/EN%FI!

SimQ(s,a,m,h)
r=R(s,a) . _
s=T(s,a)} Simulate ain s
for i=1 to h-| 1
=ryR(s(s) - Smulate bl steps
s=T(s, 1(s))
return r }

Implementat exaxtly as the formula suggests. Simulate taking action a in
s and follow policy 7 for h steps. Return discounted sum of rewards.

Expected value of SimQ(s,a,m,h) is SimQ(s,a,7), which can be made
arbitrarly close to Q. (s, a) by increasing h. (why?)

Policy improvement via Bandits NI

CENTER

SimQ(s,a,m,h)
r=R(s,a) . _
s=T(s,a)} Simulate ain s
for i=1 to h-| 1
I‘=I’+)/iR(S,T[(S)) | ?flrggllitye h-1 steps
s=T(s, 1(s))
return r

m mdisounted rewards = SimQ(s,a4,m,h)
al [N N J
[W\' /8’u?r§f disounted rewards = SimQ(s,a,,m,h)
a,

m /%Umngdisounted rewards = SImQ(s,ay,m,h)

Policy Improvement via Bandits C/EN%FI!

* Better idea: redefine stochastic function SimQ (s, a, , h) that we can
implement and that will have expected value Q. (s, a, h)

* Next, just use bandit algorithm to determine best action

* Apply the PAC Objective

SimQ(s, al,n) SimQ(S, azjr[) SimQ(Sr Clk,Tl,')

Policy Rollout algorithm N\i

CENTER

|. For each a; run SimQ(s,a;,7,h) w times

2. Return action with best average SimQ result

SimQ(s,a;,m,h)

trajectories, each

simulates taking action a; —
and then following 1 for

h-1 steps.

—

D00 D0 D)

Qi 912, 91w 421,922, 92w Qr1, k2 - Qiew

~—

Executing Policy Rollout in the world NI

CENTER

ai a,
Real world { m. “/YW\, f\‘

"+ Run policy ‘. Run policy

\

. rollout \ rollout

.9 1
AR, - L %
| EEETE2ERR | i T LW Y = ;—]
A L= | | | EH=ER
)L. i e Ee= [i
= P @ @ lw Bt
—— a o | = o e
i '~3|’®1mv1 ! e SIS BT
T [e) moner | [s ‘r;rmt [e () e |
— e L N |) L |
R

e

222 222 222 220

Simulated
experience

Policy Rollout: # of simulator calls NI

* For each action there is w

CENTER

calls to SimQ, each using h calls

 |n total, khw calls to the simulator

SimQ(s,a;,m,h)

trajectories, each

simulates taking action a; —
and then following 1 for

h-1 steps.

—

D00 D0 D)

Qi 912, 91w 421,922, 92w Qr1, k2 - Qiew

Policy Rollout: PAC Guarantee NI

CENTER

* Let a* be the action that maximizes the true Q-function Q. (s, a).
* Let a’ be the action return by policy rollout.

* Using the PAC result for single state, we get following:

2
Ifw > (R";“x) lng then for all arms with probability 1 — §

|Qn(5: a*) — Qr(s, Cl’)| <€+ Vthax

Does this mean that the policy generated by the rollout will be close to
the ' (from the Howard theorem)?

Policy Rollout: Quality i

CENTER

* How good is policy rollout compared to m'?
* for fixed h and w there exists MDP such that rollout policy is
arbitrarily worse than 7’

*The MDP example is constructed for given parameters and is quite
artificial.

+ adding assumptions to the MDP, h and w can be chosen so that
rollout quality is close to 7’.

*Complicated

+ h and w can be selected so that rollout is (approximately) no worse
than 17 in any MDP

*So it will never hurt, only help

Multi-stage Rollout

Trajectories of
SimQ(s,a;,Rollout(m),h) —

Exponential in number of stages

NI

CENTER

Two stage: compute rollout policy of “rollout of policy ”

Requires (khw)? calls to the simulator

911,912, - Q1w

~—

421,922, 92w qi1, 952, - Qrew

Rollout summary NI
* Often, we can easily write simple policies
*Dijkstra replan for robot Emil
*Backgammon
*Solitaire
*Network routing policy

* Policy rollout is general and easy way to improve such policies
given simulator

* This often provides substantial improvement:
*Backghamon
*Go

*Solitaire

Rollout summary NI
* Policy Switching
*Set of base policies, {r, 5, ... Ty}
*Instead of actions, try different policies in state S using Sim(s,;,h)
*Works for any number of actions

* Single call to Rollout[1T](s) approximates one iteration of policy
iteration inialized at policy

Example: Rollouts for Solitaire [van et i Nips 2004]

Policy

Player Success Rate | Time/Game
Human Expert | 36.6% 20 min
(naive) Base 13.05% 0.021 sec

NI

CENTER

Example: Rollouts for Solitaire [van et i Nips 2004]

Player Success Rate | Time/Game
Human Expert | 36.6% 20 min
(naive) Base 13.05% 0.021 sec
Policy

1 rollout 31.20% 0.67 sec

NI

CENTER

Example: Rollouts for Solitaire [van et i Nips 2004]

Player Success Rate | Time/Game
Human Expert | 36.6% 20 min
(naive) Base 13.05% 0.021 sec
Policy

1 rollout 31.20% 0.67 sec

2 rollout 47.6% /.13 sec

J rollout 56.83% 1.5 min

4 rollout 60.51% 18 min

5 rollout 70.20% 1 hour 45 min

NI

CENTER

Monte Carlo

* Non-Adaptive Monte-Carlo
*Single state case (PAC Bandit)

*Policy rollouts

* Adaptive Monte-Carlo
*Single state case (UCB Bandit)
*UCT MCTS

Slides from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer

NI

CENTER

Multi-Armed bandit - PAC AN

CENTER

* Task: Select arm that probably (prob. 1 — §) has approximately
(within €) the best expected reward.

* PAC = Probably Approximately Correct

* Use least possible number of runs.

Multi-Armed bandit — Regret Minimization NI

CENTER

* Task: find arm-pulling strategy such that the expected total reward at
time n is close to the best possible.

Uniform Bandit — bad choice, wastes time with bad arms

*Need to balance exploitation of good arms with exploration of
poorly understood arms.

UCB Adaptive Bandit Algortihm i

CENTER

Task: find arm-pulling strategy such that the expected total reward at
time n is close to the best possible.

Uniform Bandit — bad choice, wastes time with bad arms

*Need to balance exploitation of good arms with exploration of
poorly understood arms.

Regret NI

CENTER

* Aiming at “reward as close as possible to the best reward” means we
are minimizing regret:

k
Ry ==) wE[T;(n)]
j=1

Where u; are the expected payoffs of arms, u* is the best expected payoff
and E[T;(n)] is the expected number of pulls on arm j in total n pulls.

* Xj1,Xj ... = iid rv.of rewards from bandit j

* u;= expected value of X;

Minimizing regret - UCB

* Upper Confidence Bounds [Auer er. al., 2002]:

* When choosing arm, always select arm with highest UCB value

X.

J

_ 2Inn
UCB = X; +
/ \ le
/ .
Exploitation \Exploranon

= mean of observed rewards, n = number of plays so far

NI

CENTER

UCB - Example £l

CENTER

o e, - e S uCZ’-({)
Play all arms once initially /;% s e R O Ry)
Then based on the formula & T
s

UCB - Example NI

CENTER

_ 2Inn

n;

o !2:1.” is based of bound of the form P()?] — E[X] = f (o, n)) <o
(emember PAC?)

* And o is chosen to be time dependent (by 1), goes to zero.

UCB yaN

CENTER

Excel example:

https://drive.google.com/open?id=1 A9Kr-
|Dz_ZJIYOX3aFMrFaLUAPeAZV7Z

https://drive.google.com/open?id=1A9Kr-JDz_ZJlYOX3aFMrFaLUAPeAZV7Z

Monte Carlo

* Non-Adaptive Monte-Carlo
*Single state case (PAC Bandit)

*Policy rollouts

* Adaptive Monte-Carlo
*Single state case (UCB Bandit)
‘UCT MCTS

Slides from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer

NI

CENTER

UCB forTrees = UCT NI

CENTER

/—> Selection —— Expansion —— Simulation —> Backpropagation ~

Tree Def:&mir
Policy Policy
v
\. a J

*Tree node:
« Associated state,
incoming action,
* number of visits,
 accumulated reward

*External slides by Michele Sebag:
https://drive.google.com/open?id=1ytp9I33 6WNeb62gqLAZzV326i1S4AWmYeFpY

https://drive.google.com/open?id=1ytp9l33_6WNe62qLAzV326iS4WmYeFpY

MCTS notes

Aheuristic

*Does not require any domain specific knowledge

*Domain specific knowledge can provide significant speedups
Anytime

*Can return currently best action when stopped at any time

H“H m”.”
u'} n) u V L

Asymmetric

*Tree is not explored fully

MCTS = UCT? No consistency

in the naming

[Arnaud et al., 2007]

NI

CENTER

