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 Method for solving MDPs iteratively

 Value function of a policy:

𝑉𝜋 𝑠 = 𝔼 σ𝑡=0 𝛾
𝑡 ⋅ 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) |𝑠0 = 𝑠, 𝑎𝑡 = 𝜋(𝑠𝑡)

from state 𝑠0, policy 𝜋, reward function R

 Optimal value function:

𝑉∗ 𝑠 = max
𝜋

𝑬[𝑅 𝑠, 𝜋 ]

 Optimal policy – gives max value in each state

MDP



MDP



 basic algorithm for solving MDPs based on Bellman’s equation

 Value iteration (Bellman backup)

 𝑉0 𝑠 = 0 ∀𝑠 ∈ 𝑆

 𝑉′ 𝑠 = max
𝑎∈𝐴

σ𝑠′∈𝑆𝑇(𝑠, 𝑎, 𝑠
′) 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

Q-function (𝑄(𝑠, 𝑎))

 for 𝑘 → ∞ values converge to optimum 𝑉𝑘 → 𝑉∗

Value Iteration



From http://artint.info/html/ArtInt_224.html#gridworld-ex

Value Iteration – example

0 0 0

0 0 0

0 0 0 

0 0 -0.1

0 10 -0.1

0 0 -0.1

Step: 0

Step: 1

0 6.3 -0.1

6.3 9.8 6.2

0 6.3 -0.1

Step: 2

4.5 6.2 4.4

6.2 9.7 6.6

4.5 6.1 4.4

Step: 3

0.7

0.1

0.1

0.1



 Why 𝑉0 𝑠 = 0 ?

 “for 𝑘 → ∞ values converge to optimum 𝑉𝑘 → 𝑉∗”

 ∞??? Yeah, that sounds useful

 How fast is this?

 Value iteration stopping criterion (Bellman error):

𝑉 − 𝑉′ < 𝜖

Gives 𝜖-optimal value function V

Value Iteration - questions



• Distance between value functions:
𝑉 − 𝑉′ = 𝑉 − 𝑉′

∞
= max

𝑠
|𝑉 𝑠 − 𝑉′ 𝑠 |

Theorem: 

The value function 𝑉𝜋 of greedy policy 𝜋 derived from 𝜖-optimal value 

function V satisfies following:

𝑉 − 𝑉∗ < 2𝜖𝛾/(1 − 𝛾)

Relation between policy and value function

Image from Singh and Yee, An Upper Bound on the Loss from Approximate Optimal-Value Functions 



Theorem: 

The value function 𝑉𝜋 of greedy policy 𝜋 derived from 𝜖-optimal value 

function V satisfies following:

𝑉 − 𝑉∗ < 2𝜖𝛾/(1 − 𝛾)

Proof:

Proof



• Can keep V or Q in memory

•Saving V(s) arrays – less storage

•Saving Q(s, a) – less iterations

• Asynchronous value iteration

•Keep only one array of value functions, update online

•Less space and faster convergence

•Difficulty with the stopping condition

Value iteration - options



• Heuristic search VI

• Uses heuristics to dynamically determine the order of updates 
(lecture)

• Even static ordering beforehand can have huge impact

• Prioritized sweeping

•Updates states that will produce largest delta in value function

• Topological value iteration

•Builds a graph of  “casually dependent” states to find optimal order of 
backups.

Order of Backups



• In VI, all actions have to be backed up

• Policy iteration – actions according to one policy only

• Requires “optimistic estimate” of 𝑄∗: 𝑄 𝑥, 𝑎 > 𝑄∗(𝑥, 𝑎)

Best Action Only



• Non-Adaptive Monte-Carlo

•Single state case (PAC Bandit)

•Policy rollouts

• Adaptive Monte-Carlo

•Single state case (UCB Bandit)

•UCT MCTS

Monte Carlo

Following slides used from from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer



• Exact state space description not available in large state spaces, but 

there exist simulators:

•Traffic simulations

•Robotics simulators

•Go

• Monte-Carlo in MDPs

•Use simulator to evaluate stochastically selected actions

•Finite (but large) state set S

•Finite action set A

•Stochastic, real-valued, bounded reward function R(s, a)=r

•Stochastic transition function T(s,a)=s’

Monte-Carlo and MDPs



• Multi-Armed Bandit Problem

•Which action will yield best expected reward?

•Simulator returns reward R(s, a) 

Planning in single state

s

𝑎1 𝑎2
𝑎𝑘

𝑅(𝑠, 𝑎1) 𝑅(𝑠, 𝑎2)
𝑅(𝑠, 𝑎𝑘)



• PAC = Probably Approximately Correct

• Select arm that probably (prob. 1 − 𝛿) has approximately (within 𝜖) 
the best expected reward.

• Use least possible number of runs.

Multi-Armed bandit - PAC objective

s

𝑎1 𝑎2
𝑎𝑘

𝑅(𝑠, 𝑎1) 𝑅(𝑠, 𝑎2)
𝑅(𝑠, 𝑎𝑘)



1. Pull each arm w times

2. Return arm with best average reward

Q: How many times do we have to pull?

Uniform Bandit Algorithm

s

𝑎1 𝑎2
𝑎𝑘

𝑟11, 𝑟12…𝑟1𝑤

Naïve bandit from Even-Dar et. al., 2002

𝑟11, 𝑟12…𝑟1𝑤
𝑟𝑘1, 𝑟𝑘2…𝑟𝑘𝑤



• Markov’s (and then Chebyshev’s) inequality:

• Markov’s inequality gives Chernoff Bound that can be used to calculate 

the probability of within close to some value

Uniform Bandit PAC bound

Random variable 𝑋 ≥ 0 and 𝑐 > 0.Then for any real c, 

𝑃 𝑋 ≥ 𝑐 <
𝐸(𝑋)

𝑐

Random variable 𝑋 with finite E(X) and variance 𝜎2 > 0.
Then for any 𝑐 > 0, 

𝑃 𝑋 − 𝐸 𝑋 ≥ 𝑘𝜎 ≤
1

𝑘2



• Select arm that probably (prob. 1 − 𝛿) has approximately (within 𝜖) 
the best expected reward.

• Meaning all action estimates are 𝜖 accurate with probability 1 − 𝛿, 

𝑅𝑚𝑎𝑥 is maximal reward. 

PAC Objective and Bound

If 𝑤 ≥
𝑅𝑚𝑎𝑥

𝜖

2
ln

𝑘

𝛿
then for all arms with probability 1 − 𝛿

𝐸 𝑅 𝑠, 𝑎𝑖 −
1

𝑤
෍

𝑗=1

𝑤

𝑟𝑖𝑗 ≤ 𝜖



For PAC, we need this many calls:

Uniform Bandit Algorithm

s

𝑎1 𝑎2
𝑎𝑘

𝑟11, 𝑟12…𝑟1𝑤

Naïve bandit from Even-Dar et. al., 2002

𝑟11, 𝑟12…𝑟1𝑤
𝑟𝑘1, 𝑟𝑘2…𝑟𝑘𝑤

𝑘 𝑤 ≥ 𝑂
k

𝜖2
ln
𝑘

𝛿

2



• Non-Adaptive Monte-Carlo

•Single state case (PAC Bandit)

•Policy rollouts

• Adaptive Monte-Carlo

•Single state case (UCB Bandit)

•UCT MCTS

Monte Carlo

Slides from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer



• Assume non-optimal policy and simulator

• How can you improve the policy?

Policy Improvement using Monte-Carlo



• Q-function 𝑄𝜋(𝑠, 𝑎) is defined as:

𝑄𝜋 𝑠, 𝑎 = 𝔼 ෍

𝑡=0

∞

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡) |𝑠0 = 𝑠, 𝑎𝑡 = 𝜋(𝑠𝑡)

That is, expected total discounted reward of starting in s, taking action 
a and then following policy 𝜋.

• Let 𝜋′ 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄𝜋 𝑠, 𝑎

• Theorem (Howard, 1960)

• Computing 𝜋′ amounts to finding action that maximizes Q-function of 

𝜋 (similar to policy iteration). 

•How do we apply the bandit idea?

Policy Improvement Theorem

For any non-optimal policy 𝜋 the policy 𝜋′ is a strict 

improvement over 𝜋.



• Idea: define stochastic function 𝑆𝑖𝑚𝑄 𝑠, 𝑎, 𝜋 that we can implement 

and that will have expected value 𝑄𝜋(𝑠, 𝑎)

• Next, just use bandit algorithm to determine best action

• How to implement SimQ?

Policy Improvement via Bandits

s

𝑎1 𝑎2
𝑎𝑘

𝑆𝑖𝑚𝑄(𝑠, 𝑎1, 𝜋) 𝑆𝑖𝑚𝑄(𝑠, 𝑎2, 𝜋)
𝑆𝑖𝑚𝑄(𝑠, 𝑎𝑘 , 𝜋)



• SimQ might be implemented by simulating the execution of action a in 

state s and then following 𝜋 thereafter.

•For infinite horizon, this would never stop!

•We approximate using finite horizon

• For horizon ℎ, Q-function 𝑄𝜋(𝑠, 𝑎, ℎ) is defined as:

𝑄𝜋 𝑠, 𝑎, ℎ = 𝔼 ෍

𝑡=0

ℎ−1

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡) |𝑠0 = 𝑠, 𝑎𝑡 = 𝜋(𝑠𝑡)

That is, expected total discounted reward of starting in s, taking action 
a and then following policy 𝜋 for h-1 steps.

• What is the approximation error? Exponential in h: 

𝑄𝜋 𝑠, 𝑎 − 𝑄𝜋 𝑠, 𝑎, ℎ ≤ 𝛾ℎ𝑉𝑚𝑎𝑥 𝑉𝑚𝑎𝑥 =
𝑅𝑚𝑎𝑥

1 − 𝛾

(prove in class for 1 point (5 minutes))

Q-value Estimation



• Better idea: redefine stochastic function 𝑆𝑖𝑚𝑄 𝑠, 𝑎, 𝜋, ℎ that we can 

implement and that will have expected value 𝑄𝜋(𝑠, 𝑎, ℎ)

• Next, just use bandit algorithm to determine best action

• How to implement SimQ?

Policy Improvement via Bandits

s

𝑎1 𝑎2
𝑎𝑘

𝑆𝑖𝑚𝑄(𝑠, 𝑎1, 𝜋) 𝑆𝑖𝑚𝑄(𝑠, 𝑎2, 𝜋)
𝑆𝑖𝑚𝑄(𝑠, 𝑎𝑘 , 𝜋)



• Implementat exaxtly as the formula suggests. Simulate taking action a in 

s and follow policy 𝜋 for h steps. Return discounted sum of rewards.

• Expected value of SimQ(s,a,𝜋,h) is SimQ(s,a,𝜋), which can be made 

arbitrarly close to 𝑄𝜋 𝑠, 𝑎 by increasing h. (why?)

Policy improvement via Bandits

SimQ(s,a,𝝅,h)

r=R(s,a)

s=T(s,a)

for i=1 to h-1

r=r+𝛾𝑖R(s,𝜋(s))

s=T(s, 𝜋(s))

return r

Simulate a in s

Simulate h-1 steps 
of policy



Policy improvement via Bandits

SimQ(s,a,𝝅,h)

r=R(s,a)

s=T(s,a)

for i=1 to h-1

r=r+𝛾𝑖R(s,𝜋(s))

s=T(s, 𝜋(s))

return r

Simulate a in s

Simulate h-1 steps 
of policy

s

𝑎1

𝑎2

𝑎𝑘

…

Sum of disounted rewards = SimQ(s,𝒂𝟏,𝝅,h)

Sum of disounted rewards = SimQ(s,𝒂𝟐,𝝅,h)

Sum of disounted rewards = SimQ(s,𝒂𝒌,𝝅,h)



• Better idea: redefine stochastic function 𝑆𝑖𝑚𝑄 𝑠, 𝑎, 𝜋, ℎ that we can 

implement and that will have expected value 𝑄𝜋(𝑠, 𝑎, ℎ)

• Next, just use bandit algorithm to determine best action

• Apply the PAC Objective

Policy Improvement via Bandits

s

𝑎1 𝑎2
𝑎𝑘

𝑆𝑖𝑚𝑄(𝑠, 𝑎1, 𝜋) 𝑆𝑖𝑚𝑄(𝑠, 𝑎2, 𝜋)
𝑆𝑖𝑚𝑄(𝑠, 𝑎𝑘 , 𝜋)



1. For each 𝑎𝑖 run SimQ(s,𝑎𝑖 ,𝜋,h) w times

2. Return action with best average SimQ result

Policy Rollout algorithm

s

𝑎1
𝑎2 𝑎𝑘

SimQ(s,𝑎𝑖 ,𝜋,h) 

trajectories, each 

simulates taking action 𝑎𝑖
and then following 𝜋 for 

h-1 steps.

𝑞11, 𝑞12, … 𝑞1𝑤 𝑞21, 𝑞22, … 𝑞2𝑤 𝑞𝑘1, 𝑞𝑘2, … 𝑞𝑘𝑤



Real world

Executing Policy Rollout in the world

s

𝑎1
𝒂𝟐 𝑎𝑘

𝒂𝟏
𝑎2 𝑎𝑘

Simulated 

experience

𝒂𝟏

Run policy 

rollout

Run policy 

rollout

𝒂𝟐



• For each action there is w calls to SimQ, each using h calls

• In total, khw calls to the simulator

Policy Rollout: # of simulator calls

s

𝑎1
𝑎2 𝑎𝑘

SimQ(s,𝑎𝑖 ,𝜋,h) 

trajectories, each 

simulates taking action 𝑎𝑖
and then following 𝜋 for 

h-1 steps.

𝑞11, 𝑞12, … 𝑞1𝑤 𝑞21, 𝑞22, … 𝑞2𝑤 𝑞𝑘1, 𝑞𝑘2, … 𝑞𝑘𝑤



• Let 𝑎∗ be the action that maximizes the true Q-function 𝑄𝜋 𝑠, 𝑎 .

• Let 𝑎′ be the action return by policy rollout.

• Using the PAC result for single state, we get following:

Does this mean that the policy generated by the rollout will be close to 

the 𝜋′ (from the Howard theorem)?

Policy Rollout: PAC Guarantee

If 𝑤 ≥
𝑅𝑚𝑎𝑥

𝜖

2
ln

𝑘

𝛿
then for all arms with probability 1 − 𝛿

𝑄𝜋 𝑠, 𝑎∗ − 𝑄𝜋(𝑠, 𝑎′) ≤ 𝜖 + 𝛾ℎ𝑉𝑚𝑎𝑥



• How good is policy rollout compared to 𝜋′?

- for fixed h and w there exists MDP such that rollout policy is 

arbitrarily worse than 𝜋′

•The MDP example is constructed for given parameters and is quite 
artificial.

+ adding assumptions to the MDP, h and w can be chosen so that 

rollout quality is close to 𝜋′.

•Complicated

+ h and w can be selected so that rollout is (approximately) no worse 

than 𝜋 in any MDP

•So it will never hurt, only help

Policy Rollout: Quality



• Two stage: compute rollout policy of “rollout of policy 𝜋”

• Requires 𝒌𝒉𝒘 𝟐 calls to the simulator

• Exponential in number of stages

Multi-stage Rollout

s

𝑎1
𝑎2 𝑎𝑘

Trajectories of 

SimQ(s,𝑎𝑖 ,Rollout(𝜋),h)

𝑞11, 𝑞12, … 𝑞1𝑤 𝑞21, 𝑞22, … 𝑞2𝑤 𝑞𝑘1, 𝑞𝑘2, … 𝑞𝑘𝑤



• Often, we can easily write simple policies

•Dijkstra replan for robot Emil

•Backgammon

•Solitaire

•Network routing policy

• Policy rollout is general and easy way to improve such policies 

given simulator

• This often provides substantial improvement:

•Backghamon

•Go

•Solitaire

•…

Rollout summary



• Policy Switching

•Set of base policies, {𝜋1, 𝜋2, … 𝜋𝑀}

•Instead of actions, try different policies in state S using Sim(s,𝜋𝑖,h)

•Works for any number of actions

• Single call to Rollout[π](s) approximates one iteration of policy 

iteration inialized at policy π 

Rollout summary



Example: Rollouts for Solitaire   [Yan et al. Nips 2004]



Example: Rollouts for Solitaire   [Yan et al. Nips 2004]



Example: Rollouts for Solitaire   [Yan et al. Nips 2004]



• Non-Adaptive Monte-Carlo

•Single state case (PAC Bandit)

•Policy rollouts

• Adaptive Monte-Carlo

•Single state case (UCB Bandit)

•UCT MCTS

Monte Carlo

Slides from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer



• Task: Select arm that probably (prob. 1 − 𝛿) has approximately 

(within 𝜖) the best expected reward.

• PAC = Probably Approximately Correct

• Use least possible number of runs.

Multi-Armed bandit - PAC

s

𝑎1 𝑎2
𝑎𝑘

𝑅(𝑠, 𝑎1) 𝑅(𝑠, 𝑎2)
𝑅(𝑠, 𝑎𝑘)



• Task: find arm-pulling strategy such that the expected total reward at 

time n is close to the best possible.

•Uniform Bandit – bad choice, wastes time with bad arms

•Need to balance exploitation of good arms with exploration of 
poorly understood arms.

Multi-Armed bandit – Regret Minimization

s

𝑎1 𝑎2
𝑎𝑘

𝑅(𝑠, 𝑎1) 𝑅(𝑠, 𝑎2)
𝑅(𝑠, 𝑎𝑘)



• Task: find arm-pulling strategy such that the expected total reward at 

time n is close to the best possible.

•Uniform Bandit – bad choice, wastes time with bad arms

•Need to balance exploitation of good arms with exploration of 
poorly understood arms.

UCB Adaptive Bandit Algortihm

s

𝑎1 𝑎2
𝑎𝑘

𝑅(𝑠, 𝑎1) 𝑅(𝑠, 𝑎2)
𝑅(𝑠, 𝑎𝑘)



• Aiming at “reward as close as possible to the best reward” means we 

are minimizing regret:

𝑅𝑛 = 𝜇∗𝑛 −෍

𝑗=1

𝑘

𝜇𝑗𝐸[𝑇𝑗(𝑛)]

Where 𝜇𝑗 are the expected payoffs of arms, 𝜇∗ is the best expected payoff 

and 𝐸[𝑇𝑗(𝑛)] is the expected number of pulls on arm 𝑗 in total 𝑛 pulls.

• 𝑋𝑗,1, 𝑋𝑗,2… = i.i.d r.v. of rewards from bandit 𝑗

• 𝜇𝑗= expected value of 𝑋𝑗

Regret

s

𝑎1 𝑎2
𝑎𝑘

𝜇1𝐸[𝑇1(𝑛)] 𝜇2𝐸[𝑇2(𝑛)] 𝜇𝑘𝐸[𝑇𝑘(𝑛)]



• Upper Confidence Bounds [Auer er. al., 2002]:

• When choosing arm, always select arm with highest UCB value

• ഥ𝑋𝑗 = mean of observed rewards, 𝑛 = number of plays so far

Minimizing regret - UCB

𝑈𝐶𝐵 = ഥ𝑋𝑗 +
2 ln 𝑛

𝑛𝑗

ExplorationExploitation



• Play all arms once initially

• Then based on the formula

UCB - Example

s

𝑎1 𝑎2
𝑎𝑘

ഥ𝑋𝑗 +
2 ln𝑛

𝑛𝑗



•
2 ln 𝑛

𝑛𝑗
is based of bound of the form 𝑃 ഥ𝑋𝑗 − 𝐸[𝑋] ≥ 𝑓(𝜎, 𝑛) ≤ 𝜎

(Remember PAC?)

• And 𝜎 is chosen to be time dependent (by 𝑛), goes to zero.

UCB - Example

ഥ𝑋𝑗 +
2 ln 𝑛

𝑛𝑗



Excel example:

https://drive.google.com/open?id=1A9Kr-

JDz_ZJlYOX3aFMrFaLUAPeAZV7Z

UCB

https://drive.google.com/open?id=1A9Kr-JDz_ZJlYOX3aFMrFaLUAPeAZV7Z


• Non-Adaptive Monte-Carlo

•Single state case (PAC Bandit)

•Policy rollouts

• Adaptive Monte-Carlo

•Single state case (UCB Bandit)

•UCT MCTS

Monte Carlo

Slides from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer



UCB for Trees = UCT

•Tree node:
• Associated state, 
• incoming action, 
• number of visits, 
• accumulated reward

•External slides by Michele Sebag: 
https://drive.google.com/open?id=1ytp9l33_6WNe62qLAzV326iS4WmYeFpY

https://drive.google.com/open?id=1ytp9l33_6WNe62qLAzV326iS4WmYeFpY


• Aheuristic

•Does not require any domain specific knowledge

•Domain specific knowledge can provide significant speedups

• Anytime

•Can return currently best action when stopped at any time

• Asymmetric

•Tree is not explored fully

• MCTS = UCT? No consistency 

in the naming

MCTS notes

[Arnaud et al., 2007]


