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MDP

« Method for solving MDPs iteratively

Value function of a policy:

Vi (s) = E[X¢0¥" - R(St, t, St41) IS0 = S, ap = (S¢)]
from state s, policy 7, reward function R

« Optimal value function:
V*(s) = max E[R(s,m )]
A

« Optimal policy — gives max value in each state
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Value Iteration AN
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« basic algorithm for solving MDPs based on Bellman’s equation

« Value iteration (Bellman backup)
e Vo()=0 Vs€eS
e Vi(s) = mgi(ZS,EST(S, a,s') [R(s, a,s')+yV (s’)]
a

R/—/

Q-function (Q(s, a))

o for k — oo values converge to optimum V¥ — /*



Value Iteration — example

Step: 0
! 0
0
0

+3

Step: 1
0
1 . 1 IO
0

. 410 Step: 2
0 63
6.3 9.8
' 0 63

0.1 Step: 3
0.14—1-}0_7 45 6.2
0.1 6.2 9.7
45 6.1

From http://artint.info/html/Artint_224.html#gridworld-ex
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Value Iteration - questions

e WhyV%(s) =02

o “for k — oo values converge to optimum V% — V*

7

o 002??Yeah, that sounds useful

o How fast is this?

 Value iteration stopping criterion (Bellman error):
WV =V'|| <e

Gives e-optimal value functionV



Relation between policy and value function AN
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 Distance between value functions:
v —vi| = [Iv=V'I] , = max [V (s) = V'(s)]

Theorem:

The value function V" of greedy policy  derived from e-optimal value
functionV satisfies following:

* .
WV =v*| <2ey/(1-y)
+ .'II
/
- /
G | agreedy e
S i -
L—% v \* 1
v li‘_ evall_!?j:_g,. ######## my -
VG ---------
X qu
Value function space Policy space 4

Image from Singh and Yee, An Upper Bound on the Loss from Approximate Optimal-Value Functions



Proof AN
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Theorem:

The value function V" of greedy policy m derived from e-optimal value

functionV satisfies following:
[V — v~

<Z2ey/(1-vy)

Proof:



Value iteration - options NI
* Can keepV or Q in memory

*Saving V(s) arrays — less storage

*Saving Q(s, a) — less iterations
* Asynchronous value iteration

*Keep only one array of value functions, update online

*Less space and faster convergence

*Difficulty with the stopping condition



Order of Backups i
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* Heuristic search VI

* Uses heuristics to dynamically determine the order of updates
(lecture)

* Even static ordering beforehand can have huge impact

* Prioritized sweeping

*Updates states that will produce largest delta in value function

* Topological value iteration

*Builds a graph of “casually dependent” states to find optimal order of
backups.



Best Action Only NI
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* InVl,all actions have to be backed up
* Policy iteration — actions according to one policy only

 Requires “optimistic estimate” of Q*: Q(x,a) > Q*(x,a)



Monte Carlo NI
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* Non-Adaptive Monte-Carlo
*Single state case (PAC Bandit)

*Policy rollouts

* Adaptive Monte-Carlo
*Single state case (UCB Bandit)
*UCT MCTS

Following slides used from from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer



Monte-Carlo and MDPs AN
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Exact state space description not available in large state spaces, but
there exist simulators:

*Traffic simulations

Robotics simulators
°Go

Monte-Carlo in MDPs

*Use simulator to evaluate stochastically selected actions
*Finite (but large) state set S

*Finite action set A

*Stochastic, real-valued, bounded reward function R(s, a)=r

*Stochastic transition function T(s,a)=s’



Planning in single state N\i
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e Multi-Armed Bandit Problem

*Which action will yield best expected reward?

*Simulator returns reward R(s, a)




Multi-Armed bandit - PAC objective C/EN%FI!

* PAC = Probably Approximately Correct

* Select arm that probably (prob. 1 — §) has approximately (within €)
the best expected reward.

* Use least possible number of runs.




Uniform Bandit Algorithm N\i
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|. Pull each arm w times
2. Return arm with best average reward

Q: How many times do we have to pull?

Naive bandit from Even-Dar et. al., 2002



Uniform Bandit PAC bound AN
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* Markov’s (and then Chebyshev’s) inequality:

Random variable X = 0 and ¢ > 0. Then for any real c,

P(X>c)< E(CX)

Random variable X with finite E(X) and variance g% > 0.
Then for any ¢ > 0,

1
P(IX —EX)| 2 ko) < 15

* Markov’s inequality gives Chernoff Bound that can be used to calculate
the probability of within close to some value



PAC Object

ive and Bound
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* Select arm that probably (prob. 1 — §) has approximately (within €)
the best expected reward.

If W > (Rmax
_ €

2
) ln% then for all arms with probability 1 — &

w

1
E[R(s,a;)] — ;z Tij

j=1

<

€

* Meaning all action estimates are € accurate with probability 1 — §,

R, 45 is maximal reward.



Uniform Bandit Algorithm N\i
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For PAC, we need this many calls:

Naive bandit from Even-Dar et. al., 2002



Monte Carlo

* Non-Adaptive Monte-Carlo
*Single state case (PAC Bandit)

*Policy rollouts

* Adaptive Monte-Carlo
*Single state case (UCB Bandit)
*UCT MCTS

Slides from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer
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Policy Improvement using Monte-Carlo NI
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* Assume non-optimal policy and simulator

* How can you improve the policy!?



Policy Improvement Theorem NI
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Q-function Q. (s, a) is defined as:

Qr(s,a) = E lz VtR(St; a:)|so = s,a; = w(st)
t=0

That is, expected total discounted reward of starting in s, taking action
a and then following policy .

Let 7'(s) = argmax,Q,(s,a)

Theorem (Howard, 1960)

For any non-optimal policy 1 the policy 7’ is a strict
improvement over T,

Computing ™' amounts to finding action that maximizes Q-function of
7 (similar to policy iteration).

*How do we apply the bandit idea?



Policy Improvement via Bandits NI
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* ldea: define stochastic function SimQ (s, a, ) that we can implement
and that will have expected value Q (s, a)

* Next, just use bandit algorithm to determine best action

* How to implement SImQ?

SimQ(s, al,n) SimQ(S, azjr[) SimQ(Sr Clk,Tl,')



Q-value Estimation NI
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* SimQ might be implemented by simulating the execution of action a in
state s and then following 7 thereafter.

*For infinite horizon, this would never stop!

*We approximate using finite horizon

* For horizon h, Q-functj}cl)n Q. (s,a, h) is defined as:

Qn(s,a,h) = Z YRG5t @) Iso = 5,0 = m(se)

That is, expected total dlscounted reward of starting in s, taking action
a and then following policy 7 for h-1 steps.

* What is the approximation error?! Exponential in h:

|QTL’(SJ a) o QTL’(S) a, h)l S Vthax Vmax —

(prove in class for | point (5 minutes))



Policy Improvement via Bandits NI
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* Better idea: redefine stochastic function SimQ (s, a, , h) that we can
implement and that will have expected value Q. (s, a, h)

* Next, just use bandit algorithm to determine best action

* How to implement SImQ?

SimQ(s, al,n) SimQ(S, azjr[) SimQ(Sr Clk,Tl,')



Policy improvement via Bandits C/EN%FI!

SimQ(s,a,m,h)
r=R(s,a) . _
s=T(s,a)} Simulate ain s
for i=1 to h-| 1
=ryR(s(s) - Smulate bl steps
s=T(s, 1(s))
return r }

Implementat exaxtly as the formula suggests. Simulate taking action a in
s and follow policy 7 for h steps. Return discounted sum of rewards.

Expected value of SimQ(s,a,m,h) is SimQ(s,a,7), which can be made
arbitrarly close to Q. (s, a) by increasing h. (why?)



Policy improvement via Bandits NI
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SimQ(s,a,m,h)
r=R(s,a) . _
s=T(s,a)} Simulate ain s
for i=1 to h-| 1
I‘=I’+)/iR(S,T[(S)) | ?flrggllitye h-1 steps
s=T(s, 1(s))
return r

m mdisounted rewards = SimQ(s,a4,m,h)
al [ N N J
[W\' /8’u?r§f disounted rewards = SimQ(s,a,,m,h)
a,

m /%Umngdisounted rewards = SImQ(s,ay,m,h)




Policy Improvement via Bandits C/EN%FI!

* Better idea: redefine stochastic function SimQ (s, a, , h) that we can
implement and that will have expected value Q. (s, a, h)

* Next, just use bandit algorithm to determine best action

* Apply the PAC Objective

SimQ(s, al,n) SimQ(S, azjr[) SimQ(Sr Clk,Tl,')



Policy Rollout algorithm N\i
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|. For each a; run SimQ(s,a;,7,h) w times

2. Return action with best average SimQ result

SimQ(s,a;,m,h)

trajectories, each

simulates taking action a; —
and then following 1 for

h-1 steps.

—

D00 D0 D)

Qi 912, 91w 421,922, 92w Qr1, k2 - Qiew

~—



Executing Policy Rollout in the world NI
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ai a,
Real world { m. “/YW\, f\‘

"+ Run policy ‘. Run policy

\

. rollout \ rollout

.9 1
AR, - L %
| EEETE2ERR | i T LW Y = ;—]
A L= | | | EH=ER
)L. i e Ee= [ i
= P @ @ lw Bt
—— a o | = o e
i '~3|’®1mv1 ! e SIS BT
T [ e ) moner | [ s ‘r;rmt [ e () e |
— e L N | ) L |
R

e

222 222 222 220

Simulated
experience




Policy Rollout: # of simulator calls NI

* For each action there is w

CENTER

calls to SimQ, each using h calls

 |n total, khw calls to the simulator

SimQ(s,a;,m,h)

trajectories, each

simulates taking action a; —
and then following 1 for

h-1 steps.

—

D00 D0 D)

Qi 912, 91w 421,922, 92w Qr1, k2 - Qiew



Policy Rollout: PAC Guarantee NI
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* Let a* be the action that maximizes the true Q-function Q. (s, a).
* Let a’ be the action return by policy rollout.

* Using the PAC result for single state, we get following:

2
Ifw > (R";“x) lng then for all arms with probability 1 — §

|Qn(5: a*) — Qr(s, Cl’)| <€+ Vthax

Does this mean that the policy generated by the rollout will be close to
the ' (from the Howard theorem)?



Policy Rollout: Quality i
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* How good is policy rollout compared to m'?
* for fixed h and w there exists MDP such that rollout policy is
arbitrarily worse than 7’

*The MDP example is constructed for given parameters and is quite
artificial.

+ adding assumptions to the MDP, h and w can be chosen so that
rollout quality is close to 7’.

*Complicated

+ h and w can be selected so that rollout is (approximately) no worse
than 17 in any MDP

*So it will never hurt, only help



Multi-stage Rollout

Trajectories of
SimQ(s,a;,Rollout(m),h) —

Exponential in number of stages

NI
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Two stage: compute rollout policy of “rollout of policy ”

Requires (khw)? calls to the simulator

911,912, - Q1w

~—

421,922, 92w qi1, 952, - Qrew



Rollout summary NI
* Often, we can easily write simple policies
*Dijkstra replan for robot Emil
*Backgammon
*Solitaire
*Network routing policy

* Policy rollout is general and easy way to improve such policies
given simulator

* This often provides substantial improvement:
*Backghamon
*Go

*Solitaire



Rollout summary NI
* Policy Switching
*Set of base policies, {r, 5, ... Ty}
*Instead of actions, try different policies in state S using Sim(s,;,h)
*Works for any number of actions

* Single call to Rollout[1T](s) approximates one iteration of policy
iteration inialized at policy



Example: Rollouts for Solitaire [van et i Nips 2004]

Policy

Player Success Rate | Time/Game
Human Expert | 36.6% 20 min
(naive) Base 13.05% 0.021 sec
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Example: Rollouts for Solitaire [van et i Nips 2004]

Player Success Rate | Time/Game
Human Expert | 36.6% 20 min
(naive) Base 13.05% 0.021 sec
Policy

1 rollout 31.20% 0.67 sec
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Example: Rollouts for Solitaire [van et i Nips 2004]

Player Success Rate | Time/Game
Human Expert | 36.6% 20 min
(naive) Base 13.05% 0.021 sec
Policy

1 rollout 31.20% 0.67 sec

2 rollout 47.6% /.13 sec

J rollout 56.83% 1.5 min

4 rollout 60.51% 18 min

5 rollout 70.20% 1 hour 45 min
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Monte Carlo

* Non-Adaptive Monte-Carlo
*Single state case (PAC Bandit)

*Policy rollouts

* Adaptive Monte-Carlo
*Single state case (UCB Bandit)
*UCT MCTS

Slides from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer

NI

CENTER



Multi-Armed bandit - PAC AN
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* Task: Select arm that probably (prob. 1 — §) has approximately
(within €) the best expected reward.

* PAC = Probably Approximately Correct

* Use least possible number of runs.




Multi-Armed bandit — Regret Minimization NI
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* Task: find arm-pulling strategy such that the expected total reward at
time n is close to the best possible.

Uniform Bandit — bad choice, wastes time with bad arms

*Need to balance exploitation of good arms with exploration of
poorly understood arms.




UCB Adaptive Bandit Algortihm i

CENTER

Task: find arm-pulling strategy such that the expected total reward at
time n is close to the best possible.

Uniform Bandit — bad choice, wastes time with bad arms

*Need to balance exploitation of good arms with exploration of
poorly understood arms.




Regret NI
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* Aiming at “reward as close as possible to the best reward” means we
are minimizing regret:

k
Ry == ) wE[T;(n)]
j=1

Where u; are the expected payoffs of arms, u* is the best expected payoff
and E[T;(n)] is the expected number of pulls on arm j in total n pulls.

* Xj1,Xj ... = iid rv.of rewards from bandit j

* u;= expected value of X;




Minimizing regret - UCB

* Upper Confidence Bounds [Auer er. al., 2002]:

* When choosing arm, always select arm with highest UCB value

X.

J

_ 2Inn
UCB = X; +
/ \ le
/ .
Exploitation \Exploranon

= mean of observed rewards, n = number of plays so far

NI
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UCB - Example £l
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o e, - e S uCZ’-({)
Play all arms once initially /;% s e R O Ry )
Then based on the formula & T
s



UCB - Example NI
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_ 2Inn

n;

o !2:1.” is based of bound of the form P()?] — E[X] = f (o, n)) <o
( emember PAC?)

* And o is chosen to be time dependent (by 1), goes to zero.
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Excel example:

https://drive.google.com/open?id=1 A9Kr-
|Dz_ZJIYOX3aFMrFaLUAPeAZV7Z



https://drive.google.com/open?id=1A9Kr-JDz_ZJlYOX3aFMrFaLUAPeAZV7Z

Monte Carlo

* Non-Adaptive Monte-Carlo
*Single state case (PAC Bandit)

*Policy rollouts

* Adaptive Monte-Carlo
*Single state case (UCB Bandit)
‘UCT MCTS

Slides from Alan Fern, Dan Weld, Dan Klein, Luke Zettlmoyer
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UCB forTrees = UCT NI
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/—> Selection —— Expansion —— Simulation —> Backpropagation ~

Tree Def:&mir
Policy Policy
v
\. a J

*Tree node:
« Associated state,
incoming action,
* number of visits,
 accumulated reward

*External slides by Michele Sebag:
https://drive.google.com/open?id=1ytp9I33 6WNeb62gqLAZzV326i1S4AWmYeFpY



https://drive.google.com/open?id=1ytp9l33_6WNe62qLAzV326iS4WmYeFpY

MCTS notes

Aheuristic

*Does not require any domain specific knowledge

*Domain specific knowledge can provide significant speedups
Anytime

*Can return currently best action when stopped at any time

H“H m”.”
u'} n) u V L

Asymmetric

*Tree is not explored fully

MCTS = UCT? No consistency

in the naming

[Arnaud et al., 2007]
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