
Non-Blocking Linked List
Marek Cuchý

marek.cuchy@agents.fel.cvut.cz

B4M36ESW

March 25, 2019



Non-Blocking Stack (LIFO)



Linked-List: AtomicReference - Node



Linked-List: AtomicReference - Add



Linked-List: AtomicReference - Delete



Linked-List: AtomicReference - Delete

• NOT SAFE



Linked-List: AtomicReference - Example
Thread A – delete(a) Thread B – add (b)

head a c

b

tail

previous: a
current: c

previous: head
current: a



Linked-List: AtomicReference - Example
Thread A – delete(a) Thread B – add (b)

previous: a
current: c

previous: head
current: a

head a c

b

tail

Variable previous still refers to the deleted node



Linked-List: AtomicReference - Example
Thread A – delete(a) Thread B – add (b)

head a c

b

tail

previous: a
current: c

previous: head
current: a

Variable previous still refers to the deleted node



Linked-List: AtomicReference - Example
Thread A – delete(a) Thread B – add (b)

head a c

b

tail

previous: a
current: c

previous: head
current: a

SOLUTION: Put a mark on the deleted node first



Linked-List: AtomicMarkableReference - Delete

• Only mark the node – logical delete

• All threads can physically delete the node during traversal

head a c tailFalse False



AtomicMarkableReference<T>

• allows atomic operations on <boolean, reference> pair:
• boolean compareAndSet(T expectedReference, T newReference, boolean expectedMark, boolean newMark)

• boolean attemptMark(T expectedReference, boolean newMark)

• T get(boolean[] markHolder) – store current mark to ‚markHolder‘ array and return reference



Linked-List: AtomicMarkableReference - Delete

Placeholders for results (workaround for C++ references)

Find the location of the node to be deleted

Try to put mark on the curr node 

Can be ommitted. Physically deletes the node. No need 
to check if CAS successfull, because if it returns false 
another thread already deleted the node



Linked-List: AtomicMarkableReference - Find

Get next reference and store the mark to ‚marked‘ array
• ‚marked[0]‘ contains the mark of ‚curr‘ node
• Iff ‚curr‘ logically deleted (marked)→marked[0]==true

Try to physically delete marked node



Non-Blocking Skip-List

• Generalization of linked-list

• During insertion/deletion the node is added/removed to/from 
mutliple-levels sequentially
• Can take some time to add/remove to/from all levels (thread can be 

interrupted)

• →The lowest level is the most important and decisive if a value is contained

head a c tailFalse False

False False

False

e False



Non-Blocking Skip-List – Find(d)

head a c tailFalse False

False False

False

e False

boolean find(Node[] prevResult, Node[] nextResult, int value)



Non-Blocking Skip-List – Find(d)

head a c tailFalse False

False False

False

e False

prevResults

boolean find(Node[] prevResult, Node[] nextResult, int value)

nextResults


