
Introduction to
Robot Operating System

Autonomous Robotics Labs

Labs 01 (15.2./18.2. 2021)

ARO Labs
I For details and contacts – please see the course web page:

https://cw.fel.cvut.cz/b202/courses/aro/tutorials/start
I There is a guide to get you started with ROS on a remote faculty

computer:
https://cw.fel.cvut.cz/b202/courses/aro/tutorials/remote_access

I Or you can download a singularity image (more on that later) and
run ROS locally:
https://cw.fel.cvut.cz/b202/courses/aro/tutorials/ros

I Main assignment:
I Develop a program for real Turtlebot

I The first 7 labs should give you the basic knowledge needed to do it

https://cw.fel.cvut.cz/b202/courses/aro/tutorials/start
https://cw.fel.cvut.cz/b202/courses/aro/tutorials/remote_access
https://cw.fel.cvut.cz/b202/courses/aro/tutorials/ros
https://www.turtlebot.com/turtlebot2/

ROS in Singularity
I Singularity = software for virtualization via containers (more details

in Czech)
I Running singularity image:

$ singularity shell --nv /path/to/image
I (--nv needed for GUI, e.g. rviz)
I Existing images should be in: /local/singularity_images, e.g.:
I 〈distro〉 = melodic (there are other distros but this one will be used

throughout the labs)
$ singularity shell --nv
/opt/ros-〈distro〉-desktop-full.simg
I Automatic download of image from docker:

$ singularity shell docker://ros:〈distro〉-robot-bionic
I Source the configuration script:

$ source /opt/ros/〈distro〉/setup.sh

https://sylabs.io/guides/3.5/user-guide/
https://support.dce.felk.cvut.cz/mediawiki/index.php/singularity

Following the labs on your computer
1. Remote connection (a) or on your computer (b):

a) See the first slide for more details

$ ssh student@turtle.felk.cvut.cz
$ ssh -Y -J <username>@turtle.felk.cvut.cz <username>@<target-computer>

b) Download singularity image:

$ wget http://ptak.felk.cvut.cz/tradr/share/robolab_melodic.simg

2. Start the singularity image
a) On remote host:

$ singularity shell --nv /opt/singularity/robolab/melodic
(the arg –-nv might not always work - ok if we don’t need
visual output)

b) Locally:

$ singularity shell --nv <whereever_it_is>/robolab_melodic.simg

3. Always source the ROS configuration file (same for local & remote):
$ source /opt/ros/aro/setup.bash

Following the labs – example code
4. Create a “workspace” folder (more on that later):

$ mkdir catkin_ws

5. Download the example package:
$ wget
https://cw.fel.cvut.cz/b202/_media/courses/aro/tutorials/incredible_package.zip

6. Unzip it into the workspace folder:
$ unzip incredible_package.zip

7. How to build and use will be explained later

https://cw.fel.cvut.cz/b202/_media/courses/aro/tutorials/incredible_package.zip
https://cw.fel.cvut.cz/b202/_media/courses/aro/tutorials/incredible_package.zip

ROS

Very Fast & Furious ROS overview
I What is ROS?

I Robot Operating System
I asynchronous data processing (but can also operate in synchronous

mode)
I distributed system (but has a central“node”)
I contains a lot of“stuff” useful for developing SW for robotic

applications:
various tools (packages) & libraries for many robotics-related
problems, SW management tools, visualization & debugging tools

ROS and Python
I ROS 1 (Melodic distro) still uses Python 2.7

I it is possible to make it work with Python 3+ or
I switch to ROS 2 which uses Python 3+ by default

I In this course we won’t do either of those (to keep things simpler –
hopefully) and stick with Python 2.7

I Python 2.7 peculiarities:

print (7 / 2) # = 3
print (7 / 2.0) # = 3.5

I Import from __future__:

from __future__ import print_function , division

print_function enforces the use of print() as a function
division enables “true” division (instead of integer division)

ROS components
The simplest ROS topology:

ROS Master
I Communication “server” (ROS actually uses P2P model): mediates

communication between nodes
I every new node registers with the master (address where other nodes can

reach it)
I tracks topic and service publishers and subscribers
I data is then sent directly between nodes

I Provides parameter server
I Always needs to be executed before doing anything else with ROS

I $ roscore
I launch files start master if not running already (I’ll explain later...)
I run it & forget about it (until you get to more advanced stuff)

I reasons for restarting: new logging session, cleaning up (crashed nodes →
$ rosnode cleanup, renew parameter server)

I cost of restarting: no new connections can be established → whole system
restart likely required

I Can be run on another machine on the network
I $ echo $ROS_MASTER_URI

http://localhost:11311
I $ export ROS_MASTER_URI=http://<other_machine>:11311/

In singularity:
$ singularity instance start <image_name>.simg <inst_name>
$ singularity exec instance://<inst_name> bash -c "source
/opt/ros/aro/setup.bash && roscore &"

ROS Node
I Basic building block of ROS
I Executable programs and scripts (Python)

I write a script
I make it executable:

$ chmod u+x <filename>.py or $ chmod +700 <filename>.py
I run it:

$ rosrun <package_name> <node_name>.py
I simply executes an executable program or script

I A node is an instance of a ROS program
I multiple instances of the same program can run simultaneously (with

different names)
I names separated into namespaces (/)

I Nodes can do anything you want them to (or anything you can
program them to do)

I Communicate with other nodes via topics and services
I can be all on one machine or distributed across the Universe, as long

as they can all reach the master and each other
I Each node can be written in any language with ROS support: C++,

Python, MATLAB, Java, Lisp

ROS Node: console commands
$ rosnode
list lists currently active nodes;

hint: <command> | grep <expression> outputs only lines
containing the expression and highlights the occurrences

info <node_name> shows info about a specific node: topics where the node publishes
and to which it is subscribed to, services, and node address

ping <node_name> tests node reachability and response time
machine [machine_uri] lists machines with nodes connected to the master or nodes

running on a specific machine
kill <node_name> does what it says on the cover...

Help will always be given to those who ask for it:
I $ rosnode help
I $ rosnode <command> -h

Or in general:
I $ ros<whatever> help
I $ ros<whatever> <some_sub_command> -h

And use TAB key for command completion!
I Trivia: Every time someone does not use command completion a cute bunny eats a

fluffy unicorn! And bunnies have a lethal allergy to unicorn fur!

ROS Topic
I Communication channels used by the nodes to send and share

information
I Publisher & Subscriber model

I every node can publish or subscribe/listen to a topic
I Each topic has a specific data type that can be sent over it

ROS Topic: console commands
$ rostopic

list lists existing topics; existing topic = any topic that was registered with the master,
i.e. existing does not mean active (useful to know when debugging); use grep...

info <topic_name> prints info about a specific topic: nodes publishing in the topic, subscribed nodes
and type of message that can be transferred via the topic (data type)

hz <topic_name> shows publishing rate of a topic (better than echo if you just want to see whether
something is being published over a topic)

echo <topic_name> writes out messages transmitted over a topic (useful for debugging of topics with
low rate and small messages); specific parts of the message can be printed by
appending“/<msg_part>/...”
–noarr flag will suppress printing of arrays (e.g. images that can “flood” the
console)

type <topic_name> prints the type of the messages transmitted via the topic
bw <topic_name> bandwidth used by the topic, i.e. the amount of data transmitted over it per second

(on average) – useful to check when sending a lot of data
pub <topic_name> can be used to publish a message over a topic when debugging – obviously, only

usable for topics with simple messages<message_type> <msg>

find <message_type> lists all topics that use the specified message type

ROS Message
I Data structures used to send data over topics

I simple: bool, int<N>, uint<N>, float<N>, string, time, duration
(N ∈ {8, 16, 32, 64}∼variable bit size)

I complex: composed of simple types, can contain other message types and a
header

I Message header
seq sequence number – unique ever-increasing ID

stamp message timestamp – epoch seconds & nanoseconds
frame_id frame ID – frame associated with the message

I $ rostopic echo /<some_interesting_topic>/header – will display just
the headers of the messages

I Messages are defined in “message files”

ROS Message: console commands
$ rosmsg

show <message_name> shows message fields (msg definition file)
list lists all available message types
package <package_name> lists all message types in a specific package
packages lists all packages containing (definitions of) any

messages

ROS Packages
I ROS files are organized into packages
I Structure of a package:

<some_package>
[src]/package_name/ source code – scripts; normal “Pythonic”

code structure
[scripts] usually (non-Python/non-C++) scripts or

(standalone) executables (e.g. for rosrun)
[launch] launch files
[config] configuration files, yaml param files for param server
[include] additional libraries; include headers for C++

[msg] message definitions
[srv] service definitions

[action] action definitions
CMakeLists.txt CMake config file (used by catkin)
package.xml package manifest – catkin/ROS package config file

logs build logs

ROS Packages: console commands
$ rospack

list lists all currently available packages
find <message_name> prints path to a specific package

$ roscd <package_name> – cd into a package
$ rosls <package_name> – ls a package directory content
$ rosed <package_name>/<some_file> – launch a text editor and open the
specified file in it (a quick way to adjust small details in a file while debugging)

Workspace

Workspace
I Collection of folders with related ROS files
I Source files, definitions, configuration files, scripts, and other files

are organized into packages
I Compilation done only via the ROS build system (catkin tools)

ROS Build system
I catkin
I a.k.a. catkin command line tools

https://catkin-tools.readthedocs.io/en/latest/cheat_sheet.html
I Extension of CMake – can build libraries, executables, ... (C++)

I collection of CMake macros and Python scripts
I Auto-generates message/service/action related functions based on their

definitions

init initializes a workspace in the current
folder

config show current WS configuration
(additional args to change the current
config)

create pkg <package_name> creates a new package (in the current
folder); additional args to provide
package dependencies, author,
description, ...

build [package_name] builds the current WS/package
clean [package_name] cleans catkin products (build, devel,

logs)
I Building a WS with catkin creates these folders in the WS:

build build targets
devel (as in “development”) – contains setup script
logs build logs

https://catkin-tools.readthedocs.io/en/latest/installing.html
https://catkin-tools.readthedocs.io/en/latest/cheat_sheet.html

Creating a workspace
I Create folder and cd into it

$ mkdir example_ws && cd example_ws
I Create src folder

$ mkdir src
I Init the workspace

$ catkin init
I Build the WS (builds just the catkin tools)

$ catkin build
I Look at it (just to make you feel happy)

$ ll or $ ls -la (if the first command does not work
I Go into the src folder

$ cd src

Creating a package
I Create a package

$ catkin create pkg incredible_package --catkin-deps
rospy

I CD into the package
$ cd incredible_package

I Check and modify the manifest
$ vim package.xml (or just use GUI based editor)

I Check the CMakeLists.txt (just look at it for now)
I Create a src folder (if it does not exist)

$ mkdir src/

Creating a node
I Fire up your favorite editor and create publisher.py:

#!/ usr/bin/env python2
import rospy
from std_msgs.msg import Float32
from numpy.random import rand

if __name__ == ’__main__ ’:
rospy.init_node(’publisher ’)
rate = rospy.Rate (2)
publisher = rospy.Publisher(’random ’,

Float32 , queue_size =10)
while not rospy.is_shutdown ():

publisher.publish(rand ())
rate.sleep()

I Make executable
chmod u+x publisher.py

I Build & source
$ catkin build
$ source ∼/example_ws/devel/setup.bash

Creating another node
I listener.py

#!/ usr/bin/env python2
import rospy
from std_msgs.msg import Float32

def callback(msg):
print(’Received a message: {}’.format(msg))
rospy. loginfo (’ Received a message :\
{}’. format (msg))

if __name__ == ’__main__ ’:
rospy.init_node(’listener ’)
listener = rospy.Subscriber(’random ’,

Float32 , callback)
rospy.spin()

You first ROS package
I Run the nodes and observe the beauty of messages being

transmitted:

$ roscore

$ rosrun my_package publisher.py

$ rosrun my_package listener.py
Received a message: data: 0.312089651823
Received a message: data: 0.984019577503
Received a message: data: 0.142692148685
Received a message: data: 0.230828240514
Received a message: data: 0.27526524663

ROS Python libraries
I rospy

I the single most important library in Python when working with ROS
I handles most of the interaction with ROS

I rosnode, rosservice, rosparam, rostopic,...
I libraries that mostly do the same as their command line counterparts

I std_msgs, sensor_msgs, geometry_msgs, ...
(http://wiki.ros.org/common_msgs)
I libraries containing the standard set of messages

I rosbag
I library for working with bag files

I tf
I library for working with transformations between coordinate systems

(very important in ROS)
I actionlib

I library for working with actions

http://wiki.ros.org/common_msgs

rospy: bread and butter
init_node(’<node_name>’, [anonymous=True])
spin()
is_shutdown()

rate = Rate(<hz>); rate.sleep()

get_param(’<param_name>’, default=<def_val>)
set_param(’<param_name>’, <val>)
has_param(..)

Publisher(’<topic_name>’, <message_type>)
Subscriber(’<topic_name>’, <message_type>, <callback_function>)

loginfo, logwarn, logerr, logfatal, logdebug

get_time()
wait_for_message; wait_for_service

ROS Parameter
I You can provide configuration arguments to nodes via command line:

$ rosrun <package> <node> arg1:=value1 arg2:=value2
I good for some basic stuff
I can get messy with more complex systems (parameters can be

configured via a launch file instead)
I Parameter server

I stores configuration parameters in a network-accessible database
I parameters are stored as key-value pairs (dictionary)
I nodes can write or read parameters
I parameter reusability
I tracking who defines which parameter
I changing parameters

I In rospy:
“/global_parameter”
“∼private_parameter”

ROS Parameters: console commands
$ rosparam

list lists all created parameters
get <param_name> returns current value of the specified

parameter
set <param_name> <value> sets the value of the specified parameter
load <filename> loads parameters from a file (YAML)
dump <filename> writes parameters into a file
delete <param_name> deletes a parameter

Launch files
I XML files that automatize the start-up of nodes
I Launching of multiple nodes
I Name remapping
I (Better) argument handling
I Also offer some runtime node handling (e.g. restaring)
I And much more...
I In general, this is how ROS nodes should be started (most of the

time)

Launch file elements
<launch> root element
<node> node element specifying a node that will be run, multiple nodes

can be specified
:name name of the node (any but unique)

:ns (different) namespace
:pkg package containing the executable
:type executable name

:output screen (i.e. console) or log (file)
:respawn if true, the node will respawn if terminated
:required if true, all other nodes in the launch file will

terminate when this node is terminated
<arg> custom input argument that can be specified via console

:name unique argument name
:default default value that will be used if no value is supplied

I Specifying values for arguments:
$ roslaunch <pkg> <launch_file> <arg_name>:=<value>
I usage inside the launch file (including the brackets):

($ arg <arg_name>)

Launch file elements
<include> element for including other launch files

:file the launch file name
I usage:

file=”($find <package_name>)/<launch_filename>”

<arg name=”<arg_name>” value=”<value> />” supply
arguments to the external launch file

<param> sets up a ROS parameter
:name name of the parameter
:value value to be assigned

<group> element grouping
:ns executes content in a specific namespace
:if content executes if condition holds true

Logging
I Unified way of logging (textual) outputs from nodes
I Can be printed onto the screen (console) or into a file
I Levels of severity:

Debug
Info

Warn
Error
Fatal

I These are just messages, i.e. nothing else happens (e.g., logerr()
does not raise or handle an error, it can just report it)

rospy.logdebug ()
rospy.loginfo ()
rospy.logwarn ()
rospy.logerr ()
rospy.logfatal ()

Bagfiles
I Recordings of ROS sessions (messages)
I Record a session:

$ rosbag record [-O <output_filename>] [-a] <topic_name1>
<topic_name2> ...
I -a flag records messages from all topics
I The file name is optional, default (current datetime) is used if none

is specified
I Play messages from an existing bag:

$ rosbag play <bag_filename> [-s <start_time>] [-r <rate>]
[-l] [--clock] (rosparam set use_sim_time true)
I -l flag will loop the playback
I Information about an existing bag (topics, message counts, etc...):

$ rosbag info <bag_filename>
I More options: $ rosbag help
I Playing/recording bag with a GUI: $ rqt_bag

Debugging
rqt GUI with many plugins

rqt_graph shows the topology of ROS components
rqt_console better way of reading log messages

roswtf the first question that pops into your mind when ROS is
misbehaving...

Thank you for your attention

	ARO
	ROS
	ROS Components
	Workspace
	ROS Python libraries
	ROS Parameter
	Launch files
	Logging
	Bagfiles
	Debugging

