Quest to design intelligent machine Search, Decisions, Games, Learning, ...

Tomáš Svoboda, Petr Pošík, Jana Kostlivá, Zdeněk Straka, Martin Pecka, B3B33KUI 2021/2022

Course target: goal-directed system

Pask, Gordon (1972). "Cybernetics". Encyclopædia Britannica.

cybernetics now

cybernetics now

- our motivation from (intelligent) robotics
- yet basic concepts from cybernetics
- modern terminology will be used
where we stand 50 years later: machine control in unstructured environment

V. Salansky, K. Zimmermann, T. Petricek, T. Svoboda. Pose consistency KKT-loss for weakly supervised learning of robot-terrain interaction model. IEEE Robotics and Automation Letters, 2021, Volume 6, Issue 3.
M. Pecka, K. Zimmermann, M. Reinstein, and T. Svoboda. Controlling Robot Morphology from Incomplete Measurements. In IEEE Transactions on Industrial Electronics, Feb 2017, Vol 64, Issue: 2
V. Šalanský, V. Kubelka, K. Zimmermann, M. Reinstein, T. Svoboda. Touching without vision: terrain perception in sensory deprived environments. CVWW 2016
http://www.tradr-project.eu, https://robotics.fel.cvut.cz/cras/darpa-subt/, https://cyber.felk.cvut.cz/category/department/cmp/vras/
where we stand 50 years later: machine control in unstructured environment

V. Salansky, K. Zimmermann, T. Petricek, T. Svoboda. Pose consistency KKT-loss for weakly supervised learning of robot-terrain interaction model. IEEE Robotics and Automation Letters, 2021, Volume 6, Issue 3.
M. Pecka, K. Zimmermann, M. Reinstein, and T. Svoboda. Controlling Robot Morphology from Incomplete Measurements. In IEEE Transactions on Industrial Electronics, Feb 2017, Vol 64, Issue: 2
V. Šalanský, V. Kubelka, K. Zimmermann, M. Reinstein, T. Svoboda. Touching without vision: terrain perception in sensory deprived environments. CVWW 2016
http://www.tradr-project.eu, https://robotics.fel.cvut.cz/cras/darpa-subt/, https://cyber.felk.cvut.cz/category/department/cmp/vras/

CTU-CRAS-NORLAB

@DARPA Subterranean Challenge URBAN CIRCUIT

httn://robotics.fel.cvut.cz/cras/darpa-subt/ DARPA SubTerranean Challenge - Urban Circuit, 2020/02

CTU-CRAS-NORLAB

@DARPA Subterranean Challenge URBAN CIRCUIT

httn://robotics.fel.cvut.cz/cras/darpa-subt/ DARPA SubTerranean Challenge - Urban Circuit, 2020/02
tatus:
True detections: 0
False detections: 0
tatus:
True detections: 0
False detections: 0

Problem: graph with costs

Complete, optimal search (plan)

Solution: Path (shortest, chapest, ...)

0.00	0.00		0.00	0.00	0.00	0.00	0.00		0.00	0.00
0.00	0.00		0.00	0.00	0.00	0.00	0.00		0.00	0.00
0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00
0.00	0.00		0.00	0.00	0.00	0.00	0.00		0.00	0.00
0.00	0.00		0.00	0.00	0.00	0.00	0.00		0.00	0.00

0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00			0.00			0.00	0.00	
0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
	0.00	0.00			0.00			0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00

State cost/value: $f\left(S_{t}\right)=g\left(S_{t}\right)+h\left(S_{t}\right)$

Backward value/cost, accumulates as it goes $g\left(S_{t}\right)=g\left(S_{t-1}\right)+c\left(S_{t-1}, S_{t}\right)$ $g(C)=g(A)+c(A, C)$

Forward cost, guess of $h\left(S_{t}\right) \approx c\left(S_{t}, G\right)$

Maximize sum of (expected) rewards, Value iteration:

Maximize sum of (expected) rewards, Value iteration:

assume deterministic robot, no discounting

Maximize sum of (expected) rewards, Value iteration:

assume deterministic robot, no discounting

- init all $\mathrm{V}(\mathrm{s})=0,[\mathrm{~V}(\mathrm{~S}), \mathrm{V}(\mathrm{A}), \mathrm{V}(\mathrm{B}), \mathrm{V}(\mathrm{C}), \mathrm{V}(\mathrm{G})]=[0,0,0,0,0]$

Maximize sum of (expected) rewards, Value iteration:

assume deterministic robot, no discounting

- init all $\mathrm{V}(\mathrm{s})=0,[\mathrm{~V}(\mathrm{~S}), \mathrm{V}(\mathrm{A}), \mathrm{V}(\mathrm{B}), \mathrm{V}(\mathrm{C}), \mathrm{V}(\mathrm{G})]=[0,0,0,0,0]$
- $\mathrm{V}(\mathrm{S})=-1, \mathrm{~V}(\mathrm{~A})=-1, \mathrm{~V}(\mathrm{~B})=-2, \mathrm{~V}(\mathrm{C})=-3, \mathrm{~V}(\mathrm{G})=10$

$$
V_{k+1}(s) \leftarrow \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

Maximize sum of (expected) rewards, Value iteration:

assume deterministic robot, no discounting

- init all $\mathrm{V}(\mathrm{s})=0,[\mathrm{~V}(\mathrm{~S}), \mathrm{V}(\mathrm{A}), \mathrm{V}(\mathrm{B}), \mathrm{V}(\mathrm{C}), \mathrm{V}(\mathrm{G})]=[0,0,0,0,0]$
- $\mathrm{V}(\mathrm{S})=-1, \mathrm{~V}(\mathrm{~A})=-1, \mathrm{~V}(\mathrm{~B})=-2, \mathrm{~V}(\mathrm{C})=-3, \mathrm{~V}(\mathrm{G})=10$
- $[-2,-4,-5,7,10]$

Maximize sum of (expected) rewards, Value iteration:

assume deterministic robot, no discounting

- init all $\mathrm{V}(\mathrm{s})=0,[\mathrm{~V}(\mathrm{~S}), \mathrm{V}(\mathrm{A}), \mathrm{V}(\mathrm{B}), \mathrm{V}(\mathrm{C}), \mathrm{V}(\mathrm{G})]=[0,0,0,0,0]$
- $\mathrm{V}(\mathrm{S})=-1, \mathrm{~V}(\mathrm{~A})=-1, \mathrm{~V}(\mathrm{~B})=-2, \mathrm{~V}(\mathrm{C})=-3, \mathrm{~V}(\mathrm{G})=10$
- $[-2,-4,-5,7,10]$
- [-5, 6, 5, 7, 10]

Maximize sum of (expected) rewards, Value iteration:
assume deterministic robot, no discounting

- init all $\mathrm{V}(\mathrm{s})=0,[\mathrm{~V}(\mathrm{~S}), \mathrm{V}(\mathrm{A}), \mathrm{V}(\mathrm{B}), \mathrm{V}(\mathrm{C}), \mathrm{V}(\mathrm{G})]=[0,0,0,0,0]$
- $\mathrm{V}(\mathrm{S})=-1, \mathrm{~V}(\mathrm{~A})=-1, \mathrm{~V}(\mathrm{~B})=-2, \mathrm{~V}(\mathrm{C})=-3, \mathrm{~V}(\mathrm{G})=10$
- [-2, $-4,-5,7,10]$
- $[-5,6,5,7,10]$
- [5, 6, 5, 7, 10]

Policy π evaluation. Solve equations or iterate until convergence.

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

Maximize sum of (expected) rewards, Policy iteration:

Policy π evaluation. Solve equations or iterate until convergence.

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

Maximize sum of (expected) rewards, Policy iteration:

 assume deterministic robot, no discountingPolicy π evaluation. Solve equations or iterate until convergence.

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

$$
h=0
$$

$$
\pi_{i+1}(s)=\underset{a \in \mathcal{A}(s)}{\arg \max } \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

Maximize sum of (expected) rewards, Policy iteration:

 assume deterministic robot, no discounting init: $\mathrm{p}([\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{G}])=[$ right,go,go,go,exit]Policy π evaluation. Solve equations or iterate until convergence.

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

$$
\pi_{i+1}(s)=\underset{a \in \mathcal{A}(s)}{\arg \max } \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

$$
h=0
$$

Maximize sum of (expected) rewards, Policy iteration:

 assume deterministic robot, no discounting init: $\mathrm{p}([\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{G}])=[$ right,go,go,go,exit]- policy eval $=>\mathrm{V}(\mathbb{Z})=[4,6,5,7,10]$

Policy π evaluation. Solve equations or iterate until convergence.

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

$$
\pi_{i+1}(s)=\underset{a \in \mathcal{A}(s)}{\arg \max } \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

$$
h=0
$$

Maximize sum of (expected) rewards, Policy iteration:

 assume deterministic robot, no discounting init: $\mathrm{p}([\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{G}])=[$ right,go,go,go,exit]- policy eval $=>\mathrm{V}(\mathbb{Z})=[4,6,5,7,10]$
- policy update $\mathrm{p}=[$ left,go,go,go,exit]

Policy π evaluation. Solve equations or iterate until convergence.

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

$$
\pi_{i+1}(s)=\underset{a \in \mathcal{A}(s)}{\arg \max } \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

$$
h=0
$$

Maximize sum of (expected) rewards, Policy iteration:

 assume deterministic robot, no discounting init: $\mathrm{p}([\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{G}])=[$ right,go,go,go,exit]- policy eval $=>\mathrm{V}(\mathrm{Z})=[4,6,5,7,10]$
- policy update $\mathrm{p}=[\mathrm{left}, \mathrm{go}, \mathrm{go}, \mathrm{go}$, exit]
- eval $\mathrm{V}(\mathrm{Z})=[5,6,5,7,10]$

Policy π evaluation. Solve equations or iterate until convergence.

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

$$
\pi_{i+1}(s)=\underset{a \in \mathcal{A}(s)}{\arg \max } \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

$$
h=0
$$

Maximize sum of (expected) rewards, Policy iteration:

 assume deterministic robot, no discounting init: $\mathrm{p}([\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{G}])=[$ right,go,go,go,exit]- policy eval $=>\mathrm{V}(\mathrm{D})=[4,6,5,7,10]$
- policy update $\mathrm{p}=$ [left,go,go,go,exit]
- eval $\mathrm{V}(\mathrm{Z})=[5,6,5,7,10]$
- update $\mathrm{p}=[$ left,go,go,go,exit $]$

Policy π evaluation. Solve equations or iterate until convergence.

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

$$
\pi_{i+1}(s)=\underset{a \in \mathcal{A}(s)}{\arg \max } \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

$$
h=0
$$

Maximize sum of (expected) rewards, Policy iteration:

 assume deterministic robot, no discounting init: $\mathrm{p}([\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{G}])=[$ right,go,go,go,exit]- policy eval $=>\mathrm{V}(\mathrm{D})=[4,6,5,7,10]$
- policy update $\mathrm{p}=[\mathrm{left}, \mathrm{go}, \mathrm{go}, \mathrm{go}$, exit]
- eval $\mathrm{V}(\mathrm{Z})=[5,6,5,7,10]$
- update p = [left,go,go,go,exit]
- no change, stops

Policy π evaluation. Solve equations or iterate until convergence.

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

$$
\pi_{i+1}(s)=\underset{a \in \mathcal{A}(s)}{\arg \max } \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

$$
h=0
$$

Let robot/agent walk at random and learn from experience (episodes):

Let robot/agent walk at random and learn from experience (episodes):

Let robot/agent walk at random and learn from experience (episodes):

Let robot/agent walk at random and learn from experience (episodes):

S,left,-1,A, go,-1,C, go,-3,G, exit,10 => Return = 6

Let robot/agent walk at random and learn from experience (episodes):

S,left,-1,A, go,-1,C, go,-3,G, exit, 10 => Return = 6
S,right,-1,B, go,-2,C, go,-3,G, exit, 10 => Return = 5

Let robot/agent walk at random and learn from experience (episodes):

S,left,-1,A, go,-1,C, go,-3,G, exit, 10 => Return = 6

Let robot/agent walk at random and learn from experience (episodes)

Let robot/agent walk at random and learn from experience (episodes) Direct evaluation, init all $Q($ state, action $)=0$

Let robot/agent walk at random and learn from experience (episodes)
Direct evaluation, init all $Q($ state, action $)=0$
S,left,-1,A, go,-1,C, go,-3,G, exit,10

Let robot/agent walk at random and learn from experience (episodes)
Direct evaluation, init all Q(state, action) $=0$
S,left,-1,A, go,-1,C, go,-3,G, exit,10
$G \leftarrow 0$ and loop backwards, $t=T-1, T-2, \ldots 0$
$G \leftarrow R_{t+1}+\gamma G$
Append G to Returns $\left(Q\left(S_{t}, A_{t}\right)\right)$ $Q\left(S_{t}, A_{t}\right) \leftarrow$ average $\left[\operatorname{Returns}\left(Q\left(S_{t}, A_{t}\right)\right)\right]$

Let robot/agent walk at random and learn from experience (episodes)
Direct evaluation, init all Q(state, action) $=0$
S,left,-1,A, go,-1,C, go,-3,G, exit,10
$G \leftarrow 0$ and loop backwards, $t=T-1, T-2, \ldots 0$
$G \leftarrow R_{t+1}+\gamma G$
Append G to Returns $\left(Q\left(S_{t}, A_{t}\right)\right)$
$Q\left(S_{t}, A_{t}\right) \leftarrow$ average $\left[\operatorname{Returns}\left(Q\left(S_{t}, A_{t}\right)\right)\right]$

S,right,-1,B, go ,-2,C, go ,-3,G, exit, $10=>$ Return $=5$

Let robot/agent walk at random and learn from experience (episodes)
Direct evaluation, init all Q(state, action) $=0$
S,left,-1,A, go,-1,C, go,-3,G, exit,10
$G \leftarrow 0$ and loop backwards, $t=T-1, T-2, \ldots 0$
$G \leftarrow R_{t+1}+\gamma G$
Append G to Returns $\left(Q\left(S_{t}, A_{t}\right)\right)$
$Q\left(S_{t}, A_{t}\right) \leftarrow$ average $\left[\operatorname{Returns}\left(Q\left(S_{t}, A_{t}\right)\right)\right]$

S,right,-1,B, go ,-2,C, go ,-3,G, exit, $10=>$ Return $=5$

Let robot/agent walk at random and learn from experience (episodes)

Let robot/agent walk at random and learn from experience (episodes)
Learn from every visit - Temporal differences, init all Q (state, action) $=0$

Let robot/agent walk at random and learn from experience (episodes)
Learn from every visit - Temporal differences, init all Q(state, action) $=0$
A new trial/sample estimate at time t
trial $=R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)$
α update
$Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left(\right.$ trial $\left.-Q\left(S_{t}, A_{t}\right)\right)$

Let robot/agent walk at random and learn from experience (episodes)
Learn from every visit - Temporal differences, init all Q (state, action) $=0$
A new trial/sample estimate at time t
trial $=R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)$
α update
$Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left(\right.$ trial $\left.-Q\left(S_{t}, A_{t}\right)\right)$

Let robot/agent walk at random and learn from experience (episodes)
Learn from every visit - Temporal differences, init all Q (state, action) $=0$
A new trial/sample estimate at time t
trial $=R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)$
α update
$Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left(\right.$ trial $\left.-Q\left(S_{t}, A_{t}\right)\right)$

Let robot/agent walk at random and learn from experience (episodes)
Learn from every visit - Temporal differences, init all Q(state, action) $=0$
A new trial/sample estimate at time t
trial $=R_{t+1}+\gamma \max _{a} Q\left(S_{t+1}, a\right)$
α update
$Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right)+\alpha\left(\right.$ trial $\left.-Q\left(S_{t}, A_{t}\right)\right)$

S	left	0	-1									
	right	0										
	reft	0										
	right	0	$?$									
B	go	0										
C	go	0										
G	exit	0										

Me (x) thinking
thinking

\square

Opp playing
Me (x) thinking

Me playing
Opp (o)
thinking
Opp playing
terminal states

X	0	X
X		
X	0	0

+1
$\mathrm{Me}(\mathbf{x})$
thinking

Opp playing
Me (x) thinking

Me playing
Opp (o)
thinking
Opp playing

g

Player 1: Me

terminal

 states$\mathrm{Me}(\mathrm{x})$
thinking
Me playing
Opp (o) thinking

Opp playing
Me (x) thinking

Me playing
Opp (o)
thinking
Opp playing

g

Game

Environment
$\mathrm{Me}(\mathrm{x})$
thinking
Me playing

Opp playing
Me (x) thinking

Me playing
Opp (o)
thinking

Game

Environment

Player 2: Opp
$\mathrm{Me}(\mathrm{x})$
thinking
Me playing

Opp playing
Me (x) thinking

Me playing
Opp (o)
thinking

Opp playing

[^0]$\mathrm{Me}(\mathrm{x})$
thinking
Me playing
thinking

\square

Opp playing
Me (x) thinking

Me playing
Opp (o)
thinking

Opp playing

[^1]$\mathrm{Me}(\mathrm{x})$ thinking

Me playing
Opp (o) thinking

\square
\square

Opp playing
Me (x) thinking

Me playing
Opp (o)
thinking

Opp playing

$\mathrm{Me}(\mathrm{x})$ thinking

Me playing
Opp (o) thinking

\square
\square

Opp playing
Me (x) thinking

Me playing
Opp (o)
thinking
Opp playing

(recursive) thinking game: what if my/opp move is ...
(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

(recursive) thinking game: what if my/opp move is ...

We can go (think) deeper if we prune ...

Eval（state）

䟱		宔		$\stackrel{\infty}{\circ}$		4	单	
8	8	8				8	1	
			8					
				8				
			\％	8				
		G						
ξ	8	8				雨		
号			药号	\％				

- Uncertain outcome of an action.
- Robot/Agent may not know the current state!

What state (disease) given some observation (symptoms)?

$P($ disease \mid symptoms $)=\frac{P(\text { symptoms } \mid \text { disease }) \times P(\text { disease })}{P(\text { symptoms })}$
 posterior $=\frac{\text { likelihood } \times \text { prior }}{\text { evidence }}$

For each of the 9 possible situations (3 possible decisions $\times 3$ possible states), the cost is quantified by a loss function $I(d, s)$:

$$
\begin{array}{r|ccc}
l(s, d) & d=\text { nothing } & d=\text { pizza } & d=\text { g.T.c. } \\
\hline s=\text { good } & 0 & 2 & 4 \\
s=\text { average } & 5 & 3 & 5 \\
s=\text { bad } & 10 & 9 & 6
\end{array}
$$

The wife's state of mind is an uncertain state.

$P(x, s)=P(s \mid x) P(x)$	$P(x, s)$		$x=$ mild	d $x=$ irritated	d $x=u p s e t$	$x=$ alarming
	$s=g o$		0.35	0.28	0.07	0.00
	$s=$ avera		0.04	0.10	0.04	0.02
	$s=b$		0.00	0.02	0.05	0.03
${ }_{s}$	$\delta(x)$		= mild x	$x=$ irritated	$x=$ upset $\quad x$	$x=$ alarming
	$\delta_{1}(x)=$		thing	nothing	pizza	g.T.c.
	$\delta_{2}(x)=$		thing	pizza	g.T.c.	g.T.c.
	$\delta_{3}(x)=$		T.c.	g.T.c.	g.T.c.	g.T.c.

Classification as a special case of statistical decision theory

- Attribute vector $\vec{x}=\left[x_{1}, x_{2}, \ldots\right]^{\top}$: pixels $1,2, \ldots$.
- State set $\mathcal{S}=$ decision set $\mathcal{D}=\{0,1, \ldots 9\}$.
- State $=$ actual class, Decision $=$ recognized class
- Loss function: $I(s, d)= \begin{cases}0, & d=s \\ 1, & d \neq s\end{cases}$

Optimal decision strategy:

$$
\delta^{*}(\vec{x})=\arg \min _{d} \sum_{s} \underbrace{I(s, d)}_{0 \text { if } d=s} P(s \mid \vec{x})=\arg \min _{d} \sum_{s \neq d} P(s \mid \vec{x})
$$

Obviously $\sum_{s} P(s \mid \vec{x})=1$, then: $P(d \mid \vec{x})+\sum_{s \neq d} P(s \mid \vec{x})=1$ Inserting into above:

$$
\delta^{*}(\square)=\arg \max _{d} P(d
$$

$$
\delta^{*}(\vec{x})=\arg \min _{d}(1-P(d \mid \vec{x}))=\arg \max _{d} P(d \mid \vec{x})
$$

$K-$ Nearest Neighbor and Bayes $j^{*}=\operatorname{argmax}_{j} P\left(s_{j} \mid \mathbf{x}\right)$

Assume data:

- N points x in total.
- N_{j} points in s_{j} class. Hence, $\sum_{j} N_{j}=N$.

We want to classify \mathbf{x}. Draw a sphere centered at \mathbf{x} containing K points irrespective of class. V is the volume of this sphere. $P\left(s_{j} \mid \mathbf{x}\right)=$?

$$
P\left(s_{j} \mid \mathbf{x}\right)=\frac{P\left(\mathbf{x} \mid s_{j}\right) P\left(s_{j}\right)}{P(\mathbf{x})}
$$

K_{j} is the number of points of class s_{j} among the K nearest neighbors.

$$
\begin{aligned}
P\left(s_{j}\right) & =\frac{N_{j}}{N} \\
P(\mathbf{x}) & =\frac{K}{N V} \\
P\left(\mathbf{x} \mid s_{j}\right) & =\frac{K_{j}}{N_{j} V} \\
P\left(s_{j} \mid \mathbf{x}\right) & =\frac{P\left(\mathbf{x} \mid s_{j}\right) P\left(s_{j}\right)}{P(\mathbf{x})}=\frac{K_{j}}{K}
\end{aligned}
$$

- Usually, we are not given $P(s \mid \vec{x})$
- It has to be estimated from already classified examples - training data
- For discrete \vec{x}, training examples $\left(\vec{x}_{1}, s_{1}\right),\left(\vec{x}_{2}, s_{2}\right), \ldots\left(\vec{x}_{l}, s_{l}\right)$
- every $\left(\vec{x}_{i}, s\right)$ is drawn independently from $P(\vec{x}, s)$, i.e. sample i does not depend on $1, \cdots, i-1$
- so-called i.i.d (independent, identically distributed) multiset
- Without knowing anything about the distribution, a non-parametric estimate:

$$
P(s \mid \vec{x})=\frac{P(\vec{x}, s)}{P(\vec{x})} \approx \frac{\# \text { examples where } \vec{x}_{i}=\vec{x} \text { and } s_{i}=s}{\# \text { examples where } \vec{x}_{i}=\vec{x}}
$$

- In the exceptional case of statistical independence between components of \vec{x} for each class s it holds

$$
P(\vec{x} \mid s)=P(x[1] \mid s) \cdot P(x[2] \mid s) \cdot \ldots
$$

- Use simple Bayes law and maximize:

$$
P(s \mid \vec{x})=\frac{P(\vec{x} \mid s) P(s)}{P(\vec{x})}=\frac{P(s)}{P(\vec{x})} P(x[1] \mid s) \cdot P(x[2] \mid s) \cdot \ldots=
$$

Discriminant functions

$\delta(\mathbf{x})=\operatorname{argmax}_{s \in S} f_{s}(\mathbf{x})$

Discriminant functions for 2 classes:

$$
\begin{aligned}
f_{F}(x) & =a_{F} x+b_{F}= \\
& =e_{F} x-\frac{1}{2} e_{F}^{2}=140 x-9800 \\
f_{M}(x) & =a_{M} x+b_{M}= \\
& =e_{M} x-\frac{1}{2} e_{M}^{2}=180 x-16200
\end{aligned}
$$

A single discriminant function separating 2 classes:

$$
\begin{aligned}
g(x) & =f_{F}(x)-f_{M}(x)= \\
& =-40 x+6400
\end{aligned}
$$

$$
g(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+w_{0}
$$

Decide s_{1} if $g(\mathbf{x})>0$ and s_{2} if $g(\mathbf{x})<0$

Gradient descent

Initialize \mathbf{w}, threshold θ, learning rate α
$k \leftarrow 0$

repeat

$k \leftarrow k+1$
$\mathbf{w} \leftarrow \mathbf{w}-\alpha(k) \nabla J(\mathbf{w})$
until $|\alpha(k) \nabla J(\mathbf{w})|<\theta$
return w

What next?

- gradient descent, linear programming, ... Optimization, B0B33OPT
- machine learning, classifiers, Bayesian and non-Bayesian decisions, ... Pattern Recognition and Machine Learning (B4B33RPZ), Statistical Machine Learning (BE4M33SSU)
- machine learning pragmatically, deep nets Robot Learning (B3B33UROB)
- deeper in deep nets, Deep Learning, BEV033DLE
- perception, Computer Vision Methods, B4M33MPV
- planning, Artificial Intelligence in Robotics, B4M36UIR

[^0]: Player 2: Opp

[^1]: Player 2: Opp

