### Reinforcement learning

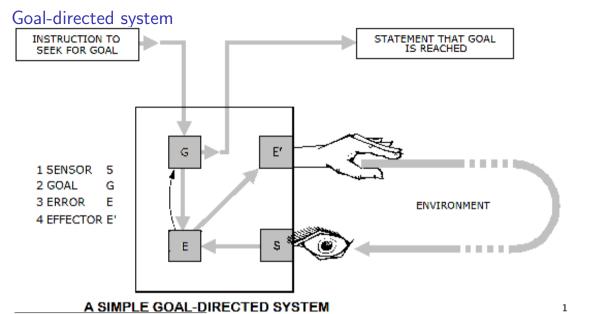
#### Tomáš Svoboda, Petr Pošík

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

April 1, 2022

1/34

Notes -

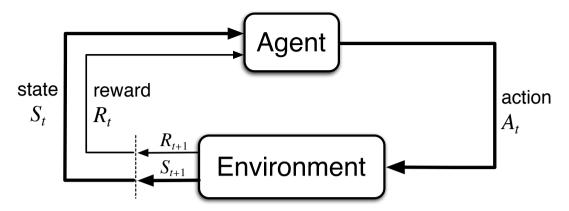


Notes -

2/34

<sup>1</sup>Figure from http://www.cybsoc.org/gcyb.htm

### Reinforcement Learning



- ► Feedback in form of Rewards
- ▶ Learn to act so as to maximize expected rewards.

<sup>2</sup>Scheme from [3]

Notes

3 / 34

2

#### **Examples**

### **Autonomous Flipper Control with Safety Constraints**

Martin Pecka, Vojtěch Šalanský, Karel Zimmermann, Tomáš Svoboda

experiments utilizing
Constrained Relative Entropy Policy Search

Video: Learning safe policies<sup>3</sup>

<sup>3</sup>M. Pecka, V. Salansky, K. Zimmermann, T. Svoboda. Autonomous flipper control with safety constraints. In Intelligent Robots and Systems (IROS), 2016, https://youtu.be/\_oUMbBtoRcs

4/34

Notes -

Policy search is a more advanced topic, only touched by this course. Later in master programme.

# From off-line (MDPs) to on-line (RL)

Markov decision process - MDPs. Off-line search, we know:

- ▶ A set of states  $s \in \mathcal{S}$  (map)
- ▶ A set of actions per state.  $a \in A$
- ▶ A transition model T(s, a, s') or p(s'|s, a) (robot)
- ▶ A reward function r(s, a, s') (map, robot)

Looking for the optimal policy  $\pi(s)$ . We can plan/search before the robot enters the environment.

Notes

5/34

For MDPs, we know p, r for all possible states and actions.

# From off-line (MDPs) to on-line (RL)

Markov decision process - MDPs. Off-line search, we know:

- ▶ A set of states  $s \in S$  (map)
- ▶ A set of actions per state.  $a \in A$
- ▶ A transition model T(s, a, s') or p(s'|s, a) (robot)
- ightharpoonup A reward function r(s, a, s') (map, robot)

Looking for the optimal policy  $\pi(s)$ . We can plan/search before the robot enters the environment.

#### On-line problem:

- ▶ Transition model p and reward function r not known.
- ► Agent/robot must act and learn from experience.

Notes

5/34

For MDPs, we know p, r for all possible states and actions.

# (Transition) Model-based learning

The main idea: Do something and:

- Learn an approximate model from experiences.
- ► Solve as if the model was correct.

#### Notes -

- Where to start?
- When does it end?
- How long does it take?
- When to stop (the learning phase)?

### (Transition) Model-based learning

#### The main idea: Do something and:

- ▶ Learn an approximate model from experiences.
- ▶ Solve as if the model was correct.

#### Learning MDP model:

- ln s try a, observe s', count (s, a, s').
- Normalize to get and estimate of  $p(s' \mid s, a)$ .
- ▶ Discover (by observation) each r(s, a, s') when experienced.

#### Notes

- Where to start?
- When does it end?
- How long does it take?
- When to stop (the learning phase)?

### (Transition) Model-based learning

#### The main idea: Do something and:

- ▶ Learn an approximate model from experiences.
- ▶ Solve as if the model was correct.

#### Learning MDP model:

- ln s try a, observe s', count (s, a, s').
- Normalize to get and estimate of  $p(s' \mid s, a)$ .
- ▶ Discover (by observation) each r(s, a, s') when experienced.

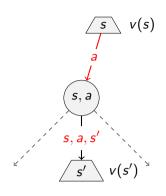
Solve the learned MDP.

**Notes** 

- Where to start?
- When does it end?
- How long does it take?
- When to stop (the learning phase)?

### Reward function r(s, a, s')

- ightharpoonup r(s, a, s') reward for taking a in s and landing in s'.
- ▶ In Grid world, we assumed r(s, a, s') to be the same everywhere.
- ▶ In the real world, it is different (going up, down, ...)



In ai-gym env.step(action) returns s', r(s, action, s').

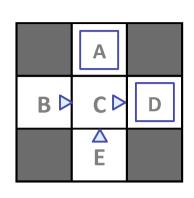
#### Notes

In ai-gym env.step(action) returns s', r(s, action, s'), .... It is defined by the environment (robot simulator, system, ...) not by the (algorithms)

Model-based learning: Grid example

Input Policy  $\pi$ 

**Observed Episodes (Training)** 



Assume:  $\gamma = 1$ 

<sup>4</sup>Figure from [1]

Episode 1

B, east, C, -1 C, east, D, -1

D, exit, x, +10

Episode 2

B, east, C, -1

C, east, D, -1

D, exit, x, +10

Episode 3

E, north, C, -1

C, east, D, -1

D, exit, x, +10

Episode 4

E, north, C, -1

C, east, A, -1

A, exit, x, -10

8 / 34

Notes

### Learning transition model

 $p(D \mid C, east) = ?$ 

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

### Learning reward function

$$r(C, east, D) = ?$$

# Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

### Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

# Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

# Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

### Model based vs model-free: Expected age E [A]

Random variable age A.

$$\mathsf{E}\left[A\right] = \sum_{a} P(A = a)a$$

We do not know P(A = a). Instead, we collect N samples  $[a_1, a_2, \dots a_N]$ .

#### Notes -

Just to avoid confusion. There are many more samples than possible ages (positive integer). Think about  $N\gg 100$ .

- Model based eventually, we learn the correct model.
- Model free no need for weighting; this is achieved through the frequencies of different ages within the samples (most frequent and hence most probable ages simply come up many times).

### Model based vs model-free: Expected age E [A]

Random variable age A.

$$\mathsf{E}\left[A\right] = \sum_{a} P(A = a)a$$

We do not know P(A = a). Instead, we collect N samples  $[a_1, a_2, \dots a_N]$ .

#### Model based

$$\hat{P}(a) = \frac{\mathsf{num}(a)}{N}$$

$$\mathsf{E}\left[A
ight]pprox\sum_{a}\hat{P}(a)a$$

#### Notes

Just to avoid confusion. There are many more samples than possible ages (positive integer). Think about  $N\gg 100$ .

- Model based eventually, we learn the correct model.
- Model free no need for weighting; this is achieved through the frequencies of different ages within the samples (most frequent and hence most probable ages simply come up many times).

### Model based vs model-free: Expected age E [A]

Random variable age A.

$$\mathsf{E}\left[A\right] = \sum_{a} P(A = a)a$$

We do not know P(A = a). Instead, we collect N samples  $[a_1, a_2, \dots a_N]$ .

Model based

Model free

$$\hat{P}(a) = \frac{\mathsf{num}(a)}{N}$$

$$\mathsf{E}\left[A\right] pprox \sum_{a} \hat{P}(a)a$$

$$\mathsf{E}\left[A\right] \approx \frac{1}{N} \sum_{i} a_{i}$$

11 / 34

#### Notes

Just to avoid confusion. There are many more samples than possible ages (positive integer). Think about  $N\gg 100$ .

- Model based eventually, we learn the correct model.
- Model free no need for weighting; this is achieved through the frequencies of different ages within the samples (most frequent and hence most probable ages simply come up many times).

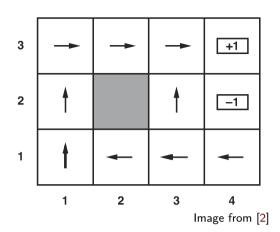
# Model-free learning

12 / 34

Notes -

# Passive learning (evaluating given policy)

- ▶ **Input:** a fixed policy  $\pi(s)$
- ▶ We want to know how good it is.
- ightharpoonup r, p not known.
- Execute policy . . .
- ▶ and learn on the way.
- ▶ **Goal:** learn the state values  $v^{\pi}(s)$



13 / 34

#### Notes -

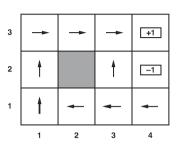
Executing policies - training, then learning from the observations. We want to do the policy evaluation but the necessary model is not known.

The word passive means we just follow a prescribed policy  $\pi(s)$ .

### Direct evaluation from episodes

Value of s for  $\pi$  – expected sum of discounted rewards – expected return

$$v^{\pi}(S_t) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}\right]$$
 $v^{\pi}(S_t) = \mathbb{E}\left[G_t\right]$ 



Notes

Act according to the policy.

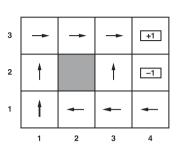
- When visiting a state, remember what the sum of discounted rewards (returns) turned out to be.
- Compute average of the returns.
- Each trial episode provides a sample of  $v^{\pi}$ .

What is v(3,2) after these episodes?

### Direct evaluation from episodes

Value of s for  $\pi$  – expected sum of discounted rewards – expected return

$$v^{\pi}(S_t) = \mathsf{E}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}
ight]$$
 $v^{\pi}(S_t) = \mathsf{E}\left[G_t\right]$ 



$$\begin{array}{l} (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (2,1)_{\textbf{-.04}} \leadsto (3,1)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (4,2)_{\textbf{-1}} \ . \end{array}$$

#### Notes

- Act according to the policy.
- When visiting a state, remember what the sum of discounted rewards (returns) turned out to be.
- Compute average of the returns.
- Each trial episode provides a sample of  $v^{\pi}$ .

What is v(3,2) after these episodes?

# Direct evaluation from episodes, $v^{\pi}(S_t) = \mathsf{E}\left[G_t\right]$ , $\gamma = 1$

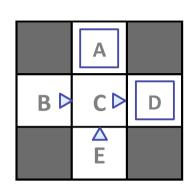
$$(1,1)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (2,3)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (2,3)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (3,2)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \rightsquigarrow (2,1)_{\textbf{-.04}} \rightsquigarrow (3,1)_{\textbf{-.04}} \rightsquigarrow (3,2)_{\textbf{-.04}} \rightsquigarrow (4,2)_{\textbf{-1}} .$$

What is v(3,2) after these episodes?

### Direct evaluation: Grid example

### Input Policy $\pi$

# **Observed Episodes (Training)**



Assume:  $\gamma = 1$ 

# Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

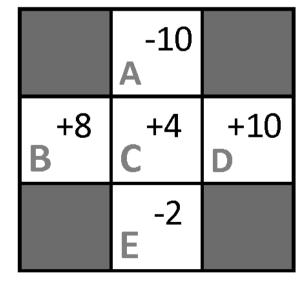
# Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

# Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

**Notes** 



### Direct evaluation: Grid example, $\gamma = 1$

What is v(C) after the 4 episodes?

Episode 1

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

B, east, C, -1 C, east, D, -1

D, exit, x, +10

Episode 3

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Notes

### Direct evaluation: Grid example, $\gamma = 1$

What is v(C) after the 4 episodes?

Let M be the number of recorded episodes. Let N be the number of samples used to compute the averages.

What is the relation of M and N?

- A N = M
- $\mathbf{B} \ N \leq M$
- $C N \ge M$
- **D** N has no relation to M

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

### Direct evaluation algorithm (every-visit version)

$$\begin{array}{l} (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (2,1)_{\textbf{-.04}} \leadsto (3,1)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (4,2)_{\textbf{-1}} \,. \end{array}$$

Input: a policy  $\boldsymbol{\pi}$  to be evaluated

Initialize:

$$V(s) \in \mathbb{R}$$
, arbitrarily, for all  $s \in \mathcal{S}$ 

 $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$ Loop forever (for each episode):

Genera

Generate an episode following  $\pi$ :  $S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{T-1}, A_{T-1}, R_T$ 

$$G \leftarrow 0$$

Loop backwards for each step of episode,  $t = T - 1, T - 2, \dots, 0$ :

$$G \leftarrow R_{t+1} + \gamma G$$

Append G to  $Returns(S_t)$ 

$$V(S_t) \leftarrow \text{average}(Returns}(S_t))$$

#### Notes -

18 / 34

The algorithm can be easily expanded to  $Q(S_t, A_t)$ . Instead of visiting  $S_t$  we consider visiting of a pair  $S_t, A_t$ .

### Direct evaluation algorithm (first-visit version)

```
\begin{array}{l} (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (2,1)_{\textbf{-.04}} \leadsto (3,1)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (4,2)_{\textbf{-1}} \ . \end{array}
```

Input: a policy  $\pi$  to be evaluated Initialize:

$$V(s) \in \mathbb{R}$$
, arbitrarily, for all  $s \in \mathcal{S}$ 

 $Returns(s) \leftarrow ext{an empty list, for all } s \in \mathcal{S}$ 

Loop forever (for each episode):

Generate an episode following  $\pi$ :  $S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{\mathcal{T}-1}, A_{\mathcal{T}-1}, R_{\mathcal{T}}$ 

$$G \leftarrow 0$$

Loop backwards for each step of episode,  $t = T - 1, T - 2, \dots, 0$ :

$$G \leftarrow R_{t+1} + \gamma G$$

If  $S_t$  does not appear in  $S_0, S_1, \ldots, S_{t-1}$ : // Use the return for the first visit only Append G to  $Returns(S_t)$   $V(S_t) \leftarrow average(Returns(S_t))$ 

18 / 34

#### - Notes -

The algorithm can be easily expanded to  $Q(S_t, A_t)$ . Instead of visiting  $S_t$  we consider visiting of a pair  $S_t, A_t$ .

### Direct evaluation: analysis

#### The good:

- ► Simple, easy to understand and implement.
- ▶ Does not need p, r and eventually it computes the true  $v^{\pi}$ .

19 / 34

#### Notes -

In second trial, we visit (3,2) for the first time. We already know that the successor (3,3) has probably a high value but the method does not use until the end of the trial episode.

Before updating V(s) we have to wait until the training episode ends.

### Direct evaluation: analysis

#### The good:

- ► Simple, easy to understand and implement.
- ▶ Does not need p, r and eventually it computes the true  $v^{\pi}$ .

#### The bad:

$$\begin{array}{l} (1,1) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (2,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (4,3) \text{+1} \\ (1,1) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (2,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (3,2) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (4,3) \text{+1} \\ (1,1) \text{-.04} \leadsto (2,1) \text{-.04} \leadsto (3,1) \text{-.04} \leadsto (3,2) \text{-.04} \leadsto (4,2) \text{-1} \end{array}.$$

19 / 34

#### Notes -

In second trial, we visit (3,2) for the first time. We already know that the successor (3,3) has probably a high value but the method does not use until the end of the trial episode.

Before updating V(s) we have to wait until the training episode ends.

### Direct evaluation: analysis

#### The good:

- ► Simple, easy to understand and implement.
- ▶ Does not need p, r and eventually it computes the true  $v^{\pi}$ .

#### The bad:

$$\begin{array}{l} (1,1) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (2,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (4,3) \text{+1} \\ (1,1) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (2,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (3,2) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (4,3) \text{+1} \\ (1,1) \text{-.04} \leadsto (2,1) \text{-.04} \leadsto (3,1) \text{-.04} \leadsto (3,2) \text{-.04} \leadsto (4,2) \text{-1} \end{array}.$$

- ► Each state value learned in isolation.
- State values are not independent
- $\mathbf{v}^{\pi}(s) = \sum_{s'} p(s' \mid s, \pi(s)) [r(s, \pi(s), s') + \gamma v^{\pi}(s')]$

#### Notes

19 / 34

In second trial, we visit (3,2) for the first time. We already know that the successor (3,3) has probably a high value but the method does not use until the end of the trial episode.

Before updating V(s) we have to wait until the training episode ends.

# (on-line) Policy evaluation?

In each round, replace V with a one-step-look-ahead  $V_0^\pi(s) = 0$   $V_{k+1}^\pi(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) \left[ r(s, \pi(s), s') + \gamma \ V_k^\pi(s') \right]$ 

# (on-line) Policy evaluation?

In each round, replace V with a one-step-look-ahead  $V^{\pi}(s) = 0$ 

$$V_0^{\pi}(s) = 0$$
  
 $V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) [r(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$ 

Problem: both  $p(s' \mid s, \pi(s))$  and  $r(s, \pi(s), s')$  unknown!

MDP (p, r known): Update V estimate by a weighted average:  $V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) \left[ r(s, \pi(s), s') + \gamma \ V_k^{\pi}(s') \right]$ 

21 / 34

#### Notes

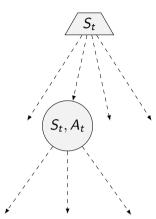
It looks promising. Unfortunately, we cannot do it that way. After an action, the robot is in a next state and cannot go back to the very same state where it was before. Energy was consumed and some actions may be irreversible; think about falling into a hole. We have to utilize the s, a, s' experience anytime when performed/visited.

MDP (p, r known): Update V estimate by a weighted average:

 $V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) [r(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$ 

What about stop, try, try, ..., and average?

Trials at time  $t. \pi(S_t) \to A_t$ , repeat  $A_t$ .



### Notes

It looks promising. Unfortunately, we cannot do it that way. After an action, the robot is in a next state and cannot go back to the very same state where it was before. Energy was consumed and some actions may be irreversible; think about falling into a hole. We have to utilize the s, a, s' experience anytime when performed/visited.

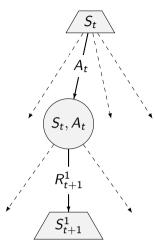
MDP (p, r known): Update V estimate by a weighted average:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) [r(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

What about stop, try, try, ..., and average?

Trials at time t.  $\pi(S_t) \to A_t$ , repeat  $A_t$ .

$$trial^1 = R_{t+1}^1 + \gamma V(S_{t+1}^1)$$



21 / 34

#### **Notes**

It looks promising. Unfortunately, we cannot do it that way. After an action, the robot is in a next state and cannot go back to the very same state where it was before. Energy was consumed and some actions may be irreversible; think about falling into a hole. We have to utilize the s, a, s' experience anytime when performed/visited.

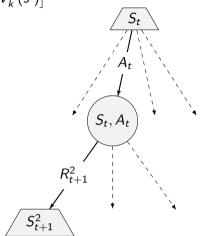
MDP (p, r known): Update V estimate by a weighted average:

 $V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) [r(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$ 

What about stop, try, try, ..., and average?

Trials at time t.  $\pi(S_t) \to A_t$ , repeat  $A_t$ .

$$\begin{array}{lll} {\rm trial}^1 & = & R_{t+1}^1 + \gamma \; V(S_{t+1}^1) \\ {\rm trial}^2 & = & R_{t+1}^2 + \gamma \; V(S_{t+1}^2) \\ \end{array}$$



21 / 34

#### **Notes**

It looks promising. Unfortunately, we cannot do it that way. After an action, the robot is in a next state and cannot go back to the very same state where it was before. Energy was consumed and some actions may be irreversible; think about falling into a hole. We have to utilize the s, a, s' experience anytime when performed/visited.

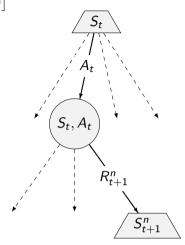
MDP (p, r known): Update V estimate by a weighted average:

 $V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) [r(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$ 

What about stop, try, try, ..., and average?

Trials at time t.  $\pi(S_t) \to A_t$ , repeat  $A_t$ .

$$\begin{aligned} & \text{trial}^1 & = & R_{t+1}^1 + \gamma \ V(S_{t+1}^1) \\ & \text{trial}^2 & = & R_{t+1}^2 + \gamma \ V(S_{t+1}^2) \\ & \vdots & = & \vdots \\ & \text{trial}^n & = & R_{t+1}^n + \gamma \ V(S_{t+1}^n) \end{aligned}$$



#### **Notes**

It looks promising. Unfortunately, we cannot do it that way. After an action, the robot is in a next state and cannot go back to the very same state where it was before. Energy was consumed and some actions may be irreversible; think about falling into a hole. We have to utilize the s, a, s' experience anytime when performed/visited.

## Use samples for evaluating policy?

MDP (p, r known): Update V estimate by a weighted average:

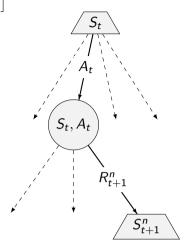
$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) [r(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

What about stop, try, try, ..., and average?

Trials at time t.  $\pi(S_t) \rightarrow A_t$ , repeat  $A_t$ .

$$\begin{array}{lll} {\rm trial}^1 & = & R_{t+1}^1 + \gamma \ V(S_{t+1}^1) \\ {\rm trial}^2 & = & R_{t+1}^2 + \gamma \ V(S_{t+1}^2) \end{array}$$

$$V(S_t) \leftarrow \frac{1}{n} \sum_i \mathsf{trial}^i$$



21 / 34

#### **Notes**

It looks promising. Unfortunately, we cannot do it that way. After an action, the robot is in a next state and cannot go back to the very same state where it was before. Energy was consumed and some actions may be irreversible; think about falling into a hole. We have to utilize the s, a, s' experience anytime when performed/visited.

$$\begin{array}{l} (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (2,1)_{\textbf{-.04}} \leadsto (3,1)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (4,2)_{\textbf{-1}} \ . \end{array}$$

 $\gamma = 1$ 

#### 22 / 34

#### Notes -

Trial episode: acting, observing, until it stops (in a terminal state or by a limit).

We visit S(1,3) twice during the first episode. Its value estimate is the average of two returns. Note the main difference. In *Direct evaluation*, we had to wait until the end of the episode, compute  $G_t$  for each t on the way, and then we update  $V(S_t)$ . We can do it  $\alpha$  incrementally

$$V(S_t) \leftarrow V(S_t) + \alpha \Big(G_t - V(S_t)\Big)$$

In TD learning, we update as we go.

$$\begin{array}{l} (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (2,1)_{\textbf{-.04}} \leadsto (3,1)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (4,2)_{\textbf{-1}} \ . \end{array}$$

$$\gamma = 1$$

From first trial (episode): V(2,3) =, V(1,3) =,...

22 / 34

#### Notes -

Trial episode: acting, observing, until it stops (in a terminal state or by a limit).

We visit S(1,3) twice during the first episode. Its value estimate is the average of two returns. Note the main difference. In *Direct evaluation*, we had to wait until the end of the episode, compute  $G_t$  for each t on the way, and then we update  $V(S_t)$ . We can do it  $\alpha$  incrementally

$$V(S_t) \leftarrow V(S_t) + \alpha \Big(G_t - V(S_t)\Big)$$

In TD learning, we update as we go.

$$\begin{array}{l} (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (2,1)_{\textbf{-.04}} \leadsto (3,1)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (4,2)_{\textbf{-1}} \end{array}.$$

$$\gamma = 1$$

From first trial (episode): V(2,3) = 0.92, V(1,3) = 0.84,...

In second episode, going from  $S_t = (1,3)$  to  $S_{t+1} = (2,3)$  with reward  $R_{t+1} = -0.04$ , hence:

$$V(1,3) = R_{t+1} + V(2,3) = -0.04 + 0.92 = 0.88$$

#### 22 / 34

#### Notes -

Trial episode: acting, observing, until it stops (in a terminal state or by a limit).

We visit S(1,3) twice during the first episode. Its value estimate is the average of two returns.

Note the main difference. In *Direct evaluation*, we had to wait until the end of the episode, compute  $G_t$  for each t on the way, and then we update  $V(S_t)$ . We can do it  $\alpha$  incrementally

$$V(S_t) \leftarrow V(S_t) + \alpha \Big(G_t - V(S_t)\Big)$$

In TD learning, we update as we go.

$$(1,1)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (2,3)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (2,3)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (3,2)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \rightsquigarrow (2,1)_{\textbf{-.04}} \rightsquigarrow (3,1)_{\textbf{-.04}} \rightsquigarrow (3,2)_{\textbf{-.04}} \rightsquigarrow (4,2)_{\textbf{-1}} .$$

$$\gamma = 1$$

From first trial (episode): V(2,3) = 0.92, V(1,3) = 0.84, ...

In second episode, going from  $S_t = (1,3)$  to  $S_{t+1} = (2,3)$  with reward  $R_{t+1} = -0.04$ , hence:

$$V(1,3) = R_{t+1} + V(2,3) = -0.04 + 0.92 = 0.88$$

First estimate 0.84 is a bit lower than 0.88.  $V(S_t)$  is different than  $R_{t+1} + \gamma V(S_{t+1})$ 

#### Notes -

Trial episode: acting, observing, until it stops (in a terminal state or by a limit).

We visit S(1,3) twice during the first episode. Its value estimate is the average of two returns.

Note the main difference. In *Direct evaluation*, we had to wait until the end of the episode, compute  $G_t$  for each t on the way, and then we update  $V(S_t)$ . We can do it  $\alpha$  incrementally

$$V(S_t) \leftarrow V(S_t) + \alpha \Big(G_t - V(S_t)\Big)$$

In TD learning, we update as we go.

$$\begin{array}{l} (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (2,1)_{\textbf{-.04}} \leadsto (3,1)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (4,2)_{\textbf{-1}} \ . \end{array}$$

$$\gamma = 1$$

From first trial (episode): V(2,3) = 0.92, V(1,3) = 0.84,...

In second episode, going from  $S_t = (1,3)$  to  $S_{t+1} = (2,3)$  with reward  $R_{t+1} = -0.04$ , hence:

$$V(1,3) = R_{t+1} + V(2,3) = -0.04 + 0.92 = 0.88$$

- First estimate 0.84 is a bit lower than 0.88.  $V(S_t)$  is different than  $R_{t+1} + \gamma V(S_{t+1})$
- ▶ Update ( $\alpha$ × difference):  $V(S_t) \leftarrow V(S_t) + \alpha \Big( [R_{t+1} + \gamma V(S_{t+1})] V(S_t) \Big)$
- $ightharpoonup \alpha$  is the learning rate.

#### Notes -

Trial episode: acting, observing, until it stops (in a terminal state or by a limit).

We visit S(1,3) twice during the first episode. Its value estimate is the average of two returns. Note the main difference. In *Direct evaluation*, we had to wait until the end of the episode, compute  $G_t$  for each

t on the way, and then we update  $V(S_t)$ . We can do it  $\alpha$  incrementally

$$V(S_t) \leftarrow V(S_t) + \alpha \Big(G_t - V(S_t)\Big)$$

In TD learning, we update as we go.

$$\begin{array}{l} (1,1) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (2,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (4,3) \text{+1} \\ (1,1) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (2,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (3,2) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (4,3) \text{+1} \\ (1,1) \text{-.04} \leadsto (2,1) \text{-.04} \leadsto (3,1) \text{-.04} \leadsto (3,2) \text{-.04} \leadsto (4,2) \text{-1} \end{array}.$$

$$\gamma = 1$$

From first trial (episode): V(2,3) = 0.92, V(1,3) = 0.84,...

In second episode, going from  $S_t = (1,3)$  to  $S_{t+1} = (2,3)$  with reward  $R_{t+1} = -0.04$ , hence:

$$V(1,3) = R_{t+1} + V(2,3) = -0.04 + 0.92 = 0.88$$

- First estimate 0.84 is a bit lower than 0.88.  $V(S_t)$  is different than  $R_{t+1} + \gamma V(S_{t+1})$
- ▶ Update ( $\alpha$ × difference):  $V(S_t) \leftarrow V(S_t) + \alpha ([R_{t+1} + \gamma V(S_{t+1})] V(S_t))$
- $ightharpoonup \alpha$  is the learning rate.
- $V(S_t) \leftarrow (1-\alpha)V(S_t) + \alpha \text{ (new sample)}$

#### Notes -

Trial episode: acting, observing, until it stops (in a terminal state or by a limit).

We visit S(1,3) twice during the first episode. Its value estimate is the average of two returns. Note the main difference. In *Direct evaluation*, we had to wait until the end of the episode, compute  $G_t$  for each

t on the way, and then we update  $V(S_t)$ . We can do it  $\alpha$  incrementally

$$V(S_t) \leftarrow V(S_t) + \alpha \Big(G_t - V(S_t)\Big)$$

In TD learning, we update as we go.

### Exponential moving average

$$\overline{x}_n = (1 - \alpha)\overline{x}_{n-1} + \alpha x_n$$

What does it remember about the past? Try to derive:

$$\overline{x}_n = f(\alpha, x_n, x_{n-1}, x_{n-2}, x_{n-3}, \dots)$$

#### Notes

Recursively insetring we end up with

$$\overline{x}_n = \alpha \left[ x_n + (1-\alpha)x_{n-1} + (1-\alpha)^2 x_{n-2} + \cdots \right]$$

We already know the sum of geometric series for r < 1

$$1 + r + r^2 + r^3 + \dots = \frac{1}{1 - r}$$

Putting  $r = 1 - \alpha$ , we see that

$$\frac{1}{\alpha} = 1 + (1 - \alpha) + (1 - \alpha)^2 + \cdots$$

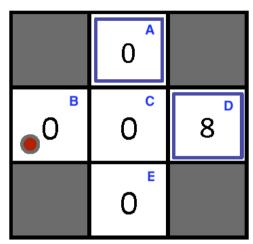
And hence:

$$\overline{x}_n = \frac{x_n + (1 - \alpha)x_{n-1} + (1 - \alpha)^2 x_{n-2} + \cdots}{1 + (1 - \alpha) + (1 - \alpha)^2 + (1 - \alpha)^3 + \cdots}$$

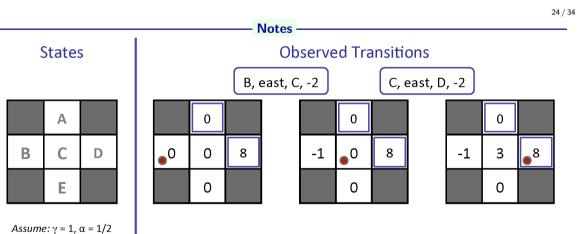
a weighted average that exponentially forgets about the past.

### Example: TD Value learning

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$



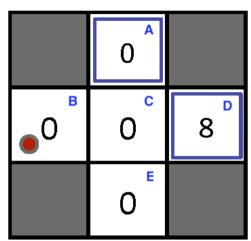
- $\triangleright$  Values represent initial V(s)
- Assume:  $\gamma = 1, \alpha = 0.5, \pi(s) = \rightarrow$



 $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s')\right]$ 

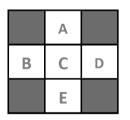
## Example: TD Value learning

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$



- $\triangleright$  Values represent initial V(s)
- Assume:  $\gamma = 1, \alpha = 0.5, \pi(s) = \rightarrow$
- $\triangleright$   $(B, \rightarrow, C), -2, \Rightarrow V(B)$ ?

### **States**

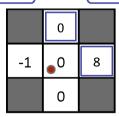


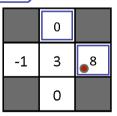
Assume:  $\gamma = 1$ ,  $\alpha = 1/2$ 





B, east, C, -2 0 0 0 8 0



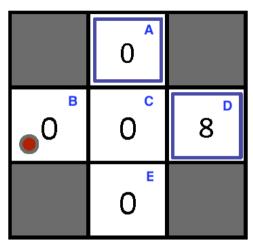


C, east, D, -2

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s')\right]$$

## Example: TD Value learning

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$



- $\triangleright$  Values represent initial V(s)
- ightharpoonup Assume:  $\gamma = 1, \alpha = 0.5, \pi(s) = \rightarrow$
- $\triangleright$   $(B, \rightarrow, C), -2, \Rightarrow V(B)$ ?
- $\triangleright$   $(C, \rightarrow, D), -2, \Rightarrow V(C)$ ?

24 / 34

## **States**

# Α C В D E

Assume:  $\gamma = 1$ ,  $\alpha = 1/2$ 





-1

B, east, C, -2

0

0

0

8

0

C, east, D, -2

8



0

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s')\right]$$

0

0

0

### Temporal difference value learning: algorithm

Input: the policy  $\pi$  to be evaluated

Algorithm parameter: step size  $\alpha \in (0,1]$ 

Initialize V(s), for all  $s \in S^+$ , arbitrarily except that V(terminal) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

 $A \leftarrow \text{action given by } \pi \text{ for } S$ 

Take action A, observe R, S'

$$V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]$$
  
 $S \leftarrow S'$ 

until S is terminal

| What is wrong with the temporal | difference Value learning? |
|---------------------------------|----------------------------|
|---------------------------------|----------------------------|

The Good: Model-free value learning by mimicking Bellman updates.

Notes -

26 / 34

Learn Q-values, not V-values, and make the action selection model-free too!

## What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.

The Bad: How to turn values into a (new) policy?

$$\pi(s) = \arg\max_{a} \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma V(s') \right]$$

26 / 34

Notes -

Learn Q-values, not V-values, and make the action selection model-free too!

## What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.

The Bad: How to turn values into a (new) policy?

- $\qquad \qquad \pi(s) = \mathop{\arg\max}_{a} \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma V(s') \right]$
- $\pi(s) = \arg\max_{a} Q(s, a)$

Notes

26 / 34

Learn Q-values, not V-values, and make the action selection model-free too!

# Active reinforcement learning

27 / 34

#### - Notes -

So far we walked as prescribed by a  $\pi(s)$  because we did not know how to act better.

### Reminder: V, Q-value iteration for MDPs

Value/Utility iteration (depth limited evaluation):

- ▶ Start:  $V_0(s) = 0$
- ▶ In each step update V by looking one step ahead:  $V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} p(s' \mid s, a) [r(s, a, s') + \gamma V_k(s')]$

Q values more useful (think about updating  $\pi$ )

- ► Start:  $Q_0(s, a) = 0$
- ▶ In each step update Q by looking one step ahead:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

#### **Notes**

Draw the (s)-(s,a)-(s')-(s',a') tree. It will be also handy when discussing exploration vs. exploitation – where to drive next.

MDP update:  $Q_{k+1}(s, a) \leftarrow \sum_{s'} p(s' \mid s, a) \left[ r(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$ 

29 / 34

#### Notes -

There are alternatives how to compute the trial value. SARSA method takes  $Q(S_{t+1}, A_{t+1})$  directly, not the max. More next week.

MDP update: 
$$Q_{k+1}(s,a) \leftarrow \sum_{s'} p(s' \mid s,a) \left[ r(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Learn Q values as the robot/agent goes (temporal difference)

▶ Drive the robot and fetch rewards (s, a, s', R)

Notes -

29 / 34

There are alternatives how to compute the trial value. SARSA method takes  $Q(S_{t+1}, A_{t+1})$  directly, not the max. More next week.

MDP update: 
$$Q_{k+1}(s,a) \leftarrow \sum_{s'} p(s'\mid s,a) \left[ r(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Learn Q values as the robot/agent goes (temporal difference)

- ▶ Drive the robot and fetch rewards (s, a, s', R)
- ▶ We know old estimates Q(s, a) (and Q(s', a')), if not, initialize.

29 / 34

#### Notes -

There are alternatives how to compute the trial value. SARSA method takes  $Q(S_{t+1}, A_{t+1})$  directly, not the max. More next week.

MDP update: 
$$Q_{k+1}(s,a) \leftarrow \sum_{s'} p(s' \mid s,a) \left[ r(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Learn Q values as the robot/agent goes (temporal difference)

- ▶ Drive the robot and fetch rewards (s, a, s', R)
- ▶ We know old estimates Q(s, a) (and Q(s', a')), if not, initialize.
- A new trial/sample estimate at time t trial =  $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$

29 / 34

#### Notes -

There are alternatives how to compute the trial value. SARSA method takes  $Q(S_{t+1}, A_{t+1})$  directly, not the max. More next week.

MDP update: 
$$Q_{k+1}(s,a) \leftarrow \sum_{s'} p(s' \mid s,a) \left[ r(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Learn Q values as the robot/agent goes (temporal difference)

- ▶ Drive the robot and fetch rewards (s, a, s', R)
- ▶ We know old estimates Q(s, a) (and Q(s', a')), if not, initialize.
- A new trial/sample estimate at time t trial =  $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$
- ▶  $\alpha$  update  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\mathsf{trial} Q(S_t, A_t))$  or (the same)  $Q(S_t, A_t) \leftarrow (1 \alpha)Q(S_t, A_t) + \alpha\,\mathsf{trial}$

Notes

There are alternatives how to compute the trial value. SARSA method takes  $Q(S_{t+1}, A_{t+1})$  directly, not the max. More next week.

MDP update: 
$$Q_{k+1}(s,a) \leftarrow \sum_{s'} p(s' \mid s,a) \left[ r(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Learn Q values as the robot/agent goes (temporal difference)

- ▶ Drive the robot and fetch rewards (s, a, s', R)
- ▶ We know old estimates Q(s, a) (and Q(s', a')), if not, initialize.
- A new trial/sample estimate at time t trial =  $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$
- ▶  $\alpha$  update  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\mathsf{trial} Q(S_t, A_t))$  or (the same)  $Q(S_t, A_t) \leftarrow (1 \alpha)Q(S_t, A_t) + \alpha\,\mathsf{trial}$

In each step Q approximates the optimal  $q^*$  function.

#### Notes

There are alternatives how to compute the trial value. SARSA method takes  $Q(S_{t+1}, A_{t+1})$  directly, not the max. More next week.

### Q-learning: algorithm

```
step size 0 < \alpha \le 1 initialize Q(s,a) for all s \in \mathcal{S}, a \in \mathcal{S}(s) repeat episodes: initialize S for for each step of episode: do choose A from S take action A, observe R, S' Q(S,A) \leftarrow Q(S,A) + \alpha \big[ R + \gamma \max_a Q(S',a) - Q(S,A) \big] end for until S is terminal until Time is up, ...
```

30 / 34

Notes

- ▶ Drive the robot and fetch rewards. (s, a, s', R)
- ▶ We know old estimates Q(s, a) (and Q(s', a')), if not, initialize.
- lacktriangle A new trial/sample estimate: trial  $=R_{t+1}+\gamma \max_{a}Q(S_{t+1},a)$
- ightharpoonup lpha update:  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + lpha(\mathsf{trial} Q(S_t, A_t))$

31 / 34

#### Notes -

Q-function for a discrete, finite problem? But what about continous space or discrete but a very large one? Use the (s)-(s,a)-(s')-(s',a') tree to discuss the next-action selection.

- ▶ Drive the robot and fetch rewards. (s, a, s', R)
- ▶ We know old estimates Q(s, a) (and Q(s', a')), if not, initialize.
- lacksquare A new trial/sample estimate: trial  $=R_{t+1}+\gamma\max_{a}Q(S_{t+1},a)$
- ightharpoonup lpha update:  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + lpha(\mathsf{trial} Q(S_t, A_t))$

Technicalities for the Q-learning agent

31 / 34

#### Notes

Q-function for a discrete, finite problem? But what about continous space or discrete but a very large one? Use the (s)-(s,a)-(s')-(s',a') tree to discuss the next-action selection.

- ▶ Drive the robot and fetch rewards. (s, a, s', R)
- ▶ We know old estimates Q(s, a) (and Q(s', a')), if not, initialize.
- lacksquare A new trial/sample estimate: trial  $=R_{t+1}+\gamma\max_{a}Q(S_{t+1},a)$
- ightharpoonup lpha update:  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + lpha(\mathsf{trial} Q(S_t, A_t))$

#### Technicalities for the Q-learning agent

► How to represent the *Q*-function?

#### Notes

Q-function for a discrete, finite problem? But what about continous space or discrete but a very large one? Use the (s)-(s,a)-(s')-(s',a') tree to discuss the next-action selection.

- ▶ Drive the robot and fetch rewards. (s, a, s', R)
- ▶ We know old estimates Q(s, a) (and Q(s', a')), if not, initialize.
- lacksquare A new trial/sample estimate: trial  $=R_{t+1}+\gamma\max_{a}Q(S_{t+1},a)$
- ightharpoonup lpha update:  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + lpha(\mathsf{trial} Q(S_t, A_t))$

#### Technicalities for the Q-learning agent

- ▶ How to represent the *Q*-function?
- ▶ What is the value for terminal? Q(s, Exit) or Q(s, None)

#### Notes

Q-function for a discrete, finite problem? But what about continous space or discrete but a very large one? Use the (s)-(s,a)-(s')-(s',a') tree to discuss the next-action selection.

- ▶ Drive the robot and fetch rewards. (s, a, s', R)
- ▶ We know old estimates Q(s, a) (and Q(s', a')), if not, initialize.
- lacksquare A new trial/sample estimate: trial  $=R_{t+1}+\gamma\max_{a}Q(S_{t+1},a)$
- ightharpoonup lpha update:  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + lpha(\mathsf{trial} Q(S_t, A_t))$

#### Technicalities for the Q-learning agent

- ▶ How to represent the *Q*-function?
- ▶ What is the value for terminal? Q(s, Exit) or Q(s, None)
- ▶ How to drive? Where to drive next? Does it change over the course?

#### Notes

Q-function for a discrete, finite problem? But what about continous space or discrete but a very large one? Use the (s)-(s,a)-(s')-(s',a') tree to discuss the next-action selection.







▶ Drive the known road or try a new one?







- ▶ Drive the known road or try a new one?
- ► Go to the university menza or try a nearby restaurant?







- ▶ Drive the known road or try a new one?
- ► Go to the university menza or try a nearby restaurant?
- ▶ Use the SW (operating system) I know or try a new one?







- ▶ Drive the known road or try a new one?
- ► Go to the university menza or try a nearby restaurant?
- ▶ Use the SW (operating system) I know or try a new one?
- ► Go to bussiness or study a demanding program?







- ▶ Drive the known road or try a new one?
- ► Go to the university menza or try a nearby restaurant?
- ▶ Use the SW (operating system) I know or try a new one?
- ► Go to bussiness or study a demanding program?

Random ( $\epsilon$ -greedy):

Notes -

- ullet We can think about lowering  $\epsilon$  as the learning progresses.
- Favor unexplored states be optimistic exploration functions f(u, n) = u + k/n, where u is the value estimated, and n is the visit count, and k is the training/simulation episode.

#### Random ( $\epsilon$ -greedy):

Flip a coin every step.

Notes -

- ullet We can think about lowering  $\epsilon$  as the learning progresses.
- Favor unexplored states be optimistic exploration functions f(u, n) = u + k/n, where u is the value estimated, and n is the visit count, and k is the training/simulation episode.

#### Random ( $\epsilon$ -greedy):

- ► Flip a coin every step.
- $\blacktriangleright$  With probability  $\epsilon$ , act randomly.

#### Notes -

- ullet We can think about lowering  $\epsilon$  as the learning progresses.
- Favor unexplored states be optimistic exploration functions f(u, n) = u + k/n, where u is the value estimated, and n is the visit count, and k is the training/simulation episode.

#### Random ( $\epsilon$ -greedy):

- ► Flip a coin every step.
- $\blacktriangleright$  With probability  $\epsilon$ , act randomly.
- ▶ With probability  $1 \epsilon$ , use the policy.

#### Notes

- ullet We can think about lowering  $\epsilon$  as the learning progresses.
- Favor unexplored states be optimistic exploration functions f(u, n) = u + k/n, where u is the value estimated, and n is the visit count, and k is the training/simulation episode.

#### Random ( $\epsilon$ -greedy):

- Flip a coin every step.
- $\blacktriangleright$  With probability  $\epsilon$ , act randomly.
- ▶ With probability  $1 \epsilon$ , use the policy.

Problems with randomness?

#### Notes

- ullet We can think about lowering  $\epsilon$  as the learning progresses.
- Favor unexplored states be optimistic exploration functions f(u, n) = u + k/n, where u is the value estimated, and n is the visit count, and k is the training/simulation episode.

#### Random ( $\epsilon$ -greedy):

- Flip a coin every step.
- $\blacktriangleright$  With probability  $\epsilon$ , act randomly.
- ▶ With probability  $1 \epsilon$ , use the policy.

#### Problems with randomness?

Keeps exploring forever.

#### Notes

- ullet We can think about lowering  $\epsilon$  as the learning progresses.
- Favor unexplored states be optimistic exploration functions f(u, n) = u + k/n, where u is the value estimated, and n is the visit count, and k is the training/simulation episode.

#### Random ( $\epsilon$ -greedy):

- Flip a coin every step.
- $\blacktriangleright$  With probability  $\epsilon$ , act randomly.
- ▶ With probability  $1 \epsilon$ , use the policy.

#### Problems with randomness?

- Keeps exploring forever.
- ▶ Should we keep  $\epsilon$  fixed (over learning)?

#### Notes

- We can think about lowering  $\epsilon$  as the learning progresses.
- Favor unexplored states be optimistic exploration functions f(u, n) = u + k/n, where u is the value estimated, and n is the visit count, and k is the training/simulation episode.

#### Random ( $\epsilon$ -greedy):

- Flip a coin every step.
- $\blacktriangleright$  With probability  $\epsilon$ , act randomly.
- ▶ With probability  $1 \epsilon$ , use the policy.

#### Problems with randomness?

- Keeps exploring forever.
- ▶ Should we keep  $\epsilon$  fixed (over learning)?
- $ightharpoonup \epsilon$  same everywhere?

#### **Notes**

- $\bullet$  We can think about lowering  $\epsilon$  as the learning progresses.
- Favor unexplored states be optimistic exploration functions f(u, n) = u + k/n, where u is the value estimated, and n is the visit count, and k is the training/simulation episode.

#### References

Further reading: Chapter 21 of [2]. More detailed discussion in [3], chapters 5 and 6.

[1] Dan Klein and Pieter Abbeel.

UC Berkeley CS188 Intro to AI - course materials.

http://ai.berkeley.edu/.

Used with permission of Pieter Abbeel.

[2] Stuart Russell and Peter Norvig.

Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition, 2010.

http://aima.cs.berkeley.edu/.

[3] Richard S. Sutton and Andrew G. Barto.

Reinforcement Learning; an Introduction.

MIT Press, 2nd edition, 2018.

http://www.incomplete ideas.net/book/bookdraft 2018 jan 1.pdf.