# Sequential decisions under uncertainty Markov Decision Processes (MDP)

#### Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

March 23, 2022

#### Unreliable actions in observable grid world





States  $s \in \mathcal{S}$ , actions  $a \in \mathcal{A}$  (Transition) Model  $T(s, a, s') \equiv p(s'|s, a) = \text{probability that } a \text{ in } s \text{ leads to } s'$ 

Unreliable actions in observable grid world





States  $s \in \mathcal{S}$ , actions  $a \in \mathcal{A}$  (Transition) Model  $T(s, a, s') \equiv p(s'|s, a) = \text{probability that } a \text{ in } s \text{ leads to } s'$ 

Unreliable (results of) actions



### Plan? Policy

- ► In deterministic world: Plan sequence of actions from Start to Goal.
- $\blacktriangleright$  MDPs, we need a policy  $\pi: \mathcal{S} \to \mathcal{A}$
- An action for each possible state. Why each?
- What is the best policy?



### Plan? Policy

- ► In deterministic world: Plan sequence of actions from Start to Goal.
- ▶ MDPs, we need a policy  $\pi: \mathcal{S} \to \mathcal{A}$ .
- ▶ An action for each possible state. Why each?
- What is the best policy?



### Plan? Policy

- ► In deterministic world: Plan sequence of actions from Start to Goal.
- ▶ MDPs, we need a policy  $\pi: \mathcal{S} \to \mathcal{A}$ .
- ▶ An action for each possible state. Why each?
- ▶ What is the *best* policy?



#### Rewards



Reward : Robot/Agent takes an action a and it is **immediately** rewarded.

Reward function r(s) (or r(s, a), r(s, a, s'))  $= \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$ 

# Markov Decision Processes (MDPs)





(b)

States  $s \in \mathcal{S}$ , actions  $a \in \mathcal{A}$ 

Model  $T(s, a, s') \equiv p(s'|s, a) =$  probability that a in s leads to s' Reward function r(s) (or r(s, a), r(s, a, s'))

 $= \left\{egin{array}{ll} -0.04 & ( ext{small penalty}) ext{ for nonterminal states} \ \pm 1 & ext{for terminal states} \end{array}
ight.$ 

# Markov Decision Processes (MDPs)





(b)

States 
$$s \in \mathcal{S}$$
, actions  $a \in \mathcal{A}$   
Model  $T(s, a, s') \equiv p(s'|s, a) = \text{probability that } a \text{ in } s \text{ leads to } s'$   
Reward function  $r(s)$  (or  $r(s, a)$ ,  $r(s, a, s')$ )
$$= \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$$



 $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2 \dots$ 



**3**/ **3**/ **1**/ **1**/ **1**/ **1**/ **1**/ **1**/ **1**/



 $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2 \dots$ 



$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2 \dots$$



$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2 \dots$$

#### Markovian property

- ▶ Given the present state, the future and the past are independent.
- ▶ MDP: Markov means action depends only on the current state.
- ▶ In search: successor function (transition model) depends on the current state only.

## Desired robot/agent behavior specified through rewards

- ► Before: shortest/cheapest path
- ▶ Environment/problem is defined through the reward function.
- Optimal policy is to be computed/learned.

We come back to this in more detail when discussing RL.



A: A-a, B-b, C-c

B: A-b, B-a, C-c

C: A-b, B-c, C-a

D: A-c, B-a, C-b



## Utilities of sequences

- $\triangleright$  State reward at time/step t,  $R_t$ .
- ▶ State at time t,  $S_t$ . State sequence  $[S_0, S_1, S_2, ...,]$

Typically, consider stationary preferences on reward sequences:

$$[R, R_1, R_2, R_3, \ldots] \succ [R, R'_1, R'_2, R'_3, \ldots] \Leftrightarrow [R_1, R_2, R_3, \ldots] \succ [R'_1, R'_2, R'_3, \ldots]$$

If stationary preferences : Utility (h-history)  $U_h([S_0, S_1, S_2, \dots,]) = R_1 + R_2 + R_3 + \cdots$ 

If the horizon is finite - limited number of steps - preferences are nonstationary (depends on how many steps left).

#### Returns and Episodes

- Executing policy sequence of states and rewards.
- **Episode** starts at t, ends at T (ending in a terminal state).
- Return (Utility) of the episode (policy execution)

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \cdots + R_T$$



12 / 28

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- Absorbing (terminal) state
- ightharpoonup Discounted return ,  $\gamma < 1, R_t \le R_{\text{max}}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\mathsf{max}}}{1 - \gamma}$$

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- ▶ Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- Absorbing (terminal) state
- ightharpoonup Discounted return ,  $\gamma < 1, R_t \le R_{\text{max}}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- ▶ Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- Absorbing (terminal) state.
- ightharpoonup Discounted return ,  $\gamma < 1, R_t \le R_{\mathsf{max}}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- ► Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- Absorbing (terminal) state.
- lacktriangle Discounted return ,  $\gamma < 1, R_t \leq R_{\sf max}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- ▶ Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- Absorbing (terminal) state.
- lacktriangle Discounted return ,  $\gamma < 1, R_t \leq R_{\sf max}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

Problem: Infinite lifetime ⇒ additive utilities are infinite.

- ▶ Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- Absorbing (terminal) state.
- lacktriangle Discounted return ,  $\gamma < 1, R_t \leq R_{\sf max}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

Problem: Infinite lifetime  $\Rightarrow$  additive utilities are infinite.

- ▶ Finite horizon: termination at a fixed time  $\Rightarrow$  nonstationary policy,  $\pi(s)$  depends on the time left.
- Absorbing (terminal) state.
- lacktriangle Discounted return ,  $\gamma < 1, R_t \leq R_{\sf max}$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \le \frac{R_{\text{max}}}{1 - \gamma}$$

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma^{1} R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$= R_{t+1} + \gamma G_{t+1}$$

#### MDPs recap

#### Markov decision processes (MDPs):

- $\triangleright$  Set of states S
- $\triangleright$  Set of actions  $\mathcal{A}$
- ▶ Transitions p(s'|s, a) or T(s, a, s')
- ▶ Reward function r(s, a, s'); and discount  $\gamma$
- Alternative to last two: p(s', r|s, a).

#### MDP quantities:

- $\blacktriangleright$  (deterministic) Policy  $\pi(s)$  choice of action for each state
- Return (Utility) of an episode (sequence) sum of (discounted) rewards.

#### MDPs recap

#### Markov decision processes (MDPs):

- $\triangleright$  Set of states  $\mathcal{S}$
- $\triangleright$  Set of actions  $\mathcal{A}$
- ▶ Transitions p(s'|s, a) or T(s, a, s')
- ▶ Reward function r(s, a, s'); and discount  $\gamma$
- Alternative to last two: p(s', r|s, a).

#### MDP quantities:

- (deterministic) Policy  $\pi(s)$  choice of action for each state
- ▶ Return (Utility) of an episode (sequence) sum of (discounted) rewards.

#### Value functions

- ightharpoonup Executing policy  $\pi \to \text{sequence of states (and rewards)}.$
- Utility of a state sequence.
- But actions are unreliable environment is stochastic.
- $\triangleright$  Expected return of a policy  $\pi$ .

Starting at time t, i.e.  $S_t$ ,

$$U^{\pi}(S_t) \doteq \mathsf{E}^{\pi} \left[ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \right]$$

Value function

$$v^\pi(s) \doteq \mathsf{E}^\pi \left[ G_t \mid S_t = s 
ight] = \mathsf{E}^\pi \left[ \sum_{k=0}^\infty \gamma^k R_{t+k+1} \mid S_t = s 
ight]$$

Action-value function (q-function)

$$q^{\pi}(s, a) \doteq \mathsf{E}^{\pi} \left[ G_t \mid S_t = s, A_t = a \right] = \mathsf{E}^{\pi} \left[ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right]$$

#### Value functions

- ightharpoonup Executing policy  $\pi \to \text{sequence of states (and rewards)}.$
- Utility of a state sequence.
- But actions are unreliable environment is stochastic.
- ightharpoonup Expected return of a policy  $\pi$ .

Starting at time t, i.e.  $S_t$ ,

$$U^{\pi}(S_t) \doteq \mathsf{E}^{\pi} \left[ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \right]$$

Value function

$$v^{\pi}(s) \doteq \mathsf{E}^{\pi}\left[ \mathsf{G}_t \mid \mathsf{S}_t = s 
ight] = \mathsf{E}^{\pi}\left[ \sum_{k=0}^{\infty} \gamma^k \mathsf{R}_{t+k+1} \mid \mathsf{S}_t = s 
ight]$$

Action-value function (q-function)

$$q^{\pi}(s, a) \doteq \mathsf{E}^{\pi} \left[ \mathsf{G}_t \mid \mathsf{S}_t = s, \mathsf{A}_t = a \right] = \mathsf{E}^{\pi} \left[ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid \mathsf{S}_t = s, \mathsf{A}_t = a \right]$$

#### Value functions

- $\blacktriangleright$  Executing policy  $\pi \to$  sequence of states (and rewards).
- Utility of a state sequence.
- But actions are unreliable environment is stochastic.
- $\triangleright$  Expected return of a policy  $\pi$ .

Starting at time t, i.e.  $S_t$ .

$$U^{\pi}(S_t) \doteq \mathsf{E}^{\pi} \left[ \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \right]$$

#### Value function

$$v^\pi(s) \doteq \mathsf{E}^\pi \left[ \mathsf{G}_t \mid \mathsf{S}_t = s 
ight] = \mathsf{E}^\pi \left[ \sum_{t=0}^\infty \gamma^k \mathsf{R}_{t+k+1} \; \middle| \; \mathsf{S}_t = s 
ight]$$

#### **Action-value function (q-function)**

$$q^{\pi}(s,a) \doteq \mathsf{E}^{\pi}\left[\mathsf{G}_t \mid \mathsf{S}_t = s, \mathsf{A}_t = a\right] = \mathsf{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^k \mathsf{R}_{t+k+1} \;\middle|\; \mathsf{S}_t = s, \mathsf{A}_t = a\right]$$

 $v^*(s) = \text{expected (discounted)}$  sum of rewards (until termination) assuming optimal actions.

 $v^*(s) = \text{expected (discounted)}$  sum of rewards (until termination) assuming optimal actions.

Example 1, Robot *deterministic*:  $r(s) = \{-0.04, 1, -1\}, \gamma = 0.9999999, \epsilon = 0.03$ 



 $v^*(s) = \text{expected (discounted)}$  sum of rewards (until termination) assuming optimal actions.

Example 2, Robot *non-deterministic*:  $r(s) = \{-0.04, 1, -1\}, \gamma = 0.9999999, \epsilon = 0.03$ 



 $v^*(s) = \text{expected (discounted)}$  sum of rewards (until termination) assuming optimal actions.

Example 3, Robot *non-deterministic*:  $r(s) = \{-0.01, 1, -1\}, \gamma = 0.9999999, \epsilon = 0.03$ 



#### MDP search tree

The value of a q-state (s, a):

$$q^*(s, a) = \sum_{s'} p(s'|a, s) [r(s, a, s') + \gamma v^*(s'))]$$

The value of a state s

$$v^*(s) = \max_{s} q^*(s, a)$$



#### MDP search tree

The value of a q-state (s, a):

$$q^*(s,a) = \sum_{s'} p(s'|a,s) \left[ r(s,a,s') + \gamma v^*(s')) \right]$$

The value of a state s:

$$v^*(s) = \max_a q^*(s,a)$$



#### MDP search tree

The value of a q-state (s, a):

$$q^*(s, a) = \sum_{s'} p(s'|a, s) [r(s, a, s') + \gamma v^*(s'))]$$

The value of a state s:

$$v^*(s) = \max_a q^*(s,a)$$



# Bellman (optimality) equation

$$v^*(s) = \max_{a \in A(s)} \sum_{s'} p(s'|a,s) \left[ r(s,a,s') + \gamma v^*(s') \right]$$





$$v^*(s) = \max_{a \in A(s)} \sum_{s'} p(s'|a,s) \left[ r(s,a,s') + \gamma v^*(s') \right]$$

- Start with arbitrary  $V_0(s)$  (except for terminals)
- Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s, a) V_k(s')$$

Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere locally consistent  $\Rightarrow$  globally optimal.

Value iteration algorithm is an example of Dynamic Programming method.

$$v^*(s) = \max_{a \in A(s)} \sum_{s'} p(s'|a, s) [r(s, a, s') + \gamma v^*(s')]$$

- Start with arbitrary  $V_0(s)$  (except for terminals)
- ► Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s, a) V_k(s')$$

Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere locally consistent  $\Rightarrow$  globally optimal.

Value iteration algorithm is an example of Dynamic Programming method.

$$v^*(s) = \max_{a \in A(s)} \sum_{s'} p(s'|a,s) \left[ r(s,a,s') + \gamma v^*(s') \right]$$

- Start with arbitrary  $V_0(s)$  (except for terminals)
- Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s, a) V_k(s')$$

Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere locally consistent  $\Rightarrow$  globally optimal.

Value iteration algorithm is an example of Dynamic Programming method

$$v^*(s) = \max_{a \in A(s)} \sum_{s'} p(s'|a, s) [r(s, a, s') + \gamma v^*(s')]$$

- ightharpoonup Start with arbitrary  $V_0(s)$  (except for terminals)
- ► Compute Bellman update (one ply of expectimax from each state)

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s, a) V_k(s')$$

Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere locally consistent  $\Rightarrow$  globally optimal.

Value iteration algorithm is an example of Dynamic Programming method

# Value iteration - Complexity of one estimation sweep

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s, a) V_k(s')$$

A: O(AS)

B:  $O(S^2)$ 

 $C: O(AS^2)$ 

D:  $O(A^2S^2)$ 

# Value iteration (dynamic programming) vs. direct search

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s,a) V_k(s')$$

$$(s,a) q^*(s,a)$$

$$p(s'|s,a)$$

$$v^*(s')$$

#### Value iteration demo



### Convergence

$$egin{aligned} V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) V_k(s') \ & \gamma < 1 \ & -R_{\mathsf{max}} \leq R(s) \leq R_{\mathsf{max}} \end{aligned}$$

Max norm

$$||v|| = \max_{s} |v(s)|$$
 $U([s_0, s_1, s_2, \dots, s_\infty]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \leq \frac{R_{\mathsf{max}}}{1 - \gamma}$ 

## Convergence

$$egin{aligned} V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) V_k(s') \ & \gamma < 1 \ & -R_{\mathsf{max}} \leq R(s) \leq R_{\mathsf{max}} \end{aligned}$$

Max norm:

$$U([s_0, s_1, s_2, \dots, s_\infty]) = \sum_{t=0}^\infty \gamma^t R(s_t) \leq rac{R_{\mathsf{max}}}{1-\gamma}$$

 $||V|| = \max_{s} |V(s)|$ 

#### Convergence cont'd

$$V_{k+1} \leftarrow BV_k \dots B$$
 as the Bellman update  $V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s,a) V_k(s')$ 

$$||BV_k - BV_k'|| \le \gamma ||V_k - V_k'||$$
  
$$||BV_k - V_{\text{true}}|| \le \gamma ||V_k - V_{\text{true}}||$$

Rewards are bounded, at the beginning then Value error is

$$\|V_0 - V_{true}\| \leq \frac{2R_{\mathsf{max}}}{1-\gamma}$$

We run N iterations and reduce the error by factor  $\gamma$  in each and want to stop the error is below  $\epsilon$ :

$$\gamma^N 2R_{\max}/(1-\gamma) \le \epsilon$$
 Taking logs, we find:  $N \ge \frac{\log(2R_{\max}/\epsilon(1-\gamma))}{\log(1/\gamma)}$ 

To stop the iteration we want to find a bound relating the error to the size of *one* Bellman update for any given iteration.

We stop if

$$\|V_{k+1}-V_k\|\leq \frac{\epsilon(1-\gamma)}{\gamma}$$

then also:  $\|V_{k+1} - V_{\mathsf{true}}\| \leq \epsilon$  Proof on the next slide

### Convergence cont'd

$$\|V_{k+1} - V_{\mathsf{true}}\| \leq \epsilon$$
 is the same as  $\|V_{k+1} - V_{\infty}\| \leq \epsilon$ 

Assume  $||V_{k+1} - V_k|| = \text{err}$ 

In each of the following iteration steps we reduce the error by the factor  $\gamma$  (because  $||BV_k - V_{\text{true}}|| \le \gamma ||V_k - V_{\text{true}}||$ ). Till  $\infty$ , the total sum of reduced errors is:

total = 
$$\gamma$$
err +  $\gamma^2$ err +  $\gamma^3$ err +  $\gamma^4$ err +  $\cdots$  =  $\frac{\gamma$ err}{(1 -  $\gamma)}$ 

We want to have total  $< \epsilon$ .

$$rac{\gamma \mathsf{err}}{(1-\gamma)} < \epsilon$$

From it follows that

$$\operatorname{err} < rac{\epsilon(1-\gamma)}{\gamma}$$

Hence we can stop if  $\|V_{k+1} - V_k\| < \epsilon(1 - \gamma)/\gamma$ 

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
   input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states
```

iterate values until convergence
▷ keep the last known values
▷ reset the max difference

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
   input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states
   repeat
```

#### 

keep the last known valuesreset the max difference

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
    input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states
    repeat
         V \leftarrow V'
         \delta \leftarrow 0
```

- ▷ iterate values until convergence▷ keep the last known values
  - ▷ reset the max difference

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
    input: env - MDP problem, \epsilon
     V' \leftarrow 0 in all states
    repeat
         V \leftarrow V'
         \delta \leftarrow 0
         for each state s in S do
              V'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V(s')
              if |V'[s] - V[s]| > \delta then \delta \leftarrow |V'[s] - V[s]|
         end for
```

▷ iterate values until convergence
 ▷ keep the last known values
 ▷ reset the max difference

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
    input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states
    repeat

    iterate values until convergence

         V \leftarrow V'
                                                                             \delta \leftarrow 0
                                                                                 > reset the max difference
        for each state s in S do
             V'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V(s')
            if |V'[s] - V[s]| > \delta then \delta \leftarrow |V'[s] - V[s]|
        end for
    until \delta < \epsilon (1 - \gamma)/\gamma
end function
```

#### Sync vs. async Value iteration

```
function VALUE-ITERATION(env,\epsilon) returns: state values V
    input: env - MDP problem, \epsilon
    V' \leftarrow 0 in all states
    repeat

    iterate values until convergence

        V \leftarrow V'
                                                                             \delta \leftarrow 0
                                                                                 > reset the max difference
        for each state s in S do
             V'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V(s')
            if |V'[s] - V[s]| > \delta then \delta \leftarrow |V'[s] - V[s]|
        end for
    until \delta < \epsilon (1 - \gamma)/\gamma
end function
```

#### References

Some figures from [1] (chapter 17) but notation slightly changed in order to adapt notation from [2] (chapters 3, 4) which will help us in the Reinforcement Learning part of the course. Note that the book [2] is available on-line.

[1] Stuart Russell and Peter Norvig.

Artificial Intelligence: A Modern Approach.

Prentice Hall, 3rd edition, 2010.

http://aima.cs.berkeley.edu/.

[2] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning; an Introduction.

MIT Press, 2nd edition, 2018.

http://www.incompleteideas.net/book/the-book-2nd.html.