Sequential decisions under uncertainty Markov Decision Processes (MDP)

Tomáš Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

March 23, 2022

Unreliable actions in observable grid world

Unreliable actions in observable grid world

States $s \in \mathcal{S}$, actions $a \in \mathcal{A}$
(Transition) Model $T\left(s, a, s^{\prime}\right) \equiv p\left(s^{\prime} \mid s, a\right)=$ probability that a in s leads to s^{\prime}

Unreliable (results of) actions

Plan? Policy

- In deterministic world: Plan - sequence of actions from Start to Goal.

Plan? Policy

- In deterministic world: Plan - sequence of actions from Start to Goal.
- MDPs, we need a policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$.
- An action for each possible state. Why each?

Plan? Policy

- In deterministic world: Plan - sequence of actions from Start to Goal.
- MDPs, we need a policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$.
- An action for each possible state. Why each?
- What is the best policy?

Rewards

-0.04	-0.04	-0.04	1.00
-0.04		-0.04	-1.00
-0.04	-0.04	-0.04	-0.04

Reward : Robot/Agent takes an action a and it is immediately rewarded.
Reward function $r(s)$ (or $r(s, a), r\left(s, a, s^{\prime}\right)$)

$$
= \begin{cases}-0.04 & \text { (small penalty) for nonterminal states } \\ \pm 1 & \text { for terminal states }\end{cases}
$$

Markov Decision Processes (MDPs)

(a)

(b)
Markov Decision Processes (MDPs)

(b)

States $s \in \mathcal{S}$, actions $a \in \mathcal{A}$
Model $T\left(s, a, s^{\prime}\right) \equiv p\left(s^{\prime} \mid s, a\right)=$ probability that a in s leads to s^{\prime}
Reward function $r(s)$ (or $r(s, a), r\left(s, a, s^{\prime}\right)$)

$$
= \begin{cases}-0.04 & \text { (small penalty) for nonterminal states } \\ \pm 1 & \text { for terminal states }\end{cases}
$$

Robot/Agent walk - Episode

S_{0},

Robot/Agent walk - Episode

(b)
S_{0}, A_{0},

Robot/Agent walk - Episode

(b)
$S_{0}, A_{0}, R_{1}, S_{1}$,

Robot/Agent walk - Episode

(b)
$S_{0}, A_{0}, R_{1}, S_{1}, A_{1}$,

Robot/Agent walk - Episode

(a)

(b)
$S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{2}, S_{2}, A_{2} \ldots$

Episode : one walk from S_{0} to terminal.

Markovian property

- Given the present state, the future and the past are independent.
- MDP: Markov means action depends only on the current state.
- In search: successor function (transition model) depends on the current state only.

Desired robot/agent behavior specified through rewards

- Before: shortest/cheapest path
- Environment/problem is defined through the reward function.
- Optimal policy is to be computed/learned.

We come back to this in more detail when discussing RL.

>	>	>	1.00	>	>	>	1.00	>	>	>	1.00
\wedge		\wedge	-1.00	\wedge		<	-1.00	\wedge		>	-1.00
\wedge	<	$<$	<	\wedge	$<$	$<$	v	>	>	>	\wedge
A				B				C			
$\begin{gathered} r(s) \in\{-2,1,-1\} \\ a \end{gathered}$				$r(s) \in \underset{b}{-0.04,1,-1\}}$				$r(s) \in\{-0.01,1,-1\}$			

A: A-a, B-b, C-c
B: A-b, B-a, C-c
C: A-b, B-c, C-a
D: A-c, B-a, C-b

Utilities of sequences

- State reward at time/step t, R_{t}.
- State at time t, S_{t}. State sequence $\left[S_{0}, S_{1}, S_{2}, \ldots\right.$,]

Typically, consider stationary preferences on reward sequences:

$$
\left[R, R_{1}, R_{2}, R_{3}, \ldots\right] \succ\left[R, R_{1}^{\prime}, R_{2}^{\prime}, R_{3}^{\prime}, \ldots\right] \Leftrightarrow\left[R_{1}, R_{2}, R_{3}, \ldots\right] \succ\left[R_{1}^{\prime}, R_{2}^{\prime}, R_{3}^{\prime}, \ldots\right]
$$

If stationary preferences :
Utility (h-history)
$U_{h}\left(\left[S_{0}, S_{1}, S_{2}, \ldots,\right]\right)=R_{1}+R_{2}+R_{3}+\cdots$
If the horizon is finite - limited number of steps - preferences are nonstationary (depends on how many steps left).

Returns and Episodes

- Executing policy - sequence of states and rewards.
- Episode starts at t, ends at T (ending in a terminal state).
- Return (Utility) of the episode (policy execution)

$$
G_{t}=R_{t+1}+R_{t+2}+R_{t+3}+\cdots+R_{T}
$$

Comparing policies: Finite vs. infinite horizon
Problem: Infinite lifetime \Rightarrow additive utilities are infinite.

Comparing policies: Finite vs. infinite horizon

Problem: Infinite lifetime \Rightarrow additive utilities are infinite.

- Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.

Comparing policies: Finite vs. infinite horizon

Problem: Infinite lifetime \Rightarrow additive utilities are infinite.

- Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- Absorbing (terminal) state.

Comparing policies: Finite vs. infinite horizon

Problem: Infinite lifetime \Rightarrow additive utilities are infinite.

- Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- Absorbing (terminal) state.
- Discounted return , $\gamma<1, R_{t} \leq R_{\max }$

$$
G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \leq \frac{R_{\max }}{1-\gamma}
$$

Comparing policies: Finite vs. infinite horizon

Problem: Infinite lifetime \Rightarrow additive utilities are infinite.

- Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- Absorbing (terminal) state.
- Discounted return , $\gamma<1, R_{t} \leq R_{\max }$

$$
G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \leq \frac{R_{\max }}{1-\gamma}
$$

Returns are successive steps related to each other

$$
G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots
$$

Comparing policies: Finite vs. infinite horizon

Problem: Infinite lifetime \Rightarrow additive utilities are infinite.

- Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- Absorbing (terminal) state.
- Discounted return , $\gamma<1, R_{t} \leq R_{\max }$

$$
G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \leq \frac{R_{\max }}{1-\gamma}
$$

Returns are successive steps related to each other

$$
\begin{aligned}
G_{t} & =R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots \\
& =R_{t+1}+\gamma\left(R_{t+2}+\gamma^{1} R_{t+3}+\gamma^{2} R_{t+4}+\cdots\right)
\end{aligned}
$$

Comparing policies: Finite vs. infinite horizon

Problem: Infinite lifetime \Rightarrow additive utilities are infinite.

- Finite horizon: termination at a fixed time \Rightarrow nonstationary policy, $\pi(s)$ depends on the time left.
- Absorbing (terminal) state.
- Discounted return , $\gamma<1, R_{t} \leq R_{\max }$

$$
G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \leq \frac{R_{\max }}{1-\gamma}
$$

Returns are successive steps related to each other

$$
\begin{aligned}
G_{t} & =R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots \\
& =R_{t+1}+\gamma\left(R_{t+2}+\gamma^{1} R_{t+3}+\gamma^{2} R_{t+4}+\cdots\right) \\
& =R_{t+1}+\gamma G_{t+1}
\end{aligned}
$$

MDPs recap

Markov decision processes (MDPs):

- Set of states \mathcal{S}
- Set of actions \mathcal{A}
- Transitions $p\left(s^{\prime} \mid s, a\right)$ or $T\left(s, a, s^{\prime}\right)$
- Reward function $r\left(s, a, s^{\prime}\right)$; and discount γ
- Alternative to last two: $p\left(s^{\prime}, r \mid s, a\right)$.

MDPs recap

Markov decision processes (MDPs):

- Set of states \mathcal{S}
- Set of actions \mathcal{A}
- Transitions $p\left(s^{\prime} \mid s, a\right)$ or $T\left(s, a, s^{\prime}\right)$
- Reward function $r\left(s, a, s^{\prime}\right)$; and discount γ
- Alternative to last two: $p\left(s^{\prime}, r \mid s, a\right)$.

MDP quantities:

- (deterministic) Policy $\pi(s)$ - choice of action for each state
- Return (Utility) of an episode (sequence) - sum of (discounted) rewards.

Value functions

- Executing policy $\pi \rightarrow$ sequence of states (and rewards).
- Utility of a state sequence.

Value functions

- Executing policy $\pi \rightarrow$ sequence of states (and rewards).
- Utility of a state sequence.
- But actions are unreliable - environment is stochastic.

Value functions

- Executing policy $\pi \rightarrow$ sequence of states (and rewards).
- Utility of a state sequence.
- But actions are unreliable - environment is stochastic.
- Expected return of a policy π.

Starting at time t, i.e. S_{t},

$$
U^{\pi}\left(S_{t}\right) \doteq \mathrm{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}\right]
$$

Value function

$$
v^{\pi}(s) \doteq \mathrm{E}^{\pi}\left[G_{t} \mid S_{t}=s\right]=\mathrm{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s\right]
$$

Action-value function (q-function)

$$
q^{\pi}(s, a) \doteq \mathrm{E}^{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right]=\mathrm{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right]
$$

Optimal policy π^{*}, and optimal value $v^{*}(s)$

$v^{*}(s)=$ expected (discounted) sum of rewards (until termination) assuming optimal actions.

Optimal policy π^{*}, and optimal value $v^{*}(s)$

$v^{*}(s)=$ expected (discounted) sum of rewards (until termination) assuming optimal actions.
Example 1, Robot deterministic: $r(s)=\{-0.04,1,-1\}, \gamma=0.999999, \epsilon=0.03$

	0	1	2	3			0	1	2	3	
0	0.88	0.92	0.96	1.00	0	0	>	>	>	None	0
1	0.84		0.92	-1.00	1	1	\wedge		\wedge	None	1
2	0.80	0.84	0.88	0.84	2	2	\wedge	>	\wedge	<	2
	0	1	2	3			0	1	2	3	

Optimal policy π^{*}, and optimal value $v^{*}(s)$

$v^{*}(s)=$ expected (discounted) sum of rewards (until termination) assuming optimal actions.
Example 2, Robot non-deterministic: $r(s)=\{-0.04,1,-1\}, \gamma=0.999999, \epsilon=0.03$

	0	1	2	3			0	1	2	3	
0	0.81	0.87	0.92	1.00	0	0	>	>	>	None	0
1	0.76		0.66	-1.00	1	1	\wedge		\wedge	None	1
2	0.71	0.66	0.61	0.39	2	2	\wedge	<	<	<	2
	0	1	2	3			0	1	2	3	

Optimal policy π^{*}, and optimal value $v^{*}(s)$

$v^{*}(s)=$ expected (discounted) sum of rewards (until termination) assuming optimal actions.
Example 3, Robot non-deterministic: $r(s)=\{-0.01,1,-1\}, \gamma=0.999999, \epsilon=0.03$

MDP search tree

The value of a q-state (s, a) :

$$
\left.q^{*}(s, a)=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right)\right]
$$

MDP search tree

The value of a q-state (s, a) :

$$
\left.q^{*}(s, a)=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right)\right]
$$

The value of a state s :

$$
v^{*}(s)=\max _{a} q^{*}(s, a)
$$

MDP search tree

The value of a q-state (s, a) :

$$
\left.q^{*}(s, a)=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right)\right]
$$

The value of a state s :

$$
v^{*}(s)=\max _{a} q^{*}(s, a)
$$

Bellman (optimality) equation

$$
v^{*}(s)=\max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid a s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$

Value iteration - turn Bellman equation into Bellman update

$$
v^{*}(s)=\max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$

- Start with arbitrary $V_{0}(s)$ (except for terminals)

Value iteration - turn Bellman equation into Bellman update

$$
v^{*}(s)=\max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$

- Start with arbitrary $V_{0}(s)$ (except for terminals)
- Compute Bellman update (one ply of expectimax from each state)

$$
V_{k+1}(s) \leftarrow R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) V_{k}\left(s^{\prime}\right)
$$

Value iteration - turn Bellman equation into Bellman update

$$
v^{*}(s)=\max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$

- Start with arbitrary $V_{0}(s)$ (except for terminals)
- Compute Bellman update (one ply of expectimax from each state)

$$
V_{k+1}(s) \leftarrow R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) V_{k}\left(s^{\prime}\right)
$$

- Repeat until convergence

Value iteration - turn Bellman equation into Bellman update

$$
v^{*}(s)=\max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$

- Start with arbitrary $V_{0}(s)$ (except for terminals)
- Compute Bellman update (one ply of expectimax from each state)

$$
V_{k+1}(s) \leftarrow R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) V_{k}\left(s^{\prime}\right)
$$

- Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere locally consistent \Rightarrow globally optimal.

Value iteration algorithm is an example of Dynamic Programming method.

Value iteration - Complexity of one estimation sweep

$$
V_{k+1}(s) \leftarrow R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) V_{k}\left(s^{\prime}\right)
$$

A: $O(A S)$
B: $O\left(S^{2}\right)$
C: $O\left(A S^{2}\right)$
D: $O\left(A^{2} S^{2}\right)$

Value iteration (dynamic programming) vs. direct search

Value iteration demo

$$
V_{k+1}(s) \leftarrow R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{k}\left(s^{\prime}\right)
$$

	0	1	2	3	
0	0.81	0.87	0.92	1.00	0
1	0.76		0.66	-1.00	1
2	0.71	0.66	0.61	0.39	2
	0	1	2	3	

Convergence

$$
\begin{gathered}
V_{k+1}(s) \leftarrow R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{k}\left(s^{\prime}\right) \\
\gamma<1 \\
-R_{\max } \leq R(s) \leq R_{\max }
\end{gathered}
$$

Convergence

$$
\begin{gathered}
V_{k+1}(s) \leftarrow R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{k}\left(s^{\prime}\right) \\
\gamma<1 \\
-R_{\max } \leq R(s) \leq R_{\max }
\end{gathered}
$$

Max norm:

$$
\begin{gathered}
\|V\|=\max _{s}|V(s)| \\
U\left(\left[s_{0}, s_{1}, s_{2}, \ldots, s_{\infty}\right]\right)=\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}\right) \leq \frac{R_{\max }}{1-\gamma}
\end{gathered}
$$

Convergence cont'd

$V_{k+1} \leftarrow B V_{k} \ldots B$ as the Bellman update $V_{k+1}(s) \leftarrow R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) V_{k}\left(s^{\prime}\right)$
$\left\|B V_{k}-B V_{k}^{\prime}\right\| \leq \gamma\left\|V_{k}-V_{k}^{\prime}\right\|$
$\left\|B V_{k}-V_{\text {true }}\right\| \leq \gamma\left\|V_{k}-V_{\text {true }}\right\|$
Rewards are bounded, at the beginning then Value error is $\left\|V_{0}-V_{\text {true }}\right\| \leq \frac{2 R_{\max }}{1-\gamma}$
We run N iterations and reduce the error by factor γ in each and want to stop the error is below ϵ :
$\gamma^{N} 2 R_{\max } /(1-\gamma) \leq \epsilon$ Taking logs, we find: $N \geq \frac{\log \left(2 R_{\max } / \epsilon(1-\gamma)\right)}{\log (1 / \gamma)}$
To stop the iteration we want to find a bound relating the error to the size of one Bellman update for any given iteration.
We stop if

$$
\left\|V_{k+1}-V_{k}\right\| \leq \frac{\epsilon(1-\gamma)}{\gamma}
$$

then also: $\left\|V_{k+1}-V_{\text {true }}\right\| \leq \epsilon$ Proof on the next slide

Convergence cont'd

$\left\|V_{k+1}-V_{\text {true }}\right\| \leq \epsilon$ is the same as $\left\|V_{k+1}-V_{\infty}\right\| \leq \epsilon$
Assume $\left\|V_{k+1}-V_{k}\right\|=$ err
In each of the following iteration steps we reduce the error by the factor γ (because $\left.\left\|B V_{k}-V_{\text {true }}\right\| \leq \gamma\left\|V_{k}-V_{\text {true }}\right\|\right)$. Till ∞, the total sum of reduced errors is:

$$
\text { total }=\gamma \mathrm{err}+\gamma^{2} \mathrm{err}+\gamma^{3} \mathrm{err}+\gamma^{4} \mathrm{err}+\cdots=\frac{\gamma \mathrm{err}}{(1-\gamma)}
$$

We want to have total $<\epsilon$.

$$
\frac{\gamma \mathrm{err}}{(1-\gamma)}<\epsilon
$$

From it follows that

$$
\operatorname{err}<\frac{\epsilon(1-\gamma)}{\gamma}
$$

Hence we can stop if $\left\|V_{k+1}-V_{k}\right\|<\epsilon(1-\gamma) / \gamma$

Value iteration algorithm

function VALUE-ITERATION(env, ϵ) returns: state values V input: env - MDP problem, ϵ
$V^{\prime} \leftarrow 0$ in all states

Value iteration algorithm

function VALUE-ITERATION(env, ϵ) returns: state values V
input: env - MDP problem, ϵ
$V^{\prime} \leftarrow 0$ in all states
repeat \triangleright iterate values until convergence

Value iteration algorithm

function VALUE-ITERATION(env, ϵ) returns: state values V
input: env - MDP problem, ϵ
$V^{\prime} \leftarrow 0$ in all states

repeat

$$
\begin{aligned}
& V \leftarrow V^{\prime} \\
& \delta \leftarrow 0
\end{aligned}
$$

\triangleright iterate values until convergence
\triangleright keep the last known values \triangleright reset the max difference

Value iteration algorithm

function VALUE-ITERATION(env, ϵ) returns: state values V input: env - MDP problem, ϵ
$V^{\prime} \leftarrow 0$ in all states
repeat
$V \leftarrow V^{\prime}$
$\delta \leftarrow 0$
for each state s in S do

$$
\begin{aligned}
& \quad V^{\prime}[s] \leftarrow R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) \\
& \text { if }\left|V^{\prime}[s]-V[s]\right|>\delta \text { then } \delta \leftarrow\left|V^{\prime}[s]-V[s]\right| \\
& \text { end for }
\end{aligned}
$$

\triangleright iterate values until convergence
\triangleright keep the last known values \triangleright reset the max difference

Value iteration algorithm

function VALUE-ITERATION(env, ϵ) returns: state values V
input: env - MDP problem, ϵ
$V^{\prime} \leftarrow 0$ in all states
repeat
$V \leftarrow V^{\prime}$
$\delta \leftarrow 0$
for each state s in S do

$$
\begin{aligned}
& V^{\prime}[s] \leftarrow R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) \\
& \text { if }\left|V^{\prime}[s]-V[s]\right|>\delta \text { then } \delta \leftarrow\left|V^{\prime}[s]-V[s]\right|
\end{aligned}
$$

end for
until $\delta<\epsilon(1-\gamma) / \gamma$
end function
\triangleright iterate values until convergence
\triangleright keep the last known values \triangleright reset the max difference

Sync vs. async Value iteration

```
function VALUE-ITERATION(env, \(\epsilon\) ) returns: state values \(V\)
    input: env - MDP problem, \(\epsilon\)
    \(V^{\prime} \leftarrow 0\) in all states
```

repeat
$V \leftarrow V^{\prime}$
$\delta \leftarrow 0$
for each state s in S do

$$
\begin{aligned}
& V^{\prime}[s] \leftarrow R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) \\
& \text { if }\left|V^{\prime}[s]-V[s]\right|>\delta \text { then } \delta \leftarrow\left|V^{\prime}[s]-V[s]\right|
\end{aligned}
$$

end for
until $\delta<\epsilon(1-\gamma) / \gamma$
end function
\triangleright iterate values until convergence
\triangleright keep the last known values \triangleright reset the max difference

References

Some figures from [1] (chapter 17) but notation slightly changed in order to adapt notation from [2] (chapters 3,4) which will help us in the Reinforcement Learning part of the course. Note that the book [2] is available on-line.
[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.
[2] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/the-book-2nd.html.

