
1B35APO Computer Architectures

Computer Architectures

Microprocessor Evolution - from 4-bit Ones to Superscalar RISC

Pavel Píša, Michal Štepanovský

Ver.1.00

Czech Technical University in Prague, Faculty of Electrical Engineering

2B35APO Computer Architectures

3B35APO Computer Architectures

Early Technology and Complexity Comparison

CPU Company Year Transis. Technology Reg/Bus Data/prog+IO Cache I/D+L2 Float Frequency MIPS Price

4004 Intel 1971 2300 4bit 1kB/4kB 750kHz 0.06 200

8008 Intel 1972 3500 10um 8bit 16kB 0.06
8080 Intel 1974 6000 6um 8bit 64kB+256 2MHz 0.64 150
MC6501 NMOS T. 1975 20
8085 Intel 1976 6500 3um 8bit 64kB+256 5MHz 0.37
Z-80 Zilog 1976 8bit 64kB+256 2.5MHz
MC6502 NMOS T. 1976 25
8086 Intel 1978 29000 3um 16/16bit 1MB+64kB 4.77MHz 0.33 360
8088 Intel 1979 3um 16/8bit 1MB+64kB 4.77MHz 0.33
MC68000 Motorola 1979 68000 16-32/16bit 16MB
80286 Intel 1982 134000 1.5um 16/16bit 16MB/1GBvirt 256B/0B 6MHz 0.9 380
MC68020 Motorola 1984 190000 32/32bit 16MB Ano 16MHz
80386DX Intel 1985 275000 1.5um 32/32bit 4GB/64TBvirt 16MHz 299
MC68030 Motorola 1987 273000 4GB+MMU 256B/256B
80486 Intel 1989 1.2mil 1um 32/32bit 4GB/64TBvirt 8kB Ano 25MHz 20 900
MC68040 Motorola 1989 1.2mil 4GB+MMU 4kB/4kB Ano
PowerPC 601 Mot+IBM 1992 2.8mil 32/64bit 32kB Ano 66MHz
PA-RISC HP 1992 50MHz
Pentium Intel 1993 3.1mil 32/64bit 4GB+MMU Ano 66MHz 112

Alpha DEC 1994 9.3mil 64bit 4GB/64TBvir 8/8+96kB 300MHz 1000
MC68060 Motorola 1994 2.5mil 4GB+MMU 8kB/8kB Ano 50MHz 100 308
Pentium Pro Intel 1995 5.5mil Ano 200/60MHz 440 1682
Pentium II Intel 1998 7.5mil 32/64bit Ano+MMX 400/100MHz 832

Motorola 1999 64/128bit Ano+AV 450MHz 825

10um -
3x4mm

'256

0.8um -
BiCMOS

PowerPC G4M
PC7400

0.15um –
cooper
6LM CMOS

4GB/252 32kB/32kB
+2MB

4B35APO Computer Architectures

Accumulator Based Architectures

● register+accumulator → accumulator
● 4bit Intel 4004 (1971)

● 8bit Intel8080 (1974) – registers pairs used to address data
in 64kB address space

● basic arithmetic-logic operations only – addition,
subtraction, rotation for 8-bit accumulator

● subroutines by CALL and RET instructions with 16-bit PC
save on stack

● a few 16-bit operations – increment/decrement of registers
pairs, addition to HL and save to stack

● microcode controlled/microprogrammed instructions
execution – 2 to 11 clock cycles per instruction at 2 MHz
clock signal

5B35APO Computer Architectures

Intel 8080

Instruction
Register

Accumulator
Temp. Register

FlagFlip Flops

Data Bus
Buffer/Latch

ALU

DecimalAdjust

Instruction
Decoder and
MachineCycl
Encoding

R
eg

is
te

r
S

e
le

ct

Multiplexer

Timing and Control
Data BusControl

Reset

InterruptControl
Sync Clocks

DBIN#WR INTE Sync Ph1 Ph2

8 Bit internal Data Bus

D0-D7 bidirectional
Data Bus

WRITE

HoldAckHold

WaitControl

ReadyWait

WTemp. Reg. ZTemp. Reg.

BReg. CReg.

DReg. EReg.

HReg. LReg.

Stack Pointer

Program Counter

Incrementer/
DecrementerAddress Latch

Address Buffer

A0-A15Address Bus

Accumulator
Latch

Hold Control

INT

http://en.wikipedia.org/wiki/Intel_8080

http://en.wikipedia.org/wiki/Intel_8080

6B35APO Computer Architectures

Fast memory ⇒ reduce register count and add address modes

● Motorola 6800, NMOS T. 6502 (1975) - accumulator,
index, SP a PC only – use zero page as fast data, CU
hardwired

● Texas TMS990 – workspace pointer only, even PC, SP,
other registers in main memory, similar to transputers

7B35APO Computer Architectures

Memory is bottleneck now ⇒ complex instruction set modeled
according to C language constructs, CISC

● Intel 8086 (16-bit upgrade to 8080)

● 8× 8-bit register form 4 pairs (16-bit registers), additional 4 16-bit
registers – SP, BP (C functions frame), SI (source-index), DI
(destination index), 1 MB address space by segments,
register+=register, memory+=register, register+=memory

● Motorola 68000 (1979) – 16/32bit
● two operand instructions

● register+=register, memory+=register, register+=memory, even
one instruction memory=memory

● based on microcode to process so rich instruction set

● Z-8000 16bit, Z-80000 32bit (1986) CISC
● 6 phases pipelined execution, without microcode, 18000

transistors only

8B35APO Computer Architectures

Intel 8086 and 32-bit i386

Data Segment

Code Segment

Extra Segment

Stack Segment

Instruction Pointer

Program Status and Control Register

EAX

EFLAGS

GS

FS

ES

SS

DS

CS

ESP

EBP

EDI

ESI

EDX

ECX

EBX

EIP

0

31

31

0

031

15 0

General-Purpose Registers

Segment Registers

AX

DX

CX

BX

16-
bit

32-
bit

SI

DI

BP

SP

AL

BL

CL

DL

AH

BH

CH

DH

Accumulator

Base

Count

Data

Source Index

Destination Index

Base Pointer

Stack Pointer

781516

9B35APO Computer Architectures

Basic Integer Registers of M68xxx/CPU32/ColdFire

31 16 15 0
A7# (SSP) SUPERVISOR STACK

POINTER
15 8 7 0

(CCR) SR STATUS REGISTER
31 0

VBR VECTOR BASE REGISTER
31 3 2 0

SFC ALTERNATE FUNCTION
DFC CODE REGISTERS

16 15 8 7 0
D0
D1
D2
D3 DATA REGISTERS
D4
D5
D6
D7

16 15 0
A0
A1
A2
A3 ADDRESS REGISTERS
A4
A5
A6

16 15 0
A7 (USP) USER STACK POINTER

0
PC PROGRAM COUNTER

15 8 7 0
0 CCR CONDITION CODE REGISTER

31
User mode

System mode

10B35APO Computer Architectures

Status Register – Conditional Code Part

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T1 T0 S 0 0 I2 I1 I0 0 0 0 X N Z V C

EXTEND

NEGATIVE

ZERO

OVERFLOW

CARRY

INTERRUPT
PRIORITY MASK

SUPERVISOR/USER
STATE

TRACE
ENABLE

SYSTEM BYTE
USER BYTE

(CONDITION CODE REGISTER)

● N – negative ... = 1 when the most significant bit of the result is set; otherwise
cleared. (the result is negative for two's complement representation)

● Z – zero ... = 1 when result is zero – all bits are zero
● V – overflow .. = 1 when an arithmetic overflow occurs implying that the result

cannot be represented in the operand size (signed case for add, sub, …)
● C – carry ... = 1 when when a carry out of the most significant bit occurs (add)

or a borrow occurs (sub)
● X - extend (extended carry) .. Set to the value of the C-bit for arithmetic

operations; otherwise not affected or set to a specified result

11B35APO Computer Architectures

Status Register – System Byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T1 T0 S 0 0 I2 I1 I0 0 0 0 X N Z V C

EXTEND

NEGATIVE

ZERO

OVERFLOW

CARRY

INTERRUPT
PRIORITY MASK

SUPERVISOR/USER
STATE

TRACE
ENABLE

SYSTEM BYTE
USER BYTE

(CONDITION CODE REGISTER)

● T1, T0 – trace … if some of these bits is set then exception is generated
after every instruction execution or when program flow changes (jump,
call, return)

● S – supervisor … if set to 1 then CPU runs in the supervisor state/mode
and SP maps to SSP. Else CPU runs in user mode, SP maps to USP and
changes to the system byte are not possible and user mode privileges
rules/restrictions are applied to memory access (controlled by MMU).

● I2, I1, I0 - interrupt mask … up to this interrupt priority level are requests
blocked/masked – i.e. they need to wait. The level 7 is exception because
it is non-maskable, i.e. exception acceptance cannot be delayed.

12B35APO Computer Architectures

Addressing Modes – Basic 68000 Modes

● Up to 14 addressing modes for operand selection
● Rn operand represents value of data Dn or address An register
● (An) memory content at the address specified by An
● (An)+ memory content at An with following An increment by

value equivalent to the operand length (post-increment)
● -(An) the An register is decremented by operand size first and

then specifies memory located operand (pre-decrement)
● (d16,An) memory at An + 16-bit sign extended offset
● (d8,An,Xn) memory at An + 8-bit sign extended offset + index

register (another Am or Dm) which can be eventually limited to
lower 16 bits, index can be multiplied by 1, 2, 4 or 8 for CPU32
and 68020+ processors

● (xxx).W 16-bit absolute address – upper and lower 32kB
● (xxx).L 32-bit absolute address

13B35APO Computer Architectures

Data throughput and instruction fetching slow still ⇒ cache
memory

● The problem has been solved quite well
● Common cache or Harvard arrangement I & D
● More levels (speed limited for bigger size – decoder,

capacitance of common signals)
● But requires to solve data coherence when DMA access

or SMP is used
● synchronization instructions for peripherals access and

synchronization eieio (PowerPC), mcr p15 (ARM), …

● hardware support required for caches and SMP

– protocol MSI , MESI (Pentium), MOSI
– MOESI AMD64 (Modified, Owned, Exclusive,

Shared, and Invalid)

14B35APO Computer Architectures

Data Coherence and Multiple Cached Access

MOESI protocol
● Modified – cache line contains actual and modified data, none of other

CPUs works with data, old/previous data are hold in main memory
● Owned – line holds actual data, line can be shared with other CPUs CPU

but only in S state, main memory is not required to be up to date
● Exclusive – only this CPU and main memory contains cahe line data
● Shared – cache line is shared with other CPUs, one of them can be in O

state, then data can differ to content in main memory
● Invalid – cache line does not hold any valid data

 M O E S I

 M N N N N Y

 O N N N Y Y

 E N N N N Y

 S N Y N Y Y

 I Y Y Y Y Y http://en.wikipedia.org/wiki/MOESI_protocol

http://en.wikipedia.org/wiki/MOESI_protocol

15B35APO Computer Architectures

Supercomputers NUMA on Chip – Broadwell-EP (Intel Xeon)

16B35APO Computer Architectures

Yet faster instructions execution ⇒ RISC architectures

● Reduce data flow dependency between instructions, three
operand instructions, speculative instructions execution,
more registers to reduce memory accesses, register
renaming, eliminate interdependencies on conditional
code/flag register (MIPS RISC-V eliminate CC altogether,
DEC Alpha, multiple flag registers PowerPC, flags update
suppress ARM)

● load-store architecture, computation only register+=register
and or register=register+register and separate load-store
instructions.

● Fixed instruction encoding ⇒ programs are usually longer
but much faster instructions decoding, optimized for
pipelined execution

17B35APO Computer Architectures

Pipelined execution, branches cause even more problems

● Early branch and jump instructions decode
● Processes instructions in delay slots MIPS, DSP
● Static and dynamic branch prediction, branch target

address buffer (cache), speculative instructions execution

MemoryPC

A
d
d

e
r

Register
File

Sign
Extend

IF / ID

ID
 / E

X

Imm

RS1

RS2
Zero?

ALU

M
U

X

E
X

 / M
E

M

Memory

M
U

X

M
E

M
 / W

B

M
U

X

M
U

X

Next SEQ PC Next SEQ PC

WB Data

Branch
taken

IR

Instruction Fetch

Next PC

Instruction Decode
Register Fetch

Execute
Address Calc.

Memory Access Write Back

IF ID EX MEM WB

Source: wikipedia

18B35APO Computer Architectures

Parallel Instructions Execution – Superscalar CPU

Instruction / decode buffer

Dispatch buffer

Reservation stations

Reorder / Completion buffer

Store buffer

Decode

Fetch

Complete

Retire

Dispatch

Issue

Finish

Execute

19B35APO Computer Architectures

Other techniques to reduce memory access frequency ⇒
register windows, link/return address register

● Generally more registers (RISCs usually 31+1, ARM 32-bit
16, compare with 32-bit 386 still only 8 registers)

● SPARC - 8 global registers, 8 from previous window
(parameters), 16 in actual window, up to 100 and more
registers to stack windows. 8 registers in actual window is
used to pass parameters into subroutine

● PowerPC, MIPS, ARM – speedup to call leaf-node functions
with use of return address (link register) to store address of
the instruction to be executed after return from subroutine

20B35APO Computer Architectures

PowerPC Architecture

MSR

Supervisor-Level SPRs

Machine State Register

USER MODEL VEA

Development Support SPRs

Memory Management Registers

Condition
Register

FPSCR

CR
0 31

0 31

0 31

GPR0
GPR1

GPR31

User-Level SPRs
Integer Exception Reg. (XER0)

Link Register (LR)

Count Register (CTR)

0 31

0 63

0 31

Tim. B. Lower - Read (TBL)
Tim. B. Upper - Read (TBU)

Time Base Facility (for rRading)

USER MODEL UISA SUPERVISOR MODEL OEA

FPR0
FPR1

FPR31

Floating-Point
Status and
Control Register

21B35APO Computer Architectures

Summit Supercomputer – IBM AC922 – 2018 TOP500 #1

● June 2018, US Oak Ridge National Laboratory (ORNL), 200
PetaFLOPS, 4600 “nodes”, 2× IBM Power9 CPU +

● 6× Nvidia Volta GV100
● 96 lanes of PCIe 4.0, 400Gb/s
● NVLink 2.0, 100GB/s CPU2GPU
● GPU-to-GPU
● 2TB DDR4-2666 per node
● 1.6 TB NV RAM per node
● 250 PB storage
● POWER9-SO, Global Foundries 14nm FinFET, 8×109 tran.,

17-layer, 24 cores, 96 threads (SMT4)
● 120MB L3 eDRAM (2 CPU 10MB), 256GB/sv

Source: http://www.tomshardware.com/

22B35APO Computer Architectures

SPARC – Register Windows

● CPU includes from 40 to 520 general purpose 32-bit registers
● 8 of them are global registers, remaining registers are divided in groups of

16 into at least 2 (max 32) register windows
● Each instruction has access to 8 global registers and 24 registers

accessible through actually selected register windows position
● 24 windowed registers are divided into 8 input (in), 8 local (local) and 8

registers from the following window which are visible through current
window as an output (out) registers (registers to prepare call arguments)

● Active window is given by value of 5-bit pointer – Current Window Pointer
(CWP).

● CWP is decremented when subroutine is entered which selects following
window as an active/current one

● Increment of CWP return to the previous register window
● Window Invalid Mask (WIM) is a bit-map which allows to mark any of

windows as invalid and request exception (overflow or underflow) when
window is activated/selected by CWP

23B35APO Computer Architectures

SPARC - Registers
Return from actual window ... %i7

The frame pointer %fp ... %i6

 %i5

 %i4

 %i3

 %i2

 %i1

 %i0

%l7

%l6

%l5

%l4

%l3

%l2

%l1

%l0

CALL out return address … %o7

The stack pointer %sp ... %o6

%o5

%o4

%o3

%o2

%o1

%o0

R31

R30

R29

R28

R27

R26

R25

R24

R23

R22

R21

R20

R19

R18

R17

R16

R15

R14

R13

R12

R11

R10

R9

R8

I

(in)

L
(local)

O
(out)

%g7

%g6

%g5

%g4

%g3

%g2

used by system %g1

zero %g0

R7

R6

R5

R4

R3

R2

R1

R0

G (global)

24B35APO Computer Architectures

SPARC – Register Windows Operation

CWP=0 (current window pointer)

w1 outs

w2
outs

w3 outs

w4
locals

w4
outs

w5
outs

w6
outs

w7 outs w0 w0 outs
locals

w0 ins

w1 ins

w1 locals

w3
locals

w3
insw5

W5 locals

w5 ins

w4 ins

w6 w6
local

w2 w2
local

w2 ins

w7 w7
locals

w7
ins

RESTORE SAVE

w6 ins

(Overlap)

OTHERWIN=2

CANRESTORE=1

CANSAVE=3

25B35APO Computer Architectures

SPARC in Space – Cobham Gaisler GR740

● Fault-tolerant, quad-core, SPARC V8, 7-stage pipeline, 8
register windows, 4x4 KiB I + 4x4 KiB D cache, IEEE-
754, 2 MiB L2 cache

Source: https://www.gaisler.com/index.php/products/components/gr740

https://www.gaisler.com/index.php/products/components/gr740

26B35APO Computer Architectures

Quad-Core LEON4FT (GR740) Development Board

Source: https://www.gaisler.com/index.php/products/boards/gr-cpci-gr740

https://www.gaisler.com/index.php/products/boards/gr-cpci-gr740

27B35APO Computer Architectures

MIPS Architecture Variants

● Probably architecture with the highest use count on Earth
at one time (all kinds of AP, embedded systems, etc.)

● Development still continues even for high performance
desktops and supercomputers use – Loongson3A

● MIPS Aptiv – MIPS32 MCU for embedded applications
● MIPS Warrior – MIPS P6600 MIPS64 Release 6 –

hardware virtualization with hardware table walk, 128-bit
SIMD

● MIPS architecture inspired many SoftCore designs for
FPGA, examples
● Xilinx Microblaze
● Altera Nios

28B35APO Computer Architectures

Pipelined execution, no microcode, but still problems with
jump instructions

● Early jump instruction decode
● Use delay slots to keep pipeline busy, MIPS, DSP
● Static and dynamic conditional branch prediction, branch

target address cache, speculative instruction execution

29B35APO Computer Architectures

Loongson3A

Processor Interface

BTB

BHT

ITLB

ICache

P
re- D

eco der

F
ix Q

u
e

ue

Reorder Queue

Floating
Point
Register
File

ALU1

ALU2

FPU1

FPU2

F
lo

at
Q

u
eu

e

Tag C
om

pare

C
P

0 Q
ue ue

D
C

A
C

H
E

DTLB

ROQ BRQ

Integer
Register
File

AGU

Write back Bus

Commit Bus

Map Bus

missq

Refill Bus

imemread dmemwrite

D
eco der

R
egi ster M

ap per

P
C

P
C

+
16

dmemread, duncache ucqueue wtbkqueue

AXI Interface

EJTAG TAP Ctr. Test Controller

JTAG Interface Test Interface

Godson-2 IP Architecture

D
eco de B

us

Branch Bus

clock, reset, int, …

30B35APO Computer Architectures

MIPS 64-bit Base of China Computing

● Loongson 3A5000 – desktop processor, 12nm, 4 cores @
at 2.5GHz

● Loongson 3C5000 – server processor, 12nm, 16 cores,
supports 4 to 16-way servers

31B35APO Computer Architectures

Attempts to enhance code density ⇒ shorter aliases, variable
instruction length even for RISC, VLIW

● ARM, 16bit aliases for most common 32bit instructions
(Thumb mode, requires mode switching, later on function
by function call basis)

● MIPS Aptiv, same on function basis
● M-Core, 32-bit CPU but only 16-bit instruction encoding
● SuperH, 32/64-bit CPU, 16-bit instructions encoding
● ColdFire - RISC implementation based on 68000

instruction set, but only 16, 32, 48-bit length instructions
are accepted

● RISC-V, reserved bits of 32-bit instructions to allow
seamless combination of 32 and 16-bit instructions

32B35APO Computer Architectures

ARM Architecture - Registers

Abort Mode r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)

r14 (lr)

33B35APO Computer Architectures

ARM Architecture – ALU and Operands Encoding

Register, optionally with shift operation

 Shift value can be either be:

 5 bit unsigned integer

 Specified in bottom byte of
another register.

 Used for multiplication by constant

Immediate value

 8 bit number, with a range of 0-255.

 Rotated right through even
number of positions

 Allows increased range of 32-bit
constants to be loaded directly into
registersResult

Operand
1

Barrel
Shifter

Operand
2

ALU

34B35APO Computer Architectures

ARM Architecture – Program Status Word

 Condition code flags

 N = Negative result from ALU

 Z = Zero result from ALU

 C = ALU operation Carried out

 V = ALU operation oVerflowed

 Sticky Overflow flag - Q flag

 Architecture 5TE/J only

 Indicates if saturation has occurred

 J bit

 Architecture 5TEJ only

 J = 1: Processor in Jazelle state

 Interrupt Disable bits.

 I = 1: Disables the IRQ.

 F = 1: Disables the FIQ.

 T Bit

 Architecture xT only

 T = 0: Processor in ARM state

 T = 1: Processor in Thumb state

 Mode bits

 Specify the processor mode

2731

N Z C V Q

28 67

I F T mode

1623

815

5 4 024

f s x c

 U n d e f i n e dJ

35B35APO Computer Architectures

ARM Architecture – CPU Execution Modes

● User : unprivileged mode under which most tasks run
● FIQ : entered when a high priority (fast) interrupt is raised
● IRQ : entered when a low priority (normal) interrupt is

raised
● Supervisor : entered on reset and when a Software

Interrupt instruction is executed
● Abort : used to handle memory access violations
● Undef : used to handle undefined instructions
● System : privileged mode using the same registers as

user mode

36B35APO Computer Architectures

Conclusion – Almost

● There is no magic solution for all discussed
problems for all use cases

● It is necessary to combine discussed
techniques and optimize the mix according
to intended CPU area of use (the highest
computational power/power efficient)

● use of heterogeneous systems for high
performance computation – vector units,
GPU, FPGA accelerators

37B35APO Computer Architectures

Why Instruction Set Architecture Matters

● Why can’t Intel sell mobile chips?

99%+ of mobile phones/tablets are based on ARM’s
v7/v8 ISA

● Why can’t ARM partners sell servers?

99%+ of laptops/desktops/servers are based on the
AMD64 ISA (over 95%+ built by Intel)

● How can IBM still sell mainframes?

IBM 360 is the oldest surviving ISA (50+ years)

ISA is the most important interface in a computer system

ISA is where software meets hardware. (SiFive/RISC-V)

38B35APO Computer Architectures

ARM 64-bit – AArch64

● Calling uses LR, no register banking, ELR for exceptions
● PC is separate register (not included in general purpose

registers file)
● 31 64-bi registers R0 to R30 (R30 = X30 ≅ LR)

● Symbol Wn (W0) used for 32-bit access, Xn (X0) for 64-bit
● Reg. code 31 same zero role as MIPS 0, WZR/XZR in code

● Reg. code 31 special meaning as WSP, SP for some opcodes

● Immediate operand 12-bit with optional LS 12 for
arithmetics operations and repetitive bit masks generator for
logic ones

● 32-bit operations ignores bits 32–63 for source and zeros
these in the destination register

39B35APO Computer Architectures

AArch64 – Branches and Conditional Operations

● Omitted conditional execution in all instructions as well as
Thumb IT mechanism

● Conditional register retain, CBNZ, CBZ, TBNZ, TBZ added
● Only couple of conditional instructions

● add and sub with carry, select (move C?A:B)
● set 0 and 1 (or -1) according to the condition evaluation

● conditional compare instruction

● 32-bit and 64-bit multiply and divide (3 registers), multiply
with addition 64×64+64  64 (four registers), high bits 64
to 127 from 64×64 multiplication

40B35APO Computer Architectures

AArch64 – Memory Access

● 48+1 bit address, sign extended to 64 bits
● Immediate offset can be multiplied by access size optionally
● If register is used in index role, it can be multiplied by

access size and can be limited to 32 bits
● PC relative ±4GB can be encoded in 2 instructions
● Only pair of two independent registers LDP and STP

(ommited LDM, STM), added LDNP, STNP
● Unaligned access support
● LDX/STX(RBHP) for 1,2,4,8 and 16 bytes exclusive access

41B35APO Computer Architectures

AArch64 – Address Modes

● Simple register (exclusive)

[base{,#0}]

● Offset

[base{,#imm}] – Immediate Offset

[base,Xm{,LSL #imm}] – Register Offset

[base,Wm,(S|U)XTW {#imm}] – Extended Register Offset

● Pre-indexed

[base,#imm]!

● Post-indexed

[base],#imm

● PC-relative (literal) load

label

Bits Sign Scaling WBctr LD/ST type

0 - - - LDX, STX, acquire, release

9 signed scaled option reg. pair

10 signed unscaled option single reg.

12 unsig. scaled no single reg.

42B35APO Computer Architectures

Apple A12Z Bionic – 64-bit ARM-based

● People who are really serious about software should
make their own hardware. Alan Kay

● Apple A12Z, 8 cores (ARM big.LITTLE: 4 "big" Vortex + 4
"little" Tempest), Max. 2.49 GHz, ARMv8.3‑A

● Cache L1 128 KB instruction, 128 KB datam L2 8 MB
● GPU Apple designed 8-Core

43B35APO Computer Architectures

Apple M1, A14, 4 Firestorm, 4 Icestorm

Source: https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive

44B35APO Computer Architectures

Intel versus Apple Top Single Thread Performance

Last 5 years

Intel +28%

Apple +198%
 2.98×

45B35APO Computer Architectures

Fujitsu – Supercomputer Fugaku – A64FX, 2020 TOP500 #1

● Combine Armv8.2-A (AArch64 only) with Fujistu
supercomputer technology, SPARC64 V till now

● 48 computing cores + 4 assistant cores, SVE 512-bit
wide SIMD

● HBM2 32GiB, 7nm FinFET, 8,786M transistors
● Tofu 6D Mesh/Torus, 28Gbps x 2 lanes x 10 ports, PCIe

Source: Fujitsu High Performance CPU for the Post-K Computer, 2018

L1 I$

Branch
Predictor

Decode
& Issue

RSE0

RSA

RSE1

RSBR

PGPR
EXA
EXB

EAGA
EXC

EAGB
EXD

PFPR

Fetch
Port

Store
Port L1D$

HBM2 Controller

Fetch Issue Dispatch Reg-Read Execute Cache and Memory

CSE

Commit

PC

Control
Registers

L2$

HBM2

Write
Buffer

Tofu controller

Tofu Interconnect

52cores

FLA

PPR

FLB

PRX

PCI-GEN3

PCI Controller

Netwrok
on

Chip

HBM2

PCIe
controller

Tofu
controller

HBM2

HBM2

HBM2

46B35APO Computer Architectures

CISC and RISC Origin and Lesson Learned Again

● IBM PC 1981 picks Intel 8088 for 8-bit bus (and Motorola 68000 out of
main business)

● Use SRAM for instruction cache of user-visible instructions
● Use simple ISA – Instructions as simple as microinstructions, but not as

wide, Compiled code only used a few CISC instructions anyways,
Enable pipelined implementations

● CISC executes fewer instructions per program (≈ 3/4X instructions), but
many more clock cycles per instruction (≈ 6X CPI)

● ⇒ RISC ≈ 4X faster than CISC
● Chaitin’s register allocation scheme benefits load-store ISAs
● Berkeley (RISC I, II → SPARC) & Stanford RISC Chips (MIPS)

Source: A New Golden Age for Computer Architecture with prof. Patterson permission

Referenced again to refresh
talk from the first –
introductory lesson

Stanford MIPS (1983) contains 25,000 transistors,
was
fabbed in 3 µm &4 µm NMOS, ran at 4 MHz (3 µm)
 and size is 50 mm2 (4 µm) (Microprocessor without
Interlocked Pipeline Stages)

47B35APO Computer Architectures

End of Growth of Single Program Speed?

End of
the

Line?
2X /

20 yrs
(3%/yr)

RISC
2X / 1.5 yrs

(52%/yr)

CISC
2X / 3.5 yrs

(22%/yr)

End of
Dennard
Scaling

⇒
Multicore

2X / 3.5
yrs

(23%/yr)

Am-
dahl’s

Law
⇒

2X /
6 yrs

(12%/yr)

Based on SPECintCPU. Source: John Hennessy and David Patterson,
Computer Architecture: A Quantitative Approach, 6/e. 2018

48B35APO Computer Architectures

RISC-V – Optimize and Simplify RISC Again

● Patterson, Berkeley RISC 1984 → initiation of RISC era, evolved into SPARC
(Hennessy MIPS, Stanford University)

● Commercialization and extensions results in too complex CPUs again, with
license and patents preventing even original inverstors to use real/actual
implementations in silicon to be used for education and research

● MIPS is model architecture for prevalent amount of base courses and
implementation of similar processor is part of follow up courses (A4M36PAP)

● Krste Asanovic and other Dr. Patterson's students initiated development of new
architecture (start of 2010)

● BSD Licence to ensure openness in future
● Supported by GCC, binutils., Linux, QEMU, etc.
● Simpler than SPAC, more like MIPS but optimized on gate level load (fanout)

and critical paths lengths in future designs
● Some open implementations already exists Rocket (SiFive, BOOM), project

lowRISC contributes to research in security area, in ČR Codasip
● Already more than 20 implementations in silicon

49B35APO Computer Architectures

RISC-V – Architecture Specification

● ISA specification can be found at http://riscv.org/
● The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version

2.0
● Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovic
● Not only architecture description but even choices analysis with pro&cons

of each selection and cost source description/analysis of alternatives

● classic design, 32 integer registers, the first tied to zero, regsrc1,
regsrc2, regdest operands, uniqueness, rule kept strictly even for
SaveWord, leads to non-continuous immediate operands encoding,
PC not part of base register file, PC-relative addressing

● variants for 32, 64 a 128-bit registers and address-space defined
● high code density (16-bit instruction encoding variant planned)
● encoding reserves space for floating point (single, double, quad) and

multimedia SIMD instructions systematic way, etc.

http://riscv.org/

50B35APO Computer Architectures

RISC-V – Registers

31 8 7 5 4 3 2 1 0
Reserved Rounding Mode (frm) Accrued Exceptions (fflags)

NV DZ OF UF NX
24 3 1 1 1 1 1

Source: https://riscv.org/specifications/

XLEN-1 0
x0 / zero
x1
x2

x29
x30
x31
XLEN

XLEN-1 0
pc

XLEN

...

FLEN-1 0
f0
f1
f2

f29
f30
f31
FLEN

31 0
fcsr
32

...

Integer registers Floating point registers

Floating-point control and status register

Variant XLEN
RV32 32
RV64 64
RV128 128

Variant FLEN
F 32
D 64
Q 128

51B35APO Computer Architectures

RISC-V – Instruction Length Encoding

Source: https://riscv.org/specifications/

xxxxxxxxxxxxxxaa 16-bit (aa ≠ 11)

xxxxxxxxxxxxxxxx xxxxxxxxxxxbbb11 32-bit (bbb ≠ 111)

· · ·xxxx xxxxxxxxxxxxxxxx xxxxxxxxxx011111 48-bit

· · ·xxxx xxxxxxxxxxxxxxxx xxxxxxxxx0111111 64-bit

· · ·xxxx xxxxxxxxxxxxxxxx xnnnxxxxx1111111 (80+16*nnn)-bit, nnn ≠ 111

· · ·xxxx xxxxxxxxxxxxxxxx x111xxxxx1111111 Reserved for ≥192-bits
 Address:

base+4 base+2 base

52B35APO Computer Architectures

RISC-V – 32-bit Instructions Encoding

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1]imm[11]opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

Source: https://riscv.org/specifications/

53B35APO Computer Architectures

BOOM Superscalar RISC-V into Rocket Chip

Source: https://riscv.org/wp-content/uploads/2016/01/Wed1345-RISCV-Workshop-3-BOOM.pdf

Fetch Decode &
Rename

Issue
Window Unified

Physical
Register

File
(PRF)

FPU

ALU

Rename Map Tables & Freelist

ROB

Commit

in-order
front-half

out-of-order
back-half

Main developer: Christopher Celio 9k source lines + 11k from Rocket

54B35APO Computer Architectures

RISC-V – HiFive Unleashed

• SiFive FU540-C000 (built in 28nm)
• 4+1 Multi-Core Coherent

Configuration, up to 1.5 GHz
• 4x U54 RV64GC Application Cores

with Sv39 Virtual
• Memory Support
• 1x E51 RV64IMAC Management Core
• Coherent 2MB L2 Cache
• 64-bit DDR4 with ECC
• 1x Gigabit Ethernet

• 8 GB 64-bit DDR4 with ECC
• Gigabit Ethernet Port
• 32 MB Quad SPI Flash
• MicroSD card for removable storage
• FMC connector for future expansion

with add-in card

55B35APO Computer Architectures

RISC-V – HiFive Unleashed

56B35APO Computer Architectures

Microchip PolarFire® SoC+FPGA

RISC-V
RV64GC U54

Application Core

RISC-V
E51 RV64IMAC

Monitor Core

Instruction Trace

AXI BUS Monitors

50 Breakpoints

Fabric Logic Monitor

SmartDebug

Debug Locks

System Controller

2MB Memory
(L2 Cache, Scratchpad Memory,
Deterministic Memory modes) AMBA Switch with Memory Protection and QoS

36-bit DDR3/4,
LPDDR3/4 Controller

DDRIO PHY

SPI Programming

System Services

128 KB
Boot Flash

Hart
Software
ServicesPUF sNVM

2×GbE
DMA

Local Interrupt Controller

Platform Interrupt Controller

Perfomance/Event Counters

MMC 5.1

2×CAN

XIP-QSPI

2×SPI

2×I2C

5× UART

GPIO

RTC

USB OTG

Anti Tamper

Crypto*PMP MMU
32K I$ITIM 32K D$

PMP Secure
Boot

16K I$ITIM 8K DTIM

64b6xb

18 × 18
MACC

Pre Adder

LSRAM 20 Kb
SECDED

uSRAM
768 bits

PLLs/DLLs

PIPE

8b10b

OOB

CTLE

Loop
Back

DFE

Eye
Monitor

 HSIO
1.8V to 1.2V

DDR4/
LPDDR4
1.6 Gbps

PCIe®
Gen 2
EP/RP,
DMA

x1, x2, x4

PCIe
Gen 2
EP/RP,
DMA
x1, x2

GPIO
3.3V to 1.2V

SGMII
1.6 Gbps

LVDS

2–64b AXI4; 32b APB

Coherent Switch

128b

3–64b AXI4

5–64b AXI4

4–128b128b

64b AXI4
64b AXI4

32b AHB
IO

128b AXI4

128b

64b
AXI4

PolarFire® FPGA

*DPA-Safe Crypto
co-processor
supported in S
devices

**SECDED
supported
on all MSS
memories

Hardened
Microprocessor
Subsystem

Transceivers

PolarFire® FPGA Fabric

D
ed

ic
a

te
d

M
S

IO

57B35APO Computer Architectures

BeagleV

• StarLight JH7100
• StarFive RISC-V U74 @1.0 GHz dual-core 64-bit

RV64GC ISA
• 4GB/ 8GB LPDDR4, USB 3.0 ports, 40 pin GPIO
• Vision DSP Tensilica-VP6 @ 600MHz
• NVDLA Engine (2048 MACs @ 800MHz)
• Neural Network Engine (1024MACs @ 500MHz)
• https://beagleboard.org/beaglev
• https://www.sifive.com/cores/u74-mc

https://beagleboard.org/beaglev
https://www.sifive.com/cores/u74-mc

58B35APO Computer Architectures

More RISC-V projects

• Libre RISC-V https://libre-riscv.org/
• Quad-core 28nm RISC-V 64-bit (RISCV64GC core

with Vector SIMD Media / 3D extensions)
• 300-pin 15x15mm BGA 0.8mm pitch
• 32-bit DDR3/DDR3L/LPDDR3 memory interface

• Espressif ESP32-C3 single core (FreeRTOS fork or
NuttX)

• NOEL-V RISC-V Processor - Cobham Gaisler
• More RISC-V resources

• https://riscv.org/
• RISC-V YouTube channel

https://www.youtube.com/channel/UC5gLmcFuvdG
bajs4VL-WU3g

https://libre-riscv.org/
https://riscv.org/

	Microprocessor Evolution - from 4-bit Ones to Superscalar RISC
	Cypripedium Calceolus for My Mother
	Early Technology and Complexity Comparison
	Accumulator Based Architectures
	Intel 8080
	Fast memory ⇒ reduce register count and add address modes
	Memory is bottleneck now ⇒ complex instruction set modeled according to C language constructs, CISC
	Intel 8086 and 32-bit i386
	Basic Integer Registers of M68xxx/CPU32/ColdFire
	Status Register – Conditional Code Part
	Status Register – System Byte
	Addressing Modes – Basic 68000 Modes
	Data throughput and instruction fetching slow still ⇒ cache memory
	Data Coherence and Multiple Cached Access
	Supercomputers NUMA on Chip – Broadwell-EP (Intel Xeon)
	Yet faster instructions execution ⇒ RISC architectures
	Pipelined execution, branches cause even more problems
	Parallel Instructions Execution – Superscalar CPU
	Other techniques to reduce memory access frequency ⇒ register windows, link/return address register
	PowerPC Architecture
	Summit Supercomputer – IBM AC922 – 2018 TOP500 #1
	SPARC – Register Windows
	SPARC - Registers
	SPARC – Register Windows Operation
	SPARC in Space – Cobham Gaisler GR740
	Quad-Core LEON4FT (GR740) Development Board
	MIPS Architecture Variants
	Pipelined execution, no microcode, but still problems with jump instructions
	Loongson3A
	MIPS 64-bit Base of China Computing
	Attempts to enhance code density ⇒ shorter aliases, variable instruction length even for RISC, VLIW
	ARM Architecture - Registers
	ARM Architecture – ALU and Operands Encoding
	ARM Architecture – Program Status Word
	ARM Architecture – CPU Execution Modes
	Conclusion – Almost
	Why Instruction Set Architecture Matters
	ARM 64-bit – AArch64
	AArch64 – Branches and Conditional Operations
	AArch64 – Memory Access
	AArch64 – Address Modes
	Apple A12Z Bionic – 64-bit ARM-based
	Apple M1, A14, 4 Firestorm, 4 Icestorm
	Intel versus Apple Top Single Thread Performance
	Fujitsu – Supercomputer Fugaku – A64FX, 2020 TOP500 #1
	CISC and RISC Origin and Lesson Learned Again
	End of Growth of Single Program Speed?
	RISC-V – Optimize and Simplify RISC Again
	RISC-V – Architecture Specification
	RISC-V – Registers
	RISC-V – Instruction Length Encoding
	RISC-V – 32-bit Instructions Encoding
	BOOM Superscalar RISC-V into Rocket Chip
	RISC-V – HiFive Unleashed
	RISC-V – HiFive Unleashed 1
	Microchip PolarFire® SoC+FPGA
	BeagleV
	More RISC-V projects

