
1B35APO Computer Architectures

Computer Architectures

External Events Processing and Protection

Pavel Píša, Petr Štěpán, Richard Šusta,

Michal Štepanovský, Miroslav Šnorek

Czech Technical University in Prague, Faculty of Electrical Engineering

Ver.1.10

https://cw.fel.cvut.cz/wiki/courses/b35apo/start

https://cw.fel.cvut.cz/wiki/courses/b35apo/start

2B35APO Computer Architectures

The Computer Basic Building Blocks (repeating)

● Central Processing Unit (CPU)
● Memory – for data and code ordered into hierarchy

● registers (fast CPU local memory)
● cache (L1, L2, etc)
● main memory (RAM – DDR),
● external memory (disk)

● Interconnection – buses, networking
● ISA, PCI, PCIexpress

3B35APO Computer Architectures

What Is Purpose to Have These Building Blocks

Entertainment,
games, video

Enterprise
applications,
accountancy, bank
systems, inventory,
online shops

Large scale
mathematical and
modeling computation
(global climatic
forecast and analysis,
nuclear fusion, etc.)Communications, as a

main target (phone,
mobile) or as a way to
achieve data exchange
for other tasks and
applications

And many others areas of use ...

4B35APO Computer Architectures

Computer as Controller in Field Applications

1. complex process
 (fast computation.)
2. cheap serially
 produced units
3. very flexible
 (programmable)
4. hierarchic
 control available
5. precise evaluation
 (display)
6. complex algorithms
 (only memory and
 time constraints)

Computer
(control system)

Technological
process (plant)

output
variables

state
information

input
variables

control
variables

program
or higher level control

and knowhow

errors and noise

5B35APO Computer Architectures

Data Flow in the Computer System

Output
devices

Input
devices

Control
unit

Output

Central
processing unit
(CPU)

Execution
units

Input
Memory

Different demands properties of data processing
● Batch processing (a task controls data access as it is processing

these data)
● Interactive (events driven – by user or when external requests or

event arrives)
● Real-time control – computation results delivered late are of no or

inferior value

6B35APO Computer Architectures

Input-output (I/O) Subsystem (repeated)

● Input only peripherals
● Common ones: keyboard, mouse, video camera
● Logic inputs, physical quantities – usually converted to analog

electrical signal and then by A/D converter to numerical value
accessible on input port and other sensors

● Output only peripherals
● Video output (2D, 3D + acceleration), audio output
● Outputs with physical effect, 3D printer (rapid prototyping),

technological process control (D/A converters, PWM) and
many other kinds of actuators

● Bidirectional
● Hard disk, communication interfaces
● Most of above listed “unidirectional” peripherals requires read

and write access for their setup, monitoring and parameters
control

7B35APO Computer Architectures

Methods to Transfer Data between Peripherals and CPU

● Programmed input/output (PIO) with polling
● CPU loops in cycle and waits for status information signaling

available input data or space in output buffer
● Interrupt driven programmed input/output (PIO)

● Program/operating system configures peripheral but does not
wait for data. Data arrival is signaled by interrupt
(asynchronous event/exception). The data are read in interrupt
service routine.

● Output is initiated by CPU write of data to a register if space is
available. Ready for next data it signaled by interrupt.

● Direct memory access – DMA
● CPU setups source and destination, transfer is realized by

specialized unit.
● Intelligent peripherals/controllers, bus master DMA

8B35APO Computer Architectures

Interrupt/Exception as Part of CPU Cycle

Fetch instruction at IP

Advance IP to next instruction

Decode the fetched instruction

Execute the decoded instruction

Interrupt?

no

Save context

Get INTR ID

Lookup ISR

Execute ISR

yes IRET

User
Program

IP

ld

add

st

mul

ld

sub

bne

add

jmp

…

9B35APO Computer Architectures

Exceptions and Interrupts

● Exceptions – anomalous or exceptional situations (blocking
further regular execution) requiring special processing

● Main recognized sources of exceptions
– Undefined instruction (RISC V - unknown opcode)
– Arithmetic exception (divide by zero, overflow - not on RISC V)
– System call (syscall instruction)

● Data unavailable or write fault
– Bad address or page marked as invalid
– Bus error detected (parity, ECC, acknowledge limit exceed)

● Asynchronous/external exceptions (interrupts)
● Maskable, can be disabled in state/control world of CPU,

possibly based on source priority (peripherals, timers,
counters)

● Non-maskable – HW faults, supervision circuits (Watch Dog)

10B35APO Computer Architectures

Steps of Exception or Interrupt Processing

● Exception is accepted/processed usually unconditionally,
external interrupt only if not masked or if non-maskable

● CPU state vector is saved including PC (on system stack or
to the special registers)

● Program Counter is preset to the starting address of handler
according to exception type or even interrupt source number

● Servicing routine starting at that address is executed
● It stores state of other registers on stack, communicates with

peripheral, loads missing page, informs about
nonrecoverable task fault or whole system, etc.

● If recoverable – restores registers values to state before entry
● Routine is finalized by special exception return instruction

which switches CPU into previous state and allows
continuation of interrupted code

11B35APO Computer Architectures

Exceptions Sources on RISC-V

● Exceptions caused by hardware malfunctioning:
● Machine Check: Processor detects internal inconsistency;
● Bus Error: on a load or store instruction, or instruction

fetch;
● Exceptions caused by some external causes (to the

processor):
● Reset: A signal asserted on the appropriate pin;
● NMI: A rising edge of NMI signal asserted on an

appropriate pin;
● Hardware Interrupts: Six hardware interrupt requests can

be made via asserting respective signal.
Hardware interrupts can be masked by setting appropriate
bits in Status register;

12B35APO Computer Architectures

Exceptions Sources on RISC-V - continued

● Exceptions that occur as result of instruction problems:
● Address Error: a reference to a nonexistent memory

segment, or a reference to Kernel address space from User
Mode;

● Reserved Instruction: A undefined opcode field (or
privileged instruction in User mode) is executed;

● Exceptions caused by executions of special instructions:
● Syscall: A Syscall instruction executed;
● Break: A Break instruction executed;

13B35APO Computer Architectures

RISC-V – Exceptions Status and Control Registers

Register
name

Register
number

Usage

mstatus 0x300 Machine status register.

misa 0x301 ISA and extensions

mie 0x304 Machine interrupt-enable register.

mtvec 0x305 Machine trap-handler base address.

mscratch 0x340 Scratch register for machine trap handlers.

mepc 0x341 Machine exception program counter.

mcause 0x342 Machine trap cause.

mtval 0x343 Machine bad address or instruction.

mip 0x344 Machine interrupt pending.

mtinst 0x34A Machine trap instruction (transformed).

The RISC-V Instruction Set Manual – Volume II: Privileged Architecture
https://riscv.org/technical/specifications/

14B35APO Computer Architectures

RISC-V – Machine Status Register (RV32)

Machine Status Register (mstatus)

31 30 23 22 21 20 19 18 17
SD W P R I TSR TW TVM MXR SUM MPRV
1 8 1 1 1 1 1 1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
XS[1:0] FS[1:0] MPP[1:0] VS[1:0] SPP MPIE UBE SPIE W P R I MIE W PR I SIE W P R I

2 2 2 2 1 1 1 1 1 1 1 1 1

Field Bit(s) Usage

SIE 1 Supervisor global interrupt enable

MIE 3 Machine global interrupt enable (for handler atomicity)

SPIE 5 SIE before trapping to system mode

MPIE 7 MIE before trapping to machine mode

SPP 8 Priority mode before trapping to system mode

VS 10:9 Inform if floating point save is needed

MPP 12:11 Priority before trapping into machine mode

15B35APO Computer Architectures

RISC-V – Machine Cause Register (RV32)

Machine Cause Register (mcause)

MXLEN-1 MXLEN-2 0
Interrupt Exception Code (W LR L)

1 MXLEN-1

The register informs handler what caused the trap into machine mode.
If the MSB bit (RV32 bit 31, RV64 bit 63) is set then the source is asynchronous
exception/peripheral/external interrupts. The exception code corresponds to
source and corresponding position of enable and source pending bit in the mie
and mip registers. mepc points to the interrupted (the first unprocessed)
instruction. Simple return by mret instruction is possible to continue in the
background program execution.

When MSB is clear, synchronous exception source caused the trap. mepc
points to the causing instruction. When blocking cause (i.e. page fault) is
resolved instruction can be restarted by simple mret. If the reason is syscall
(ecall instruction) or invalid instruction which is emulated by handler, then
mepc has to be advanced after instruction before mret.

16B35APO Computer Architectures

RISC-V – Exception Sources Encoding

IRQ bit Number Cause of exception

0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint exception

0 4 Load address misaligned

0 5 Load access fault

0 6 Store/AMO address misaligned

0 7 Store/AMO access fault

0 8 Environment call from U-mode

0 9 Environment call from S-mode

0 11 Environment call from M-mode

0 12 Instruction page fault

0 13 Load page fault

0 15 Store/AMO page fault

0 24 – 31 Designated for custom use

17B35APO Computer Architectures

RISC-V – Exception Sources Encoding for Interrupts

IRQ bit Number Cause of exception

1 1 Supervisor software interrupt

1 3 Machine software interrupt

1 5 Supervisor timer interrupt

1 7 Machine timer interrupt

1 9 Supervisor external interrupt

1 11 Machine external interrupt

1 ≥16 Designated for platform use

●mie register enables individual interrupt sources, bit # matches source
●mip register informs about actually pending sources
●mstatus.MIE global enable (1) / disable (0)
●There is another set of the registers for supervisor level of the control
●sstatus, sie, sip, sscratch, scause etc. Their structure is the same but
they are accessible from the supervisor (system) mode and machine
level control is not allowed

18B35APO Computer Architectures

RISC-V – Exception/Interrupt Processing

mepc <= pc and switches to machine privilege mode
mstatus.MPP and mstatus.MPV set to preceding privilege mode
mcause <= exception code, mcause[XLEN-1] <= 1 if interrupt
mstatus.MPIE <= mstatus.MIE, mstatus.MIE <= 0
PC <= mtvec (for vectored mode and interrupts BASE+4×cause)

priviledge mode from mstatus.MPP and mstatus.MPV
mstatus.MPV <= 0, mstatus.MPP <= 0
mstatus.MIE <= mstatus.MPIE
pc <= mepc and continue execution in mode restored from mstatus.MPP

CPU accepts interrupt request, exception or (mach/sys/user) ecall opcode

The mret instruction finalizes exception handling and enables
exceptions and interrupts for machine mode

Interrupt service routine/exception handler startup is responsible for
● identification of request cause csrr rd, mcause
● CPU state can be controlled by CSR instructions
● csrrw rd, csr, rs1, csrrwi rd, csr, uimm5
● csrr(s/c)(i) rd, csr, rs1 or uimm5)
● csrr rd, csr pseudo for csrrs rd, csr, x0
● csrw csr, rs pseudo for csrrw x0, csr, rs1

19B35APO Computer Architectures

Precise Exception Processing

● If interrupt/exception is successfully handled (i.e. missing
page has been swapped in, etc.) and execution continues at
instruction before which interrupt has been accepted, then
interrupted code flow is not altered and cannot detect
interruption (except for delay/timing and cases when state
modification is intended/caused by system call)

● Remark: Precise exception handling is most complicated by
delayed writes (and superscalar CPU instruction reordering)
which leads to synchronous exceptions detected even many
instruction later than causing instruction finishes execution
phase. Concept of state rewind or “transactions”
confirmation is required for memory paging in such systems.

● Commit stage is the last stage in the pipeline in which the
exception can arise, the instruction will not generate after it

20B35APO Computer Architectures

Evaluation of the Exception Sources on RISC-V

● Software cause evaluation (polled exception handling)
● All exceptions/interrupts start same routine at same address – i.e. for

RISC-V pc is set to mtvec value. For supervisor mode stvec.
● Routine reads source from status register (RISC-V: mcause register)

● Vectored exception handling
● CPU support hardware identifies cause/source/interrupt number
● Array of ISR start addresses is prepared on fixed or preset (VBR – vector

base register) address in main memory
● CPU computes index into table based on source number
● CPU loads word from given address to PC

● Non-vectored exception handling with more routines/initial addresses
assigned to exception classes and IRQ priorities

● Additional combinations when more addresses are used for some
division into classes or some helper HW provides decoding speedup.
RISC-V common exception handler address, but optional IRQ mode
with exception start address offsets to mtvec.

21B35APO Computer Architectures

Exception Processing Example – Setup

addi t0, zero, 16 // UART RX
addi t1, zero, 1
sll t1, t1, t0 // bit mask
csrrs zero, mie, t1

li a0, SERIAL_PORT_BASE
li t0, SERP_RX_ST_REG_IE_m
sw t0, SERP_RX_ST_REG_o(a0)

// Background task
addi t0, zero, 0x0001
li a0, SPILED_REG_BASE

Loop:
csrrs t1, mepc, zero // check
sw t1,SPILED_REG_LED_LINE(a0)
srl t2, t0, 31
sll t0, t0, 1
or t0, t0, t2
lw t2, ..._KNOBS_8BIT(a0)
sw t2, ..._LED_RGB1(a0)
xori t2, t2, -1
sw t2, ..._LED_RGB2(a0)
beq zero, zero, loop

_start:
addi a0, zero, 0x101
la t0, skip
csrrw zero, mepc, t0
mret // test exception ret

addi a0, zero, 0x105
addi a0, zero, 0x106

skip:
addi a0, zero, 0x107
csrrs t0, mepc, zero

ebreak

la t0, handle_exception
csrrw zero, mtvec, t0

la t0, task_control_block
csrrw zero, mscratch, t0

csrrsi zero,mstatus,8 //MIE=1

22B35APO Computer Architectures

Exception Processing Example – Interrupt Routine

handle_exception:
csrrw tp, mscratch, tp // store previous and take system tp
sw sp, TCB_SP(tp) // store stack pointer
sw ra, TCB_RA(tp) // store return address
sw t0, TCB_T0(tp) // store rest of clobberable regs
sw a0, TCB_A0(tp)
...
csrr t0, mcause // is it Rx interrupt?
blt t0, zero, handle_irq // branch to interrupts processing
...
// handle synchronous exception

ret_from_exception:
lw sp, TCB_SP(tp) // restore stack pointer
lw ra, TCB_RA(tp) // restore return address
lw t0, TCB_T0(tp) // restore rest of clobberable regs
lw a0, TCB_A0(tp)
...
csrrw tp, mscratch, tp // Swap back TCB to mscratch
mret // Return from exception pc <= mepc

23B35APO Computer Architectures

Exception Processing Example – Interrupt Routine cont.

handle_irq: // t0 mcause
slli t0, t0, 2 // shift out sign, left sources * 4
/* the t0 would be used to point into irq handlers table */
/* check only for UART RX interupt for simplicity 8 */
addi a0, zero, 16 * 4 // UART RX is the first platform irq
beq t0, a0, handle_uart_rx_irq // it is UART RX
/* mask out unknown sources */
srli t0, t0, 2 // make t0 back simple source index
addi a0, zero, 1
sll a0, a0, t0 // generate bit mask for source
csrrc zero, mie, a0 // mie = mie & ~a0
j ret_from_exception

handle_uart_rx_irq:
li a0, SERIAL_PORT_BASE // Setup base of UART
lw t0, SERP_RX_DATA_REG_o(a0)// Read received character
sw t0, SERP_TX_DATA_REG_o(a0)// echo it back to terminal
j ret_from_exception

Complete example at
https://gitlab.fel.cvut.cz/b35apo/stud-support/-/blob/master/seminaries/qtrvsim/uart-echo-irq/uart-echo-irq.S
QtRVSim simulator in RISC-V version cannot run this example yet, QtMips MIPS version supports IRQs.

https://gitlab.fel.cvut.cz/b35apo/stud-support/-/blob/master/seminaries/qtrvsim/uart-echo-irq/uart-echo-irq.S
https://github.com/cvut/qtrvsim
https://github.com/cvut/QtMips/

24B35APO Computer Architectures

Asynchronous and Synchronous Exceptions/Interrupts

● External interrupts/exceptions are generally asynchronous –
i.e. they are not tied to some instruction

● RESET- CPU state initialization and (re)start form initial
address

● NMI - non-maskable interrupt (temperature/bus/EEC fault)
● INT - maskable/regular interrupts (peripherals etc.)

● Synchronous exceptions (and or interrupts) are result of
exact instruction execution

● Arithmetic overflow, division by zero etc.
● TRAP - debugger breakpoint, exception after each

executed instruction for single-stepping, etc.
● Modification of interrupted code flow state (registers, flags,

etc.) is expected for some of these causes (unknown
instruction emulation, system calls, jump according to program
provided exception tables, etc.)

25B35APO Computer Architectures

Real-time Clocks and Supervisor (Watchdog) Circuits

● real-time clocks
● provide real/wall clock time (local/UTC)

● timer
● periodic or one shot timer interrupt (timer INT), time finctions

● supervisor/watchdog circuits
● protects system against SW and HW faults and power supply

lost/faults (watchdog, power fail)

RTC (real-time clock)

Timer

Watchdog

CTRL

DATA

software

DATA

INT

INT

NMI

RESET

26B35APO Computer Architectures

Programmed Input/Output (PIO) With Polling

● The most inferior solution, CPU waits in a loop for data
ready (busy wait)

● Even if is not possible to use CPU at that time do do
some other valuable work (more about time sharing, multi
processing, threading, user and scheduling later), the
looping results in energy/power waste

DoSomethingWithData:
 Wait4Device:
 in(dx, al);
 test(1, al);
 jnz Wait4Device;
 << Do something with the Data>>
 jmp DoSomethingWithData;

Example: Randall Hyde (randyhyde_at_earthlink.net) e-mail 14 Jun 2004

27B35APO Computer Architectures

Interrupt Driven Programmed Input/Output (PIO) on x86

● Peripheral takes care for data availability signaling to CPU – the
interrupt signal is activates and interrupt/exception is serviced

● The overall situation is not better for above shown example, but if task
scheduling is added then actual/waiting task can be suspended and
some other ready/released task can proceed and use CPU until data
arrival. Then suspended task is activated again at end of interrupt
processing

InterruptServiceRoutine:
 << Get data and move to a shared memory location >>
 mov(1, DataAvailable);
 iret();

MainThreadLoop:
 << Tell I/O device we want data >>
 Wait4Data:
 OptionalHALT or OtherDataProcessing;
 test(1, DataAvailable);
 jnz Wait4Data;
 <<Do Something With Data >>
 jmp MainThreadLoop;

28B35APO Computer Architectures

Linux Kernel: Event Waiting with Context Switch – Schedule

static DECLARE_WAIT_QUEUE_HEAD(foo_wq);
volatile int event_pending;

irqreturn_t foo_irq_fnc(int intno, void *dev_id)
{
 <<read device status, store what can be lost and stop/mask IRQ>>
 event_pending = <<indicate even arrival>>;
 wake_up_interruptible(&foo_wq);
 return IRQ_HANDLED;
}

static ssize_t foo_read(struct file *fp, char __user *buf,
 size_t len, loff_t *off)
{
 wait_event_interruptible_timeout(foo_wq, event_pending != 0);
 << check error state etc. signal_pending(current) >>
 << process event_pending and event_pending = 0 >>
 err = copy_to_user(buf, internal_buffer, len);
 return len;
}

29B35APO Computer Architectures

Interrupt – Operating Systems Level I/O Processing

When peripheral transfers data, task is suspended/waiting (and
other work could be done by CPU). Data arrival results in IRQ
processing, CPU finalizes transfer and original task continues

User space process...

System call...

read device file

request for data
programmed

into peripheral

sleep

Other
processes

are
scheduled

... finalization

Interrupt
handler

data ready
notification

wake up

...user task
continues

return

source: Free Electrons: Kernel, drivers and embedded Linux development http://free-electrons.com

30B35APO Computer Architectures

RTEMS: Wait for Event with use of Scheduler

rtems_isr mmcsd_irq_handler(rtems_irq_hdl_param data)
{
 MMCSD_Dev *device=(MMCSD_Dev *)data;
 rtems_event_send(device->waiter_task_id, MMCSD_WAIT_EVENT);
}

static int mmcsd_read(MMCSD_Dev *device, rtems_blkdev_request *req)
{
 rtems_status_code status;
 rtems_event_set events;
 rtems_interval ticks;
 rtems_id self_tid;

 rtems_task_ident(RTEMS_SELF, 0, &self_tid);
 device->waiter_task_id = self_tid;
 status=rtems_event_receive(MMCSD_WAIT_EVENT | MMCSD_EVENT_ERROR,
 RTEMS_EVENT_ANY|RTEMS_WAIT, ticks, &events);
 << process event fill sg = req->bufs - List of scatter/gather buffers >>
 req->req_done(req->done_arg, RTEMS_SUCCESSFUL, 0);
 return 0;
}
● The example is simplified. Temporary task (TID) registration in the driver state

structure is not used. The device is serviced by worker thread which is created
during driver/its instance initialization.

31B35APO Computer Architectures

RTEMS: Semaphore Used for Interrupt Event Notification

static rtems_id my_semaphore;

rtems_isr my_irq_handler(rtems_irq_hdl_param valu)
{
 if (<<check if really from device>>) {
 rtems_semaphore_release(my_semaphore);
 }
}

wait for event
rtems_semaphore_obtain(semaphore, RTEMS_WAIT, RTEMS_NO_TIMEOUT);

initialize semaphore in the driver init
rtems_semaphore_create(rtems_build_name('s','e','m','a'),

0/*initial value*/, RTEMS_FIFO, 5/*priority*/,
&my_semaphore/*location to store new sem ID*/);

● Similar semaphore based solution can be used for VxWorks or Linuxu
kernel. These APIs are internal kernel mechanisms, POSIX/ANSI standards
does not specify mechanisms for interrupts management and servicing.

32B35APO Computer Architectures

Windows: Interrupt and Deferred Procedure Call

VOID NTAPI ulan_bottom_dpc(IN PKDPC Dpc,IN PVOID contex,
 IN PVOID arg1,IN PVOID arg2);

KSERVICE_ROUTINE InterruptService;
BOOLEAN uld_irq_handler(_In_ struct _KINTERRUPT *Interrupt,
 In PVOID ServiceContext)
{
 …

KeInsertQueueDpc(&(udrv)->bottom_dpc,NULL,NULL);
return TRUE;

}

status =
IoConnectInterrupt(&udrv->InterruptObject,

uld_irq_handler, // ServiceRoutine
udrv, // ServiceContext
NULL, // SpinLock
udrv->irq, // Vector
udrv->Irql, // Irql
udrv->Irql, // SynchronizeIrql
udrv->InterruptMode, // InterruptMode
TRUE /*FALSE for ISA? */, // ShareVector
udrv->InterruptAffinity, // ProcessorEnableMask

 FALSE); // FloatingSave

33B35APO Computer Architectures

Direct Memory Access - DMA

● Computer system is equipped by unit(s) specialized for data transfers
● Large size data transfers do not trash/displace data at CPU caches
● Program/OS initializes peripheral and setups parameters for transfer
● Then DMA unit source, destination, request line are programmed, DMA

unit signals end of the transfer by interrupt

Processor
DMA

Controller
1

DMA
Controller

2BG1 BG2

BR

BBSY

Cache

Peripheral

Peripheral

Address and data bus
Main

memory

TC/IRQ

34B35APO Computer Architectures

Example of DMA Transfer from Hard-disk

Dr. Kalpakis http://www.cs.umbc.edu/~kalpakis/

35B35APO Computer Architectures

Decentralized Controllers/DMA – Integration into Peripherals

Processor Main Memory

Disk

Printer Keyboard
DMA

Controller

Disk
Network
Interface

Disk/DMA
Controller

36B35APO Computer Architectures

A Typical Hardware System

CPU chip

main
memory

I/O
bridgebus interface

ALU

register file

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus Expansion slots for
other devices such
as network adapters.

37B35APO Computer Architectures

Slow Interrupt Driven Disk Transfer

Enter

Continue

Issue read or write
request to disk

Transfer data between
disk and memory

Done?
No

Yes

Do other processing until
disk issues an

interrupt

Interrupt causes current
processing to stop.

Return from interrupt.
Resume normal processing.

1. CPU issues read
command

2. I/O module gets data from
peripheral while CPU
performs other work

3. I/O module interrupts CPU

4. CPU requests data

5. I/O module transfers data

38B35APO Computer Architectures

Bus Master DMA and IO (Co)Processors

● Intelligent peripherals
● Peripheral is equipped by own controller (CPU)

● Finite state machine
● Input/output processor (IOP) etc.

● Transfer processing sequence
● Superordinate CPU/system stores sequence of the data

and control blocks into main memory
● Configures or programs controller integrated into peripheral

and that controls data transfers from/to main memory
● After all transfers are finished (sometimes after the whole

first packet received) signals CPU that state by interrupt
● CPU/operating system processes interrupt and

reschedules to task waiting for data

39B35APO Computer Architectures

DMA Reading a Disk Sector: Step 1

main
memory

ALU

register file

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus

bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

CPU

40B35APO Computer Architectures

DMA Reading a Disk Sector: Step 2

main
memory

ALU

register file

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus

bus interface

Disk controller reads the sector and
performs a direct memory access
(DMA) transfer into main memory.

CPU

41B35APO Computer Architectures

Reading a Disk Sector: Step 3

main
memory

ALU

register file

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus

bus interface

When the DMA transfer completes, the
disk controller notifies the CPU with an
interrupt (i.e., asserts a special “interrupt”
pin on the CPU)

CPU

42B35APO Computer Architectures

Where the problems lie? DMA and I/O pitfalls

43B35APO Computer Architectures

Memory Mapped Peripherals and Data Consistency/Coherence

● Input/output operations and CPU
● The caching has to be disabled for address ranges where input and or

output ports/registers/memory is mapped
● Pipelined instruction processing alone does not cause problems (except for

read after write)
● Data forwarding, subsequent access (load/store) bypassing and out of

order instructions processing collides with I/O code
● Special synchronization instructions or HW support on CPU level is then

necessary to stall instruction execution till (all) previous transfers finis
– MIPS IV - sync (lx a sx is finished before subsequent lx)
– RISC-V – fence instruction group, strongly ordered I/O regions
– PowerPC

● eieio (Enforce In-Order Execution of I/O) Instruction
● sync not only for I/O access but even for I memory reads

● The similar has to be done on compiler level to suppress unintended optimizations
(volatile, ...)

Paul E. McKenney: Memory Ordering in Modern Microprocessors

Wikipedia: http://en.wikipedia.org/wiki/Memory_ordering

44B35APO Computer Architectures

Atomic Operations, Compilers and STL

● C++ std::atomic_int, std::atomic_intptr_t, …

typedef enum memory_order

{

 memory_order_relaxed, memory_order_consume,

 memory_order_acquire, memory_order_release,

 memory_order_acq_rel, memory_order_seq_cst

} memory_order;
● C1x

Good source of information for C/C++ language and standard
libraries is https://en.cppreference.com
For std::atomic
https://en.cppreference.com/w/cpp/header/atomic

https://en.cppreference.com/
https://en.cppreference.com/w/cpp/header/atomic

45B35APO Computer Architectures

C++11 Memory Model and GCC implementation

C++11 memory models
● __ATOMIC_RELAXED – No barriers or synchronization.
● __ATOMIC_CONSUME – Data dependency only for both barrier

and synchronization with another thread.
● __ATOMIC_ACQUIRE – Barrier to hoisting of code and

synchronizes with release (or stronger) semantic stores from
another thread.

● __ATOMIC_RELEASE – Barrier to sinking of code and
synchronizes with acquire (or stronger) semantic loads from
another thread.

● __ATOMIC_ACQ_REL – Full barrier in both directions and
synchronizes with acquire loads and release stores in another
thread.

● __ATOMIC_SEQ_CST – Full barrier in both directions and
synchronizes with acquire loads and release stores in all threads.

46B35APO Computer Architectures

Atomic Operations Defined by C++11 Standard

● type __atomic_load_n (type *ptr, int memmodel)
RELAXED, SEQ_CST, ACQUIRE and CONSUME

● void __atomic_load (type *ptr, type *ret, int memmodel)
● __atomic_store_n (type *ptr, type val, int memmodel)

RELAXED, SEQ_CST, RELEASE
● void __atomic_store (type *ptr, type *val, int memmodel)
● __atomic_exchange_n (type *ptr, type val, int memmodel)

RELAXED, SEQ_CST, ACQUIRE, RELEASE and
ACQ_REL

● void __atomic_exchange (type *ptr, type *val, type *ret,
int memmodel)

47B35APO Computer Architectures

C++11 Compare and Swap (CAS)

● bool __atomic_compare_exchange_n (type *ptr, type
*expected, type desired, bool weak, int
success_memmodel, int failure_memmodel)

● bool __atomic_compare_exchange (type *ptr, type
*expected, type *desired, bool weak, int
success_memmodel, int failure_memmodel)

int compare_and_swap(int* ptr, int oldval, int newval)
{
 ATOMIC();
 int old_reg_val = *ptr;
 if (old_reg_val == oldval)
 *ptr = newval;
 END_ATOMIC();
 return old_reg_val;
}

48B35APO Computer Architectures

C++11 Arithmetic and Logic Operations

● type __atomic_add_fetch (type *ptr, type val, int
memmodel)

add, sub, and, xor, or, nand
● type __atomic_fetch_add (type *ptr, type val, int

memmodel)
● bool __atomic_test_and_set (void *ptr, int memmodel)
● void __atomic_clear (bool *ptr, int memmodel)
● void __atomic_thread_fence (int memmodel)
● void __atomic_signal_fence (int memmodel)
● bool __atomic_always_lock_free (size_t size, void *ptr)
● bool __atomic_is_lock_free (size_t size, void *ptr)

49B35APO Computer Architectures

Scalability Bottleneck in Memory Access from Multiple Cores

0

5

10

15

20

25

30

35

40

1 6 12 18 24 30 36 42 48

N
o

rm
a

liz
ed

 th
ro

ug
hp

u
t

Number of CPU cores

gmake
Exim

Example of single shared written cache line ruining application throughput

50B35APO Computer Architectures

Price of Collisions in Single Row of the Memory Cache

0

5k

10k

15k

20k

25k

1 10 20 30 40 50 60 70 80T
h

e
 n

um
be

r
o

f c
lo

ck
 c

yc
le

s
re

q
u

ire
d

to
 p

er
fo

rm
 o

n
e

re
a

d
op

er
at

io
n

1 writing thread + N threads reading

51B35APO Computer Architectures

Which Algorithms and Approaches are Scalable?

✗

✗

CPU core X

C
or

e
Y

W -

W

R

-
✓

✓

✓
-

✓

✓

R

✗

Source
The Scalable Commutativity Rule: Designing Scalable Software for
Multicore Processors by Austin T. Clements

52B35APO Computer Architectures

Program Constructions That Are Scalable for Multiple Threads

● Scalability: use scalable data structures
● Linear arrays and arrays radix
● Hash tables
● Do not use binary / balanced trees for shared data

● Delaying action / cleaning - defer work, reference tracking,
read copy update RCU postponed release / cancellations

● Prevent pessimistic operations by optimist check
● Only when the check of the object determines that change is

required proceed with actions required for change (locking
etc.) of an entry or file file, etc.

● At the level of work with the operating system use only such
operation that is necessary

● Use access (F_OK) to check existence of a file instead of
checking the return code of the open or read operations

53B35APO Computer Architectures

DMA and Data Consistency

● DMA transfers originate/target main memory bypassing cache
● CPU writes has to be finished before (writeback!)
● Data from peripheral stored to memory cannot be used unitila

(partial) cache invalidation or previous flush is issued
● CPU/memory management unit needs to control cacheability of

given pages/cache rows
● PowerPC

– dcbf (Data Cache Block Flush), clcs (Cache Line Compute Size), clf
(Cache Line Flush), cli (Cache Line Invalidate), dcbi (Data Cache Block
Invalidate), dcbst (Data Cache Block Store), dcbt (Data Cache Block
Touch), dcbtst (Data Cache Block Touch for Store), dcbz/dclz (Data
Cache Block Set to Zero), dclst (Data Cache Line Store), icbi (Instruction
Cache Block Invalidate), sync (Synchronize)/dcs (Data Cache
Synchronize)

● MIPS – specialized instruction named cache
● RISC-V

– Fence, more variants, memory usually coherent between cores and DMA

	External Events Processing and Protection
	The Computer Basic Building Blocks
	What Is Purpose to Have These Building Blocks
	Computer as Controller in Field Applications
	Data Flow in the Computer System
	Input-output (I/O) Subsystem
	Methods to Transfer Data between Peripherals and CPU
	Interrupt/Exception as Part of CPU Cycle
	Exceptions and Interrupts
	Steps of Exception or Interrupt Processing
	Exceptions Sources on RISC-V
	Exceptions Sources on RISC-V - continued
	RISC-V – Exceptions Status and Control Registers
	RISC-V – Machine Status Registers
	RISC-V – Machine Cause Register
	RISC-V – Exception Sources Encoding
	RISC-V – Exception Sources Encoding for Interrupts
	RISC-V – Exception/Interrupt Processing
	Precise Exception Processing
	Evaluation of the Exception Sources on RISC-V
	Exception Processing Example – Setup
	Exception Processing Example – Interrupt Routine
	Exception Processing Example – Interrupt Routine cont.
	Asynchronous and Synchronous Exceptions/Interrupts
	Real-time Clocks and Supervisor (Watchdog) Circuits
	Programmed Input/Output (PIO) With Polling
	Interrupt Driven Programmed Input/Output (PIO) on x86
	Linux Kernel: Event Waiting with Context Switch – Schedule
	Interrupt – Operating Systems Level I/O Processing
	RTEMS: Wait for Event with use of Scheduler
	RTEMS: Semaphore Used for Interrupt Event Notification
	Windows: Interrupt and Deferred Procedure Call
	Direct Memory Access - DMA
	Example of DMA Transfer from Hard-disk
	Decentralized Controllers/DMA – Integration into Peripherals
	A Typical Hardware System
	Slow Interrupt Driven Disk Transfer
	Bus Master DMA and IO (Co)Processors
	DMA Reading a Disk Sector: Step 1
	DMA Reading a Disk Sector: Step 2
	Reading a Disk Sector: Step 3
	Where the problems lie? DMA and I/O pitfalls
	Memory Mapped Peripherals and Data Consistency/Coherence
	Atomic Operations, Compilers and STL
	C++11 Memory Model and GCC implementation
	Atomic Operations Defined by C++11 Standard
	C++11 Compare and Swap (CAS)
	C++11 Arithmetic and Logic Operations
	Scalability Bottleneck in Memory Access from Multiple Cores
	Price of Collisions in Single Row of the Memory Cache
	Which Algorithms and Approaches are Scalable?
	Program Constructions That Are Scalable for Multiple Threads
	DMA and Data Consistency

