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Lecture Motivation

              A:
int matrix[M][N];

int i, j, sum = 0;

…

for(i=0; i<M; i++)

  for(j=0; j<N; j++)

    sum += matrix[i][j];

Quick Quiz 1.: Is the result of both code fragments a same?

Quick Quiz 2.: Which of the code fragments is processed faster and why?

               B:
int matrix[M][N];

int i, j, sum = 0;

…

for(j=0; j<N; j++)

  for(i=0; i<M; i++)

    sum += matrix[i][j];

Is there a rule how to iterate over matrix element efficiently? 
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Lecture Outline

● Overview of memory related terms and definitions
● Memory hierarchy

● Management and mapping of data between levels
● Cache memory

● Basic concept
● More realistic approach
● Multi-level cache memory

● Virtual memory
● Memory hierarchy and related problems
● Secondary(+more) storage (mass storage)
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John von Neumann, Hungarian physicist

28. 12. 1903 - 
8. 2. 1957

von Neumann's computer architecture
Princeton Institute for Advanced Studies Processor

Input Output

Memory

ctrl
ALU

●5 functional units – control unit, arithmetic logic unit, memory, input (devices), 
output (devices)

●An computer architecture should be independent of solved problems. It has to 
provide mechanism to load program into memory. The program controls what the 
computer does with data, which problem it solves.

●Programs and results/data are stored in the same memory. That memory consists 
of a cells of same size and these cells are sequentially numbered (address).

●The instruction which should be executed next, is stored in the cell exactly after 
the cell where preceding instruction is stored (exceptions branching etc. ). 

●The instruction set consists of arithmetics, logic, data movement, jump/branch 
and special/control instructions.
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PC Computer Motherboard

http://www.pcplanetsystems.com/abc/product_details.php?
item_id=3263&category_id=208
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Computer architecture (desktop x86 PC)

generic
example
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From UMA to NUMA development (even in PC segment)

CPU 1 CPU 2

Northbridge
MC

Southbridge

RAM

SATA

USB
PCI-E

MC - Memory controller – contains circuitry responsible for SDRAM read and 
writes. It also takes care of refreshing each memory cell every 64 ms. 

CPU 1 CPU 2

MC

Southbridge

RAM

SATA

USB
PCI-E

RAM

MC  Northbridge

Southbridge
SATA

USB
PCI-E

CPU 1 CPU 2

MC MC

RAM RAM

Non-Uniform 
Memory 
Architecture
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Intel Core 2 generation

Northbridge became Graphics and Memory Controller Hub (GMCH)
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Intel i3/5/7 generation
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Memory Address Space

data path, 
usual width 
32b/4BAddress

width a bits

The most common size of addressable 
memory unit is 1B (8 bits)

  a 2↑a

  8 256 distinct locations

16 64K (K=1024)

… ……

32 4G (4096M, M=K↑2)
000000H

FFF…FFH
memory location
holds value – contents

It is an array of addressable units (locations) where each unit can hold a data value.
Number/range of addresses same as addressable units/words are limited in size.

Memory

ALU
Unit

Control
Unit

Input Output

Processor
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 Memory Subsystem – Terms and Definitions

● Memory address – fixed-length sequences of bits or index
● Data value – the visible content of a memory location

Memory location can hold even more control/bookkeeping 
information
● validity flag, parity and ECC bits etc.

● Basic memory parameters:
● Access time – delay or latency between a request and the access 

being completed or the requested data returned
● Memory latency – time between request and data being available 

(does not include time required for refresh and deactivation)
● Throughput/bandwidth – main performance indicator. Rate of 

transferred data units per time.
● Maximal, average and other latency parameters
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Memory Types and Maintenance

● Types: RWM (RAM), ROM, FLASH
● Implementation: SRAM, DRAM

● Data retention time and conditions (volatile/nonvolatile)
● Dynamic memories (DRAM, SDRAM) require specific 

care
● Memory refresh – state of each memory cell has to be 

internally read, amplified and fed back to the cell once 
every refresh period (usually about 60 ms), even in idle 
state. Each refresh cycle processes one row of cells.

● Precharge – necessary phase of access cycle to restore 
cell state after its partial discharge by read

● Both contribute to maximal and average access time.
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Memory and CPU speed – Moore's law

Processor-Memory
Performance Gap
Growing

Source: Hennesy, Patterson
CaaQA 4th ed. 2006

CPU performance 25%
per year

52%
per year

20%
per year

Throughput of memory 
only +7% per year

Memory

CPU
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Typical SRAM and DRAM Memory Parameters

Memory 
kind

Number of 
transistors

1 bit area 
on silicon

Data 
availability

latency

SRAM about 6  < 0,1 m2 instantenou
s

< 1ns – 
5ns

DRAM 1 < 0,001 m2 needs 
refresh

>ten ns
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Bubble sort – algorithm Example from Seminaries

int array[5]={5,3,4,1,2};
int main()
{
    int N = 5,i,j,tmp;
    for(i=0; i<N; i++)
        for(j=0; j<N-1-i; j++)
            if(array[j+1]<array[j])
            {
                tmp = array[j+1];
                array[j+1] = array[j];
                array[j] = tmp;
            }
    return 0;
}

   What we can 
consider and 
expect from our 
programs?

Think about 
some typical 
data access 
patterns and 
execution flow.
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Memory Hierarchy – Principle of Locality

● Programs access a small proportion of their address 
space at any time

● Temporal locality
● Items accessed recently are likely to be accessed again 

soon
● e.g., instructions in a loop, induction variables

● Spatial locality
● Items near those accessed recently are likely to be 

accessed soon
● E.g., sequential instruction access, array data

Source: Hennesy, Patterson
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Memory Hierarchy Introduced Based on Locality

● The solution to resolve capacity and speed requirements is 
to build address space (data storage in general) as 
hierarchy of different technologies.

● Store input/output data, program code and its runtime data 
on large and cheaper secondary storage (hard disk)

● Copy recently accessed (and nearby) items from disk to 
smaller DRAM based main memory (usually under 
operating system control)

● Copy more recently accessed (and nearby) items from 
DRAM to smaller SRAM memory (cache) attached to CPU 
(hidden memory, transactions under HW control), optionally, 
tightly coupled memory under program's control

● Move currently processed variables to CPU registers (under 
machine program/compiler control) 
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Memory Hierarchy – Speed, Capacity, Price

Source: Wikipedia.org

small size
small capacity

small size
small capacity

medium size
medium capacity

small size
large capacity

large size
very large 

capacity

processor registers
very fast, very expensive

processor cache
very fast, very expensive

random access memory
fast, affordable

flash/USB memory
slower, cheap

hard drive
slow, very cheap

tape backup
very slow, affordable

power on

immediate term

power on
very short term

power off
short term

power off
mid term

power off
long term
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Memory/Storage in Computer System

Logic
unit

ALU/CU

registers

Cache

Main memory
random access

256 MB …
16 GB

Mass storage
Hard disk
120 GB …
many TB

Removable media
CD-RW, DVD-RW

Removable
medium

memory
bus

Robotic
access
system

Removable
medium

Removable
media
drive

Removable
medium

Input/output 
channels

Secondary storage Off-line storage

Tertiary storage Primary storage

Central Processing Unit

Source: Wikipedia.org
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Contemporary Price/Size Examples

Data
path

Control unit

L1
cache

Level2
cache

(SRAM)

Main
memory
(DRAM)

Secondary
memory

(disc)

R
egiste rs

CPU

Type/
Size

L1 32kB Sync 
SRAM

DDR3
16 GB 

HDD 3TB

Price 10 kč/kB 300 
kč/MB

123 
kč/GB

1 kč/GB

Speed/ 
throughput

0.2...2ns 0.5...8 
ns/word

15 
GB/sec

100 MB/sec

Some data can be available in more copies (consider levels and/or SMP ). 
Mechanisms to keep consistency required if data are modified.
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Mechanism to Lookup Demanded Information?

● According to the address and other management 
information (data validity flags etc).

● The lookup starts at the most closely located memory 
level (local CPU L1 cache).

● Requirements:
● Memory consistency/coherency.

● Used means:
● Memory management unit to translate virtual address 

to physical and signal missing data on given level.
● Mechanisms to free (swap) memory locations and 

migrate data between hierarchy levels
● Hit (data located in upper level – fast), miss (copy from 

lower level required)
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Processor-memory Performance Gap Solution – Cache
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Performance Gap Between CPU and Main Memory

● Solution – cache memory
● Cache – component that (transparently) stores data so 

that future requests for that data can be served faster
● Transparent cache – hidden memory

● Placed between two subsystems with different data 
throughput. It speeds-up access to (recently) used data.

● This is achieved by maintaining copy of data on memory 
device faster than the original storage
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Initial Idea – Fully Associative Cache
● Tag – the key to locate data (value) in the cache. The original 

address in the main memory for fully associative case. Size of this 
field is given by number of bits in an address  – i.e. 32, 48 or 64

● Data – the stored information, basic unit – word – is usually 4 bytes
● Flags – additional bits to keep service information.

Tag Data Flags

Cache line of fully associative cache

Hit

comparator

comparator

comparator

Address

Tag Data Flags

Data
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Definitions for Cache Memory

● Cache line or cache block – basic unit 
copied between levels
● May be multiple words
● Usual cache line size from 8B up to 1KB

● If accessed data is present in upper 
level
● Hit: access satisfied by upper level

– Hit rate: hits/accesses
● If accessed data is absent

● Miss: block copied from lower level
– Time taken: miss penalty
– Miss rate: misses/accesses

= 1 – hit rate
● Then the accessed data is supplied 

from upper level
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Important Cache Access Statistical Parameters

● Hit Rate – number of memory accesses satisfied by 
given level of cache divided by number of all memory 
accesses

● Miss Rate – same, but for requests resulting in 

access to slower memory = 1 – Hit Rate
● Miss Penalty – time required to transfer block (data) 

from lower/slower memory level 
● Average Memory Access Time (AMAT)

         AMAT = Hit Time + Miss Rate × Miss Penalty

● Miss Penalty for multi-level cache can be computed by 
recursive application of AMAT formula
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Average Memory Access Time (AMAT) Example

AMAT = HitTimeL1 + MissRateL1 * MissPenaltyL1

L1 access time: 1 cycle

Memory access time: 8 cycles

Program behavior: 2% miss rate

AMAT with cache: 1 + (0.02 * 8) = 1.16

What is the AMAT without a cache?
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Fully Associative Cache Implementation

● The Tag field width is equivalent to address width (not 
counting address bits equivalent to byte in word or line)

● Each cache line requires its own multiplexer input and same 
number of one-bit comparators as is size of the tag field.

● Cache line count determines capacity of the cache
● Cache requires complex replacement policy logic to find out 

which of all lines is the best candidate for new request.

● Such cache implementation is very expensive to implement 
in HW (ratio of gate count/capacity is high) and slow

● That is why other cache types are used in practice
● Direct mapped
● n-way associative – with limited associativity
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CPU Writes to Main Memory

● There is cache in the way
● Data consistency – requirement for data coherency for same 

address accessed through different paths
● Write through – data are written to the cache and write 

buffer/queue simultaneously
● Write back – data are written to the cache only and dirty bit is 

set. Write to the other level is delayed until cache line 
replacement time or to cache flush event

● Dirty bit – an additional flag for cache line. It Indicates that 
cached value is updated and does not correspond with the main 
memory.

V Other bits, i.e. D Tag Data
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The Process to Resolve Cache Miss

● Data has to be filled from main memory, but quite often all available 
cache locations which address can be mapped to are allocated

● Cache content replacement policy (offending cache line is invalidated 
either immediately or after data are placed in the write queue/buffer)

● Random – random cache line is evicted
● LRU (Least Recently Used)  – additional information is required to find 

cache line that has not been used for the longest time
● LFU (Least Frequently Used) – additional information is required to find 

cache line that is used least frequently – requires some kind of 
forgetting

● ARC (Adaptive Replacement Cache) – combination of LRU and LFU 
concepts

● Write-back – content of the modified (dirty) cache line is moved to the 
write queue
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CPU Including Cache – Harvard Cache Architecture

Separated instruction and data cache
The concept of Von Neumann's CPU with Harvard cache is illustrated on 
a MIPS CPU family member, i.e. real CPU which is superset of the design 
introduced during lectures 2 and 4.



33B35APO   Computer Architectures

Example to Illustrate Base Cache Types

● The cache capacity 8 blocks. Where can be 
block/address 12 placed for
● Fully associative
● Direct mapped
● N-way (set) associative – i.e. N=2 (2-way cache)

0 1 2 3 4 5 6 7

Only one set

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Set
0

Set 
1

Set
2

Set
3

Block
number

Block
number

Block
number

Fully associative:
Address 12 can be 
placed anywhere

Direct mapped:
Address 12 placed only 
to block 4 (12 mod 8)

2-way associative:
Address 12 is placed 
into set 0 (12 mod 4)

Set
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Direct Mapped Cache

Capacity – C

Number of sets – S

Block size – b

Number of blocks – B

Degree of associativity – N

C = 8 (8 words), 

S = B = 8,

b = 1 (one word in the block),

N = 1

direct mapped cache: one block in each set
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Why to Use Middle-Order Bits for Index

4-řádková cache High-Order Bit Index Middle-Order Bit Index

00x
01x
10x
11x

0000x
0001x
0010x
0011x
0100x
0101x
0110x
0111x
1000x
1001x
1010x
1011x
1100x
1101x
1110x
1111x

0000x
0001x
0010x
0011x
0100x
0101x
0110x
0111x
1000x
1001x
1010x
1011x
1100x
1101x
1110x
1111x

MSB – only part of cache 
used for continuous 
variables or code block

LSB – too small blocks, 
to much metadata per 
data byte

Middle-order – the 
compromise
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Direct Mapped Cache – 8 bit CPU Example

000
001
010
011
100
101
110
111

00000
00001
00010
00011
00100
00101
00110
00111

01000
01001
01010
01011
01100
01101
01110
01111

10000
10001
10010
10011
10100
10101
10110
10111

11000
11001
11010
11011
11100
11101
11110
11111

Memory

Cache –  8 rows (blocks)

11 101  → memory address as well
                  for our case

 cache address:
 tag

    index

row = 1 word

 in
d

ex
 (

lo
c

al
 a

d
d

re
ss

)

 ta
g

00
10
11
01
01
00
10
11

 8-bit CPU  (1 word = 1 byte), data memory address range 32 bytes
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Direct Mapped Cache

Set = (Address/(4·b)) mod S

Set = (Address/4) mod 8
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Real Cache Organization

● Tag is index of the block corresponding to the cache set 
size in the main memory (that is address divided by block 
length and number or the cache lines in the set)

● Data are organized in cache line blocks, multiple words. 
● Valid bit – marks line contents (or sometimes individual 

words) as valid.
● Dirty bit – corresponding cache line (word) was modified 

and write back will be required later
● Possible cache line states (for coherence protocols) – 

Invalid, Owned, Shared, Modified, Exclusive – out of the 
scope for this lecture

V Flags, i.e. dirty bit D Tag Data
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Direct Mapped Cache Implementation

Quick Quiz: Is bigger block 
size (always) advantageous?
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Capacity – C

Number of sets – S

Block size – b

Number of blocks – B

Degree of associativity – N

C = 8 (8 words), 

S = 4,

b = 1 (one word in the block),

B = 8

N = 2 What is main advantage of higher associativity?

2-way Set Associative Cache
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Two-way Set Associative Cache

00
01
10
11

00000 00
00001 00
00010 00
00011 00
00100 00
00101 00
00110 00
00111 00

01000 00
01001 00
01010 00
01011 00
01100 00
01101 00
01110 00
01111 00

10000 00
10001 00
10010 00
10011 00
10100 00
10101 00
10110 00
10111 00

11000 00
11001 00
11010 00
11011 00
11100 00
11101 00
11110 00
11111 00

M
ai

n
 m

em
o

ry

2-way cache  2 * 4 bloky

111 01 00  →  memory address

cache address 
 tag + index
             index

Block size 4-byte word

 in
d

ex

 t
ag

s

000 | 010
xxx | xxx
001 | xxx
xxx | xxx

 byte offset

Access to address: 0, 32, 0, 24, 32, 64
                                  1. 2.  3.  4.   5.   6.

1. miss

2. miss

4.
 m

is
s

3. hit

5. hit
6. miss

0
4
8
12
16
20
24
28

32
36
40
44
48
52
56
60

64
...

...
120
124

128 bytes memory read and write as 4-byte words
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4-way Set Associative Cache
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Fully Associative Cache as Special N-way Case

● From the above, a fully associative cache can be 
considered as N-way with only one set. N=B=C/(b·4)

● The same way we can define direct mapped cache as a special case 
where the number of ways is one.
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Comparison of Different Cache Sizes and Organizations

Remember: 1. miss rate is not cache parameter/feature!
2. miss rate is not parameter/feature of the program!
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What Can Be Gained from Spatial Locality?

Miss rate of consecutive accesses can be reduced by increasing block size. 
On the other hand, increased block size for same cache capacity results in 
smaller number of sets and higher probability of conflicts (set number aliases) 
and then to increase of miss rate.
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Six Basic Cache Optimizations

1) Larger block size
Reduces compulsory misses; increases other misses, miss 
penalty

2) Larger cache size
Reduces capacity/conflict misses; increases hit time, power, 
cost

3) Greater associativity
Reduces conflict misses; increases hit time, power

4) Multiple cache levels
Reduces Miss Penalty, allows for optimizations at each level

5) Prioritize read misses over writes

6) Avoid address translation of cache index
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Multi-level Cache Organization



48B35APO   Computer Architectures

Multiple Cache Levels – Development Directions

● Primary/L1 cache – tightly coupled to the CPU
● Fast but small. Main objective: minimal Hit Time/latency
● Usually separated caches for instruction and for data
● Size usually selected so that cache lines can be virtually tagged without 

aliasing. (set/way size is smaller than page size)
● L2 cache resolves cache misses of the primary cache

● Much bigger and slower but still faster than main memory. Main goal: low 
Miss Rate

● L2 cache misses are resolved by main memory
● Trend to introduce L3 caches, inclusive versus exclusive cache

Usual for L1 Usual for L2

Block count 250-2000 15 000-250 000

KB 16-64 2 000-3 000

Block size in bytes 16-64 64-128

Miss penalty (cycles) 10-25 100-1 000

Miss rates 2-5% 0,1-2%
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Intel Nehalem – Example of Harvard Three-level Cache

• IMC:  integrated memory 
controller with 3 DDR3 memory 
channels,

• QPI: Quick-Path Interconnect 
ports
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Intel Nehalem – Memory Subsystem Structure
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Notes for Intel Nehalem Example

● Block size: 64B
● CPU reads whole cache line/block from

 main memory and each is 64B aligned
● (6 LS bits are zeros), partial line fills allowed
● L1 – Harvard. Shared by two (H)threads

instruction – 4-way 32kB, data 8-way 32kB
● L2 – unified, 8-way, non-inclusive, WB
● L3 – unified, 16-way, inclusive (each line stored in L1 or L2 has copy in L3), 

WB
● Store Buffers – temporal data store for each write to eliminate wait for write 

to the cache or main memory. Ensure that final stores are in original order 
and solve “transaction” rollback or forced store for:

- exceptions, interrupts, serialization/barrier instructions, lock prefix,..
● TLBs (Translation Lookaside Buffers) are separated for the first level

Data L1 32kB/8-ways results in 4kB range (same as page) which allows to 
use 12 LSBs of virtual address to select L1 set in parallel with MMU/TLB
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Two-level Cache (Pentium 4) Example

AMAT = HitTimeL1 + MissRateL1 * 
(HitTimeL2 + MissRateL2 * MissPenaltyL2)

L1: 2 cycles access time

L2: 19 cycles access time

Memory access time: 240 cycles

Program behavior: 5% L1 and 25% L2 miss rates

AMAT = 2 + 0.05 * (19 + 0.25 * 240) = 5.95

Source: Gedare Bloom https://www.uccs.edu/cs/about/faculty/gedare-bloom

https://www.uccs.edu/cs/about/faculty/gedare-bloom
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Advanced Cache Optimizations

Hennessy & Patterson, 2.3
1)Small and simple L1 Cache
2)Way Prediction
3)Pipelined and Banked Caches
4)Non-blocking Caches
5)Critical Word First and Early Restart
6)Merging Write Buffers
7)Compiler Techniques: Loop interchange/blocking
8)Prefetching: Hardware / Software
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Multiword Block Considerations

Read misses (I$ and D$)
Processed the same as for single word blocks

Miss penalty grows as block size grows
Early restart – processor resumes execution with requested word

Requested word first – requested word is transferred from the 
memory to the cache (and processor) first

Write misses (D$)
If using write allocate must first fetch the block from memory and 
then write the word to the block (or could end up with a “garbled” 
block in the cache (e.g., for 4 word blocks, a new tag, one word of 
data from the new block, and three words of data from the old 
block)
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Optimizations to Increase Cache Bandwidth

Pipelined caches accessed over multiple stages
Decouple cache indexing, hit detection, word transfer

Can increase associativity

Increases branch misprediction penalty

Nonblocking cache access while handling a miss
“Hit under Miss”

“Miss under Miss”

Multibanked caches allow multiple parallel accesses
Interleaved blocks
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(DDR) SDRAM Operation

N
 r

o
w

s

N cols

DRAM

Column
Address

M-bit Output

M bit planes
  N x M SRAM

Row
Address

After a row is read 
into the SRAM register:
 Input CAS as the starting “burst” address 

along with a burst length

 Transfers a burst of data (ideally a cache 
block) from a series of sequential addr’s 
within that row

 The memory bus clock controls transfer of 
successive words in the burst 

+1

1st M-bit Access 2nd M-bit 3rd M-bit 4th M-bit

Cycle Time

Row Address

CAS

RAS

Col Address Row Add 
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Virtual Memory
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Physical Address to Memory?

CPU memory
A0-A31 A0-A31

D0-D31 D0-D31

Data

Physical address



59B35APO   Computer Architectures

Virtual Memory Motivation …

• Normally we have several tens / hundreds of processes running on your 
computer…

• Can you imagine a situation where we would divide physics memory (for 
example, 1 GB) between these processes? How big a piece of memory 
would belong to one process? How would we deal with collisions - when 
would a program intentionally (for example, a virus) or inadvertently (by a 
programmer's error - working with pointers) want to write to a piece of 
memory that we reserved for another process?

• The solution is just virtual memory…
• We create an illusion to every process that the entire memory is just its and 

can move freely within it.
• We will even create the illusion of having, for example, 4GB of memory even 

though the physical memory is much smaller. The process does not 
distinguish between physical memory and disk (the disk appears to be 
memory).

• The basic idea: The process addresses the virtual memory using 
virtual addresses. We then have to translate them somehow into physical 
addresses.
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Virtual Memory

● Virtual memory (VM) – a separate address space is provided 
to each process, it is (can be) organized independently on the 
physical memory ranges and can be even bigger than the 
whole physical memory

● Programs/instructions running on the CPU operate with data 
only through virtual addresses  

● Translation from virtual address (VA) to physical address (PA) 
is implemented in HW (MMU, TLB).

● Common OSes implement virtual memory through paging 
which extends concept even to swapping memory content onto 
secondary storage

Program works
in its virtual

address space
mapping

Physical
memory

(+caches)

VA – virtual
address

PA –
physical
address
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Virtual Memory – Fine Gained Translation Problem
• Imagine that we have 8B (Bytes) virtual space and 8B physical memory… 
• How do we provide address translation? Assume addressing by bytes.
• Here is one solution: We want to translate any virtual address to any 

physical address. We have a 3-bit virtual address, and we want to translate 
it to a 3-bit physical address. To do this, you need a table of 8 records 
where one record will have 3 bits, together 8x3 = 24bit / process.

7

6

5

4

3

2

1

0

6

3

7

4

1

5

0

2

7

6

5

4

3

2

1

0

3-bit address for 8 items

Look-up 
table

Virtual space
Physical 
spacemapping

We use 
Look-up 
tabulku

• Problem! If we have 4 GB of virtual space, our Look-up table will occupy 
232 x32 bits (4 bytes) = 16GB / process !!! That's a little bit…
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Virtual Memory – Translation by Pages
• Mapping from any virtual address to any physical address is a 

virtually unrealistic requirement!
• Solution: Divide the virtual space into equal parts - virtual pages, and 

physical memory on physical pages. Make the virtual and physical size the 
same. In our example, we have a 2B page.

7

6

5

4

3

2

1

0

1

0

2

3

1

0

3

2

7

6

5

4

3-bit address for 4 items

Look-up 
table

Virtual 
space

Physical 
space

mapování

Our solution - we will not use one 
bit of address for translation. The 
look-up table will then have half the 
size in this case.

3

2

1

0

No. of 
page

3

2

1

0

No. of 
page

• So our solution translates virtual addresses in groups… We move inside 
the page using the bit we ignored during the translation. We are able to 
use the entire address space.
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Virtual and Physical Addressing - in More Detail

• Assume a 32-bit virtual address, 1GB of physical memory, 
and a 4-KB page size

12 bitů  => 212 = 4 KB 
is the size of 1 page

31…                        12 11…      0

29…                     12 11…      0

offsetVirtual page number

Physical page number offset

Address translation 
(page number 

translation)
What about the 
other bits? We'll 
explain later ...

The arrangement of the translation, where the lowest bits of the address 
remain, has a very important practical consequence, as seen later.
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Virtual Memory – Paging

● Process virtual memory content is divided into aligned pages 
of same size (power of 2, usually 4 or 8 kB) 

● Physical memory consists of page frames of the same size
● Note: huge pages option on modern OS and HW – 2n pages

Page size = frame size

Virtual 
address 
space 
process-A

Virtual 
address 
space 
process-B

Physical memory

Page
frame

Disk
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Virtual/Physical Address and Data

A0-A31 A0-A31

D0-D31 D0-D31

Virtual Physical

Virtual address Physical address

Data

CPU
Address 

translation 
MMU

Memory

● Paging (realization of virtual memory) does not interfere with 
the principle of spatial location => important for cache.

● Data on adjacent virtual addresses will be stored in physical 
memory side by side (of course if they do not cross the page 
boundary). Locality even in Physically Indexed and Physically 
Tagged (PIPT) cache  is preserved.
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Address Translation

● Page Table
● Root pointer/page directory base register (x86 CR3=PDBR)
● Page table directory PTD
● Page table entries PTE

● Basic mapping unit is a page (page frame)
● Page is basic unit of data transfers between main 

memory and secondary storage 
● Mapping is implemented as look-up table in most cases
● Address translation is realized by Memory Management 

Unit (MMU)
● Example follows on the next slide:
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Single-level Page Table (MMU)

● Page directory is represented as data structure stored in main memory. OS task is 
to allocate physically continuous block of memory (for each process/memory 
context) and assign its start address to special CPU/MMU register.

● PDBR - page directory base register – for x86 register CR3 – holds physical 
address of page directory start, alternate names PTBR - page table base register 
– the same thing, page table root pointer URP, SRP on m68k

PDBR

31…                        12 11…      0

29…                     12 11…      0

offsetVirtual page number

Physical page number offset

Virtual page frame 
number (VPFN) 

translated to physical 
one (PFM)
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But Consider Memory Consumed by Page Table …

● Typical page size is 4 kB = 2^12
● 12 bits (offset) are enough to address data in page (frame). 

There are 20 bits left for address translation on 32-bit 
address/architecture.

● The fastest map/table look-up is indexing ⇒ use array 
structure

● The page directory is an array of 2^20 entries (PTE). That 
is big overhead for processes that do not use whole virtual 
address range. There are another problems as well  
(physical space allocation fragmentation when large 
compact table is used for each process, etc.)

● Solution: multi-level page table – lower levels populated 
only for used address ranges
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Multi-Levels Page Table
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`

Two Level Paging on Intel x86 in Plain 32-bit Mode

12 bits

4kB 
= 212B

 Memory divided
to physical pages

pg.0

20 bits to determine page + other bits 
(valid, rights, etc.) = 4B (8B)

pg.1

pg.2

pg.N-1
N=232/212=220

4GB 
 220 
physical 
pages

10 bits

210 items
  210.4B =  4KB

10 bits

210 Page tables
  210.4KB =  

4MB
(if all memory is 

paged)

210 items

PDBR

×4

Given process
Page directory

×4

Remark: for 10,10,12-bits each 1024 entries (32-bits each) page table fits exactly in 4k page
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Two Level Pagetables – Another View
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Two Level Paging on Intel x86 in Plain 32-bit Mode as Jagged

31 22
 index of rowindex of column 12 bit offset

21 12 11 0

32-bit linear address

...

...
X

X

X

...

...
Matrix rows of 32-bit descriptors 
of 4K pages of physical memory

Matrix row table address 
(1024 items) 32 bit physical address

20
bits

12 
bits

32
bits

10 bitů10 
bits

page directory page table entry offset

p
ag

e 
d

ir
ec

to
ry

page table entry 0

page table entry 1

page table entry 2
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What Is in Page Table Entries?

Page # Offset

V Access rights Frame#

+Index into 
pagetable

Page table

PA – physical address

Page table placed in physical memory

VA – virtual 
address

Page Table
Base Register

PTBR

Page valid bit – if = 0,
page not in the memory

results in page fault
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Remarks

V    AR  Frame#

● Each process has its own page table
● Process specific value of CPU PTBRT register is loaded by 

OS when given process is scheduled to run
● This ensures memory separation and protection between 

processes
● Page table entry format

● V – Validity Bit. V=0  page is not valid (is invalid)
● AR – Access Rights (Read Only, Read/Write, Executable, 

etc.),
● Frame# - page frame number (location in physical memory)
● Other management information, Modified/Dirty, (more bits 

discussed later, permission, system, user etc.).
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Page Table - Meaning of Bits in Page Table Directory

• P  -bit 0: Present bit – determines whether the page is in memory (1) or on disk (0) 
Sometimes this bit is called V - valid.

• R/W -bit 1: Read/Write: if 1 then R/W; otherwise only read
• U/S -bit 2: User/Supervisor: 1 – user access; 0 – only OS
• PWT -bit 3: Write-through/Write-back – writing strategy for the page
• PCD -bit 4: Cache disabled/enabled – some peripherals are mapped directly into 

memory (memory mapped I/O), allowing write / read to / from the periphery. These 
memory addresses are then I/O ports and they are not written into cache.

Let's look at the item Page Directory (Page Table similar) 

31…       1 0
Only OS P=0

31…          12 6 5 4 3 2 1 0
Base Address of Page table … A PCD PWT U/S R/W P=1

Based on simplified x86 model in 32-bits mode, other architectures similar
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Page Table - Meaning of Bits in Page Table Entry (PTE)

• Meaning of bits 0 to 4 is the same as for the page table dircetory
• A -bit 5: Accessed –Whether we have read / written - helps decide which 

pages to remove when we need to free up memory space
• D bit 6: Dirty bit – it is set if we wrote into page.
• 11..7 bit - special use, as memory type, or when to update cache, etc.
• 31-12 bit - Physical Page Address

Let's look at the item Page Table (Page Table on 2nd level) 
31…       1 0

Only OS P=0

31…          12 7 6 5 4 3 2 1 0
Base address of given page … D A PCD PWT U/S R/W P=1

Based on simplified x86 model in 32-bits mode, other architectures similar
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Virtual Memory – Hardware and Software Interaction

Processor

Address
translation

Page fault
procession by OS

Main
memory

Secondary
store

a
Z

a'

Virtual address Physical address
OS process 
data transfer

missing page, i.e. PTE.V = 0
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How to Resolve Page-fault

● Check first that fault address belongs to process mapped areas
● If free physical frame is available

● The missing data are found in the backing store (usually swap or file 
on disk)

● Page content is read (usually through DMA, Direct Memory Access, 
part of some future lesson) to the allocated free frame. If read 
blocks, the OS scheduler switches to another process.

● End of the DMA transfer raises interrupt, OS updates  page table of 
original process.

● Scheduler switches to (resumes) original process.
● If no free frame is available, some frame has to be released

● The LRU algorithm finds (unpinned – not locked in physical memory 
by OS) frame, which can be released.

● If the Dirty bit is set, frame content is written to the backing store 
(disc). If store is a swap – store to the PTE or other place block nr.

● Then continue with gained free physical frame.
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Multi-level Page Table – Translation Overhead

● Translation would take long time, even if entries for all levels were 
present in cache. (One access per level, they cannot be done in 
parallel.) 

● The solution is to cache found/computed physical addresses
● Such cache is labeled as Translation Look-Aside Buffer
● Even multi-level translation caching are in use today
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Fast MMU/Address Translation Using TLB

● Translation-Lookaside Buffer, or may it be, more descriptive name 
– Translation-Cache

● Cache of frame numbers where key is page virtual addresses 
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TLB – Idealized Address Translation for Data Read

CPU (ALU)

TLB
Main 

memory

Cache

hit

hit

miss

missvirtual address
page

tag 
of 
physical 
address

transfer 
Page table 
into TLB

• Note that there may occur miss in cache for actual data read and in 
TLB during preceding address translation

• If a TLB miss occurs, we must execute a page walk, it uses cache 
indexed by physical address to access tables in memory usually and 
that cach result in yet another one or more misses in cache memory  

virtual address
offset
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Multi-level Paging on x86 System in 32-bit Mode

Intel IA32 implements 2-level 4k paging for basic 32-bit mode
• Page Table on level 1 is Page Directory (10 bits of address)
• Page Table on level 2 is Page Table (next 10 bits of address)
• 4MB pages (PDE.PS=1) can be used for continuous mappings

Intel IA32 provides even Physical Address Extension
• Available on latest 32-bit chips with 4k paging
• physical address is 36-bits (64GB) but single process limit/virtual address 

limit is still 4 GB, 3-levels page tables
• Page Directory Pointer Table on level 1 (2-bits are used)
• Page Table on level 1 is Page Directory (9 bits of address)
• Page Table on level 2 is Page Table (next 9 bits of address)
• 2MB pages (PDE.PS=1) can be used for continuous mappings
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Multi-level Paging on x86 System in 64-bit Mode

In the case of a 64-bit virtual address, it is customary to use fewer bits for a 
physical address - for example, 48, or 40. Even virtual address is divided to 
top part for system and low part for user and gap I left to lower number of 
levels of pagetable
● Intel Core i7 uses 4-level paging and 48 bit address space

• Page Table level 1: Page global directory (9 bits)
• Page Table level 2: Page upper directory (9 bits)
• Page Table level 3: Page middle directory (9 bits)
• Page Table level 4: Page table (9 bits)

• Only the first 3-levels are used in case of 2 MB pages
• 5-level page table mode has been introduced as option in Ice Lake 

microarchitecture to aid with virtualization and shadow pagetables
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Canonical Address on x86 System in 64-bit Mode

The full physical address range of 64-bits has no use today still.
Even full 64-bit virtual address is not required and causes to many levels 
traversal. Less bits/levels are used and space is divided to top for kernel 
and low for user

Bit 47 or 55 is copied
to all higher (MSB)
Bits

The upper space
is used for operating
system

Low for user
applications

Canonical "higher half"

Noncanonical 
addresses

FFFF8000 00000000

00000000 00000000

Canonical 
"higher half"

Canonical  
"lower half"

Noncanonical 
addresses

FF800000 00000000

Lower half

Higher half

48-bit address
4 levels

56-bit address
5 levels

64-bit address
6 levels (not used)
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Page Aligned Memory Allocation – Linux

Your program may consider page size and use memory more 
efficiently - by aligning allocations to multiple page sizes and 
then reducing internal and external page fragmentation .. 
(allocation order, etc. See also memory pool)

#include <stdio.h>
#include <unistd.h>
int main(void) {

printf(„Page Size is: %ld B.\n",
       sysconf(_SC_PAGESIZE)); 
return 0;

}

Allocation of block aligned in memory:
void * memalign(size_t size, int boundary)
void * valloc(size_t size)
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Page Aligned Memory Allocation – Windows

#include <stdio.h>
#include <windows.h>

int main(void) {
    SYSTEM_INFO s;
    GetSystemInfo(&s);
    printf("Size of page is: %ld B.\n",  
       ns.dwPageSize);
    printf("Address space for application: 
       0x%lx – 0x%lx\n",
       s.lpMinimumApplicationAddress,
       s.lpMaximumApplicationAddress);
    return 0;
}
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Typical Sizes of Today I/D and TLB Caches Comparison

Typical paged memory 
parameters

Typical  TLB

Size in blocks 16 000-250 000 40-1024

Size 500-1 000 MB 0,25-16 KB

Block sizes in B 4 000-64 000 4-32

Miss penalty 
(clock cycles)

10 000 000 –
100 000 000

10-1 000

Miss rates 0,00001-0,0001% 0,01-2

Backing store Pages on the disk Page table in the 
main memory

Fast access location Main memory frames TLB
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Hierarchical Memory Caveats
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Some Problems to Be Aware of

● Memory coherence – definition on next slide
● Single processor (single core) systems 

● Solution: D-bit and Write-back based data transactions
● Even in this case, consistency with DMA requited (SW or 

HW)
● Multiprocessing (symmetric) SMP with common and 

shared memory – more complicated. Solutions:
● Common memory bus: Snooping, MESI, MOESI protocol
● Broadcast
● Directories

● More about these advanced topics in A4M36PAP
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Coherency Definition

● Memory coherence is an issue that affects the design of computer 
systems in which two or more processors, cores or bus master 
controllers share a common area of memory.

● Intuitive definition: The memory subsystem is coherent if the value 
returned by each read operation is always the same as the value 
written by the most recent write operation to the same address.

● More formal: P – set of CPU's. xm∈X locations. ∀pi,pk∈P: pi≠pk. 
Memory system is coherent if

1.  pi read after pi write value a to xm returns a if there is no pi or pk 

write between these read and write operations

2. if pi reads xm after pk write b to xm and there is no other pi or pk write 
to xm then pi reads b if operations are separated by enough time (in 
other case previous value of xm can be read) or architecture 
specified operations are inserted after write and before read.

3. writes by multiple CPU's to the given location are serialized such 
than no CPU reads older value when it already read recent one
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Comparison of Virtual Memory and Cache Memory

● Remarks.: TLB for address translation can be fully 
associative, but for bigger sizes is 4-way.

● Do you understand the terms?
● What does victim represent?

● Important: adjectives cache and virtual mean different things.

Virtual memory Cache memory

Page Block/cache line

Page Fault Read/Write Miss

Page size: 512 B – 8 KB Block size: 8 – 128 B

Fully associative DM, N-way set associative

Victim selection: LRU LRU/Random

Write Back Write Thru/Write Back
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Inclusive Versus Exclusive Cache/Data Backing Store

● Mapping of contents of the main memory to the cache 
memory is inclusive, i.e. main memory location cannot 
be reused for other data when corresponding or updated 
contents is held in the cache

● If there are more cache levels it can be waste of the 
space to keep stale/old data in the previous cache level. 
Snoop cycle is required anyway. The exclusive 
mechanism is sometimes used in such situation.

● Inclusive mapping is the rule for secondary storage files 
mapped into main memory.

● But for swapping of physical contents to swap device/file 
exclusive or mixed approach is quite common.
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