
1B35APO Computer Architectures

Computer Architectures

Fast and/or Large Memory – Cache and Memory Hierarchy

Pavel Píša, Richard Šusta,
Michal Štepanovský, Miroslav Šnorek

Ver.1.10

Main source of inspiration: Patterson

English version partially supported by:
European Social Fund Prague & EU: We invests in your future.

Czech Technical University in Prague, Faculty of Electrical Engineering

2B35APO Computer Architectures

Picture of the Day – Sareni Pasovi Durmitor

3B35APO Computer Architectures

Lecture Motivation

 A:
int matrix[M][N];

int i, j, sum = 0;

…

for(i=0; i<M; i++)

 for(j=0; j<N; j++)

 sum += matrix[i][j];

Quick Quiz 1.: Is the result of both code fragments a same?

Quick Quiz 2.: Which of the code fragments is processed faster and why?

 B:
int matrix[M][N];

int i, j, sum = 0;

…

for(j=0; j<N; j++)

 for(i=0; i<M; i++)

 sum += matrix[i][j];

Is there a rule how to iterate over matrix element efficiently?

4B35APO Computer Architectures

Lecture Outline

● Overview of memory related terms and definitions
● Memory hierarchy

● Management and mapping of data between levels
● Cache memory

● Basic concept
● More realistic approach
● Multi-level cache memory

● Virtual memory
● Memory hierarchy and related problems
● Secondary(+more) storage (mass storage)

5B35APO Computer Architectures

John von Neumann, Hungarian physicist

28. 12. 1903 -
8. 2. 1957

von Neumann's computer architecture
Princeton Institute for Advanced Studies Processor

Input Output

Memory

ctrl
ALU

●5 functional units – control unit, arithmetic logic unit, memory, input (devices),
output (devices)

●An computer architecture should be independent of solved problems. It has to
provide mechanism to load program into memory. The program controls what the
computer does with data, which problem it solves.

●Programs and results/data are stored in the same memory. That memory consists
of a cells of same size and these cells are sequentially numbered (address).

●The instruction which should be executed next, is stored in the cell exactly after
the cell where preceding instruction is stored (exceptions branching etc.).

●The instruction set consists of arithmetics, logic, data movement, jump/branch
and special/control instructions.

6B35APO Computer Architectures

PC Computer Motherboard

http://www.pcplanetsystems.com/abc/product_details.php?
item_id=3263&category_id=208

7B35APO Computer Architectures

Computer architecture (desktop x86 PC)

generic
example

8B35APO Computer Architectures

From UMA to NUMA development (even in PC segment)

CPU 1 CPU 2

Northbridge
MC

Southbridge

RAM

SATA

USB
PCI-E

MC - Memory controller – contains circuitry responsible for SDRAM read and
writes. It also takes care of refreshing each memory cell every 64 ms.

CPU 1 CPU 2

MC

Southbridge

RAM

SATA

USB
PCI-E

RAM

MC Northbridge

Southbridge
SATA

USB
PCI-E

CPU 1 CPU 2

MC MC

RAM RAM

Non-Uniform
Memory
Architecture

9B35APO Computer Architectures

Intel Core 2 generation

Northbridge became Graphics and Memory Controller Hub (GMCH)

10B35APO Computer Architectures

Intel i3/5/7 generation

11B35APO Computer Architectures

Memory Address Space

data path,
usual width
32b/4BAddress

width a bits

The most common size of addressable
memory unit is 1B (8 bits)

 a 2↑a

 8 256 distinct locations

16 64K (K=1024)

… ……

32 4G (4096M, M=K↑2)
000000H

FFF…FFH
memory location
holds value – contents

It is an array of addressable units (locations) where each unit can hold a data value.
Number/range of addresses same as addressable units/words are limited in size.

Memory

ALU
Unit

Control
Unit

Input Output

Processor

12B35APO Computer Architectures

 Memory Subsystem – Terms and Definitions

● Memory address – fixed-length sequences of bits or index
● Data value – the visible content of a memory location

Memory location can hold even more control/bookkeeping
information
● validity flag, parity and ECC bits etc.

● Basic memory parameters:
● Access time – delay or latency between a request and the access

being completed or the requested data returned
● Memory latency – time between request and data being available

(does not include time required for refresh and deactivation)
● Throughput/bandwidth – main performance indicator. Rate of

transferred data units per time.
● Maximal, average and other latency parameters

13B35APO Computer Architectures

Memory Types and Maintenance

● Types: RWM (RAM), ROM, FLASH
● Implementation: SRAM, DRAM

● Data retention time and conditions (volatile/nonvolatile)
● Dynamic memories (DRAM, SDRAM) require specific

care
● Memory refresh – state of each memory cell has to be

internally read, amplified and fed back to the cell once
every refresh period (usually about 60 ms), even in idle
state. Each refresh cycle processes one row of cells.

● Precharge – necessary phase of access cycle to restore
cell state after its partial discharge by read

● Both contribute to maximal and average access time.

14B35APO Computer Architectures

1980 1985 1990 1995 2000 2005 2010

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

Year

P
e

rf
o

rm
a

n
c

e
Memory and CPU speed – Moore's law

Processor-Memory
Performance Gap
Growing

Source: Hennesy, Patterson
CaaQA 4th ed. 2006

CPU performance 25%
per year

52%
per year

20%
per year

Throughput of memory
only +7% per year

Memory

CPU

15B35APO Computer Architectures

Typical SRAM and DRAM Memory Parameters

Memory
kind

Number of
transistors

1 bit area
on silicon

Data
availability

latency

SRAM about 6 < 0,1 m2 instantenou
s

< 1ns –
5ns

DRAM 1 < 0,001 m2 needs
refresh

>ten ns

16B35APO Computer Architectures

Bubble sort – algorithm Example from Seminaries

int array[5]={5,3,4,1,2};
int main()
{
 int N = 5,i,j,tmp;
 for(i=0; i<N; i++)
 for(j=0; j<N-1-i; j++)
 if(array[j+1]<array[j])
 {
 tmp = array[j+1];
 array[j+1] = array[j];
 array[j] = tmp;
 }
 return 0;
}

 What we can
consider and
expect from our
programs?

Think about
some typical
data access
patterns and
execution flow.

17B35APO Computer Architectures

Memory Hierarchy – Principle of Locality

● Programs access a small proportion of their address
space at any time

● Temporal locality
● Items accessed recently are likely to be accessed again

soon
● e.g., instructions in a loop, induction variables

● Spatial locality
● Items near those accessed recently are likely to be

accessed soon
● E.g., sequential instruction access, array data

Source: Hennesy, Patterson

18B35APO Computer Architectures

Memory Hierarchy Introduced Based on Locality

● The solution to resolve capacity and speed requirements is
to build address space (data storage in general) as
hierarchy of different technologies.

● Store input/output data, program code and its runtime data
on large and cheaper secondary storage (hard disk)

● Copy recently accessed (and nearby) items from disk to
smaller DRAM based main memory (usually under
operating system control)

● Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory (cache) attached to CPU
(hidden memory, transactions under HW control), optionally,
tightly coupled memory under program's control

● Move currently processed variables to CPU registers (under
machine program/compiler control)

19B35APO Computer Architectures

Memory Hierarchy – Speed, Capacity, Price

Source: Wikipedia.org

small size
small capacity

small size
small capacity

medium size
medium capacity

small size
large capacity

large size
very large

capacity

processor registers
very fast, very expensive

processor cache
very fast, very expensive

random access memory
fast, affordable

flash/USB memory
slower, cheap

hard drive
slow, very cheap

tape backup
very slow, affordable

power on

immediate term

power on
very short term

power off
short term

power off
mid term

power off
long term

20B35APO Computer Architectures

Memory/Storage in Computer System

Logic
unit

ALU/CU

registers

Cache

Main memory
random access

256 MB …
16 GB

Mass storage
Hard disk
120 GB …
many TB

Removable media
CD-RW, DVD-RW

Removable
medium

memory
bus

Robotic
access
system

Removable
medium

Removable
media
drive

Removable
medium

Input/output
channels

Secondary storage Off-line storage

Tertiary storage Primary storage

Central Processing Unit

Source: Wikipedia.org

21B35APO Computer Architectures

Contemporary Price/Size Examples

Data
path

Control unit

L1
cache

Level2
cache

(SRAM)

Main
memory
(DRAM)

Secondary
memory

(disc)

R
egiste rs

CPU

Type/
Size

L1 32kB Sync
SRAM

DDR3
16 GB

HDD 3TB

Price 10 kč/kB 300
kč/MB

123
kč/GB

1 kč/GB

Speed/
throughput

0.2...2ns 0.5...8
ns/word

15
GB/sec

100 MB/sec

Some data can be available in more copies (consider levels and/or SMP).
Mechanisms to keep consistency required if data are modified.

22B35APO Computer Architectures

Mechanism to Lookup Demanded Information?

● According to the address and other management
information (data validity flags etc).

● The lookup starts at the most closely located memory
level (local CPU L1 cache).

● Requirements:
● Memory consistency/coherency.

● Used means:
● Memory management unit to translate virtual address

to physical and signal missing data on given level.
● Mechanisms to free (swap) memory locations and

migrate data between hierarchy levels
● Hit (data located in upper level – fast), miss (copy from

lower level required)

23B35APO Computer Architectures

Processor-memory Performance Gap Solution – Cache

24B35APO Computer Architectures

Performance Gap Between CPU and Main Memory

● Solution – cache memory
● Cache – component that (transparently) stores data so

that future requests for that data can be served faster
● Transparent cache – hidden memory

● Placed between two subsystems with different data
throughput. It speeds-up access to (recently) used data.

● This is achieved by maintaining copy of data on memory
device faster than the original storage

25B35APO Computer Architectures

Initial Idea – Fully Associative Cache
● Tag – the key to locate data (value) in the cache. The original

address in the main memory for fully associative case. Size of this
field is given by number of bits in an address – i.e. 32, 48 or 64

● Data – the stored information, basic unit – word – is usually 4 bytes
● Flags – additional bits to keep service information.

Tag Data Flags

Cache line of fully associative cache

Hit

comparator

comparator

comparator

Address

Tag Data Flags

Data

26B35APO Computer Architectures

Definitions for Cache Memory

● Cache line or cache block – basic unit
copied between levels
● May be multiple words
● Usual cache line size from 8B up to 1KB

● If accessed data is present in upper
level
● Hit: access satisfied by upper level

– Hit rate: hits/accesses
● If accessed data is absent

● Miss: block copied from lower level
– Time taken: miss penalty
– Miss rate: misses/accesses

= 1 – hit rate
● Then the accessed data is supplied

from upper level

27B35APO Computer Architectures

Important Cache Access Statistical Parameters

● Hit Rate – number of memory accesses satisfied by
given level of cache divided by number of all memory
accesses

● Miss Rate – same, but for requests resulting in

access to slower memory = 1 – Hit Rate
● Miss Penalty – time required to transfer block (data)

from lower/slower memory level
● Average Memory Access Time (AMAT)

 AMAT = Hit Time + Miss Rate × Miss Penalty

● Miss Penalty for multi-level cache can be computed by
recursive application of AMAT formula

28B35APO Computer Architectures

Average Memory Access Time (AMAT) Example

AMAT = HitTimeL1 + MissRateL1 * MissPenaltyL1

L1 access time: 1 cycle

Memory access time: 8 cycles

Program behavior: 2% miss rate

AMAT with cache: 1 + (0.02 * 8) = 1.16

What is the AMAT without a cache?

29B35APO Computer Architectures

Fully Associative Cache Implementation

● The Tag field width is equivalent to address width (not
counting address bits equivalent to byte in word or line)

● Each cache line requires its own multiplexer input and same
number of one-bit comparators as is size of the tag field.

● Cache line count determines capacity of the cache
● Cache requires complex replacement policy logic to find out

which of all lines is the best candidate for new request.

● Such cache implementation is very expensive to implement
in HW (ratio of gate count/capacity is high) and slow

● That is why other cache types are used in practice
● Direct mapped
● n-way associative – with limited associativity

30B35APO Computer Architectures

CPU Writes to Main Memory

● There is cache in the way
● Data consistency – requirement for data coherency for same

address accessed through different paths
● Write through – data are written to the cache and write

buffer/queue simultaneously
● Write back – data are written to the cache only and dirty bit is

set. Write to the other level is delayed until cache line
replacement time or to cache flush event

● Dirty bit – an additional flag for cache line. It Indicates that
cached value is updated and does not correspond with the main
memory.

V Other bits, i.e. D Tag Data

31B35APO Computer Architectures

The Process to Resolve Cache Miss

● Data has to be filled from main memory, but quite often all available
cache locations which address can be mapped to are allocated

● Cache content replacement policy (offending cache line is invalidated
either immediately or after data are placed in the write queue/buffer)

● Random – random cache line is evicted
● LRU (Least Recently Used) – additional information is required to find

cache line that has not been used for the longest time
● LFU (Least Frequently Used) – additional information is required to find

cache line that is used least frequently – requires some kind of
forgetting

● ARC (Adaptive Replacement Cache) – combination of LRU and LFU
concepts

● Write-back – content of the modified (dirty) cache line is moved to the
write queue

32B35APO Computer Architectures

CPU Including Cache – Harvard Cache Architecture

Separated instruction and data cache
The concept of Von Neumann's CPU with Harvard cache is illustrated on
a MIPS CPU family member, i.e. real CPU which is superset of the design
introduced during lectures 2 and 4.

33B35APO Computer Architectures

Example to Illustrate Base Cache Types

● The cache capacity 8 blocks. Where can be
block/address 12 placed for
● Fully associative
● Direct mapped
● N-way (set) associative – i.e. N=2 (2-way cache)

0 1 2 3 4 5 6 7

Only one set

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Set
0

Set
1

Set
2

Set
3

Block
number

Block
number

Block
number

Fully associative:
Address 12 can be
placed anywhere

Direct mapped:
Address 12 placed only
to block 4 (12 mod 8)

2-way associative:
Address 12 is placed
into set 0 (12 mod 4)

Set

34B35APO Computer Architectures

Direct Mapped Cache

Capacity – C

Number of sets – S

Block size – b

Number of blocks – B

Degree of associativity – N

C = 8 (8 words),

S = B = 8,

b = 1 (one word in the block),

N = 1

direct mapped cache: one block in each set

35B35APO Computer Architectures

Why to Use Middle-Order Bits for Index

4-řádková cache High-Order Bit Index Middle-Order Bit Index

00x
01x
10x
11x

0000x
0001x
0010x
0011x
0100x
0101x
0110x
0111x
1000x
1001x
1010x
1011x
1100x
1101x
1110x
1111x

0000x
0001x
0010x
0011x
0100x
0101x
0110x
0111x
1000x
1001x
1010x
1011x
1100x
1101x
1110x
1111x

MSB – only part of cache
used for continuous
variables or code block

LSB – too small blocks,
to much metadata per
data byte

Middle-order – the
compromise

36B35APO Computer Architectures

Direct Mapped Cache – 8 bit CPU Example

000
001
010
011
100
101
110
111

00000
00001
00010
00011
00100
00101
00110
00111

01000
01001
01010
01011
01100
01101
01110
01111

10000
10001
10010
10011
10100
10101
10110
10111

11000
11001
11010
11011
11100
11101
11110
11111

Memory

Cache – 8 rows (blocks)

11 101 → memory address as well
 for our case

 cache address:
 tag

 index

row = 1 word

 in
d

ex
 (

lo
c

al
 a

d
d

re
ss

)

 ta
g

00
10
11
01
01
00
10
11

 8-bit CPU (1 word = 1 byte), data memory address range 32 bytes

37B35APO Computer Architectures

Direct Mapped Cache

Set = (Address/(4·b)) mod S

Set = (Address/4) mod 8

38B35APO Computer Architectures

Real Cache Organization

● Tag is index of the block corresponding to the cache set
size in the main memory (that is address divided by block
length and number or the cache lines in the set)

● Data are organized in cache line blocks, multiple words.
● Valid bit – marks line contents (or sometimes individual

words) as valid.
● Dirty bit – corresponding cache line (word) was modified

and write back will be required later
● Possible cache line states (for coherence protocols) –

Invalid, Owned, Shared, Modified, Exclusive – out of the
scope for this lecture

V Flags, i.e. dirty bit D Tag Data

39B35APO Computer Architectures

Direct Mapped Cache Implementation

Quick Quiz: Is bigger block
size (always) advantageous?

40B35APO Computer Architectures

Capacity – C

Number of sets – S

Block size – b

Number of blocks – B

Degree of associativity – N

C = 8 (8 words),

S = 4,

b = 1 (one word in the block),

B = 8

N = 2 What is main advantage of higher associativity?

2-way Set Associative Cache

41B35APO Computer Architectures

Two-way Set Associative Cache

00
01
10
11

00000 00
00001 00
00010 00
00011 00
00100 00
00101 00
00110 00
00111 00

01000 00
01001 00
01010 00
01011 00
01100 00
01101 00
01110 00
01111 00

10000 00
10001 00
10010 00
10011 00
10100 00
10101 00
10110 00
10111 00

11000 00
11001 00
11010 00
11011 00
11100 00
11101 00
11110 00
11111 00

M
ai

n
 m

em
o

ry

2-way cache 2 * 4 bloky

111 01 00 → memory address

cache address
 tag + index
 index

Block size 4-byte word

 in
d

ex

 t
ag

s

000 | 010
xxx | xxx
001 | xxx
xxx | xxx

 byte offset

Access to address: 0, 32, 0, 24, 32, 64
 1. 2. 3. 4. 5. 6.

1. miss

2. miss

4.
 m

is
s

3. hit

5. hit
6. miss

0
4
8
12
16
20
24
28

32
36
40
44
48
52
56
60

64
...

...
120
124

128 bytes memory read and write as 4-byte words

42B35APO Computer Architectures

4-way Set Associative Cache

43B35APO Computer Architectures

Fully Associative Cache as Special N-way Case

● From the above, a fully associative cache can be
considered as N-way with only one set. N=B=C/(b·4)

● The same way we can define direct mapped cache as a special case
where the number of ways is one.

44B35APO Computer Architectures

Comparison of Different Cache Sizes and Organizations

Remember: 1. miss rate is not cache parameter/feature!
2. miss rate is not parameter/feature of the program!

45B35APO Computer Architectures

What Can Be Gained from Spatial Locality?

Miss rate of consecutive accesses can be reduced by increasing block size.
On the other hand, increased block size for same cache capacity results in
smaller number of sets and higher probability of conflicts (set number aliases)
and then to increase of miss rate.

46B35APO Computer Architectures

Six Basic Cache Optimizations

1) Larger block size
Reduces compulsory misses; increases other misses, miss
penalty

2) Larger cache size
Reduces capacity/conflict misses; increases hit time, power,
cost

3) Greater associativity
Reduces conflict misses; increases hit time, power

4) Multiple cache levels
Reduces Miss Penalty, allows for optimizations at each level

5) Prioritize read misses over writes

6) Avoid address translation of cache index

47B35APO Computer Architectures

Multi-level Cache Organization

48B35APO Computer Architectures

Multiple Cache Levels – Development Directions

● Primary/L1 cache – tightly coupled to the CPU
● Fast but small. Main objective: minimal Hit Time/latency
● Usually separated caches for instruction and for data
● Size usually selected so that cache lines can be virtually tagged without

aliasing. (set/way size is smaller than page size)
● L2 cache resolves cache misses of the primary cache

● Much bigger and slower but still faster than main memory. Main goal: low
Miss Rate

● L2 cache misses are resolved by main memory
● Trend to introduce L3 caches, inclusive versus exclusive cache

Usual for L1 Usual for L2

Block count 250-2000 15 000-250 000

KB 16-64 2 000-3 000

Block size in bytes 16-64 64-128

Miss penalty (cycles) 10-25 100-1 000

Miss rates 2-5% 0,1-2%

49B35APO Computer Architectures

Intel Nehalem – Example of Harvard Three-level Cache

• IMC: integrated memory
controller with 3 DDR3 memory
channels,

• QPI: Quick-Path Interconnect
ports

50B35APO Computer Architectures

Intel Nehalem – Memory Subsystem Structure

51B35APO Computer Architectures

Notes for Intel Nehalem Example

● Block size: 64B
● CPU reads whole cache line/block from

 main memory and each is 64B aligned
● (6 LS bits are zeros), partial line fills allowed
● L1 – Harvard. Shared by two (H)threads

instruction – 4-way 32kB, data 8-way 32kB
● L2 – unified, 8-way, non-inclusive, WB
● L3 – unified, 16-way, inclusive (each line stored in L1 or L2 has copy in L3),

WB
● Store Buffers – temporal data store for each write to eliminate wait for write

to the cache or main memory. Ensure that final stores are in original order
and solve “transaction” rollback or forced store for:

- exceptions, interrupts, serialization/barrier instructions, lock prefix,..
● TLBs (Translation Lookaside Buffers) are separated for the first level

Data L1 32kB/8-ways results in 4kB range (same as page) which allows to
use 12 LSBs of virtual address to select L1 set in parallel with MMU/TLB

52B35APO Computer Architectures

Two-level Cache (Pentium 4) Example

AMAT = HitTimeL1 + MissRateL1 *
(HitTimeL2 + MissRateL2 * MissPenaltyL2)

L1: 2 cycles access time

L2: 19 cycles access time

Memory access time: 240 cycles

Program behavior: 5% L1 and 25% L2 miss rates

AMAT = 2 + 0.05 * (19 + 0.25 * 240) = 5.95

Source: Gedare Bloom https://www.uccs.edu/cs/about/faculty/gedare-bloom

https://www.uccs.edu/cs/about/faculty/gedare-bloom

53B35APO Computer Architectures

Advanced Cache Optimizations

Hennessy & Patterson, 2.3
1)Small and simple L1 Cache
2)Way Prediction
3)Pipelined and Banked Caches
4)Non-blocking Caches
5)Critical Word First and Early Restart
6)Merging Write Buffers
7)Compiler Techniques: Loop interchange/blocking
8)Prefetching: Hardware / Software

54B35APO Computer Architectures

Multiword Block Considerations

Read misses (I$ and D$)
Processed the same as for single word blocks

Miss penalty grows as block size grows
Early restart – processor resumes execution with requested word

Requested word first – requested word is transferred from the
memory to the cache (and processor) first

Write misses (D$)
If using write allocate must first fetch the block from memory and
then write the word to the block (or could end up with a “garbled”
block in the cache (e.g., for 4 word blocks, a new tag, one word of
data from the new block, and three words of data from the old
block)

55B35APO Computer Architectures

Optimizations to Increase Cache Bandwidth

Pipelined caches accessed over multiple stages
Decouple cache indexing, hit detection, word transfer

Can increase associativity

Increases branch misprediction penalty

Nonblocking cache access while handling a miss
“Hit under Miss”

“Miss under Miss”

Multibanked caches allow multiple parallel accesses
Interleaved blocks

56B35APO Computer Architectures

(DDR) SDRAM Operation

N
 r

o
w

s

N cols

DRAM

Column
Address

M-bit Output

M bit planes
 N x M SRAM

Row
Address

After a row is read
into the SRAM register:
 Input CAS as the starting “burst” address

along with a burst length

 Transfers a burst of data (ideally a cache
block) from a series of sequential addr’s
within that row

 The memory bus clock controls transfer of
successive words in the burst

+1

1st M-bit Access 2nd M-bit 3rd M-bit 4th M-bit

Cycle Time

Row Address

CAS

RAS

Col Address Row Add

57B35APO Computer Architectures

Virtual Memory

58B35APO Computer Architectures

Physical Address to Memory?

CPU memory
A0-A31 A0-A31

D0-D31 D0-D31

Data

Physical address

59B35APO Computer Architectures

Virtual Memory Motivation …

• Normally we have several tens / hundreds of processes running on your
computer…

• Can you imagine a situation where we would divide physics memory (for
example, 1 GB) between these processes? How big a piece of memory
would belong to one process? How would we deal with collisions - when
would a program intentionally (for example, a virus) or inadvertently (by a
programmer's error - working with pointers) want to write to a piece of
memory that we reserved for another process?

• The solution is just virtual memory…
• We create an illusion to every process that the entire memory is just its and

can move freely within it.
• We will even create the illusion of having, for example, 4GB of memory even

though the physical memory is much smaller. The process does not
distinguish between physical memory and disk (the disk appears to be
memory).

• The basic idea: The process addresses the virtual memory using
virtual addresses. We then have to translate them somehow into physical
addresses.

60B35APO Computer Architectures

Virtual Memory

● Virtual memory (VM) – a separate address space is provided
to each process, it is (can be) organized independently on the
physical memory ranges and can be even bigger than the
whole physical memory

● Programs/instructions running on the CPU operate with data
only through virtual addresses

● Translation from virtual address (VA) to physical address (PA)
is implemented in HW (MMU, TLB).

● Common OSes implement virtual memory through paging
which extends concept even to swapping memory content onto
secondary storage

Program works
in its virtual

address space
mapping

Physical
memory

(+caches)

VA – virtual
address

PA –
physical
address

61B35APO Computer Architectures

Virtual Memory – Fine Gained Translation Problem
• Imagine that we have 8B (Bytes) virtual space and 8B physical memory…
• How do we provide address translation? Assume addressing by bytes.
• Here is one solution: We want to translate any virtual address to any

physical address. We have a 3-bit virtual address, and we want to translate
it to a 3-bit physical address. To do this, you need a table of 8 records
where one record will have 3 bits, together 8x3 = 24bit / process.

7

6

5

4

3

2

1

0

6

3

7

4

1

5

0

2

7

6

5

4

3

2

1

0

3-bit address for 8 items

Look-up
table

Virtual space
Physical
spacemapping

We use
Look-up
tabulku

• Problem! If we have 4 GB of virtual space, our Look-up table will occupy
232 x32 bits (4 bytes) = 16GB / process !!! That's a little bit…

62B35APO Computer Architectures

Virtual Memory – Translation by Pages
• Mapping from any virtual address to any physical address is a

virtually unrealistic requirement!
• Solution: Divide the virtual space into equal parts - virtual pages, and

physical memory on physical pages. Make the virtual and physical size the
same. In our example, we have a 2B page.

7

6

5

4

3

2

1

0

1

0

2

3

1

0

3

2

7

6

5

4

3-bit address for 4 items

Look-up
table

Virtual
space

Physical
space

mapování

Our solution - we will not use one
bit of address for translation. The
look-up table will then have half the
size in this case.

3

2

1

0

No. of
page

3

2

1

0

No. of
page

• So our solution translates virtual addresses in groups… We move inside
the page using the bit we ignored during the translation. We are able to
use the entire address space.

63B35APO Computer Architectures

Virtual and Physical Addressing - in More Detail

• Assume a 32-bit virtual address, 1GB of physical memory,
and a 4-KB page size

12 bitů => 212 = 4 KB
is the size of 1 page

31… 12 11… 0

29… 12 11… 0

offsetVirtual page number

Physical page number offset

Address translation
(page number

translation)
What about the
other bits? We'll
explain later ...

The arrangement of the translation, where the lowest bits of the address
remain, has a very important practical consequence, as seen later.

64B35APO Computer Architectures

Virtual Memory – Paging

● Process virtual memory content is divided into aligned pages
of same size (power of 2, usually 4 or 8 kB)

● Physical memory consists of page frames of the same size
● Note: huge pages option on modern OS and HW – 2n pages

Page size = frame size

Virtual
address
space
process-A

Virtual
address
space
process-B

Physical memory

Page
frame

Disk

65B35APO Computer Architectures

Virtual/Physical Address and Data

A0-A31 A0-A31

D0-D31 D0-D31

Virtual Physical

Virtual address Physical address

Data

CPU
Address

translation
MMU

Memory

● Paging (realization of virtual memory) does not interfere with
the principle of spatial location => important for cache.

● Data on adjacent virtual addresses will be stored in physical
memory side by side (of course if they do not cross the page
boundary). Locality even in Physically Indexed and Physically
Tagged (PIPT) cache is preserved.

66B35APO Computer Architectures

Address Translation

● Page Table
● Root pointer/page directory base register (x86 CR3=PDBR)
● Page table directory PTD
● Page table entries PTE

● Basic mapping unit is a page (page frame)
● Page is basic unit of data transfers between main

memory and secondary storage
● Mapping is implemented as look-up table in most cases
● Address translation is realized by Memory Management

Unit (MMU)
● Example follows on the next slide:

67B35APO Computer Architectures

Single-level Page Table (MMU)

● Page directory is represented as data structure stored in main memory. OS task is
to allocate physically continuous block of memory (for each process/memory
context) and assign its start address to special CPU/MMU register.

● PDBR - page directory base register – for x86 register CR3 – holds physical
address of page directory start, alternate names PTBR - page table base register
– the same thing, page table root pointer URP, SRP on m68k

PDBR

31… 12 11… 0

29… 12 11… 0

offsetVirtual page number

Physical page number offset

Virtual page frame
number (VPFN)

translated to physical
one (PFM)

68B35APO Computer Architectures

But Consider Memory Consumed by Page Table …

● Typical page size is 4 kB = 2^12
● 12 bits (offset) are enough to address data in page (frame).

There are 20 bits left for address translation on 32-bit
address/architecture.

● The fastest map/table look-up is indexing ⇒ use array
structure

● The page directory is an array of 2^20 entries (PTE). That
is big overhead for processes that do not use whole virtual
address range. There are another problems as well
(physical space allocation fragmentation when large
compact table is used for each process, etc.)

● Solution: multi-level page table – lower levels populated
only for used address ranges

69B35APO Computer Architectures

Multi-Levels Page Table

70B35APO Computer Architectures

`

Two Level Paging on Intel x86 in Plain 32-bit Mode

12 bits

4kB
= 212B

 Memory divided
to physical pages

pg.0

20 bits to determine page + other bits
(valid, rights, etc.) = 4B (8B)

pg.1

pg.2

pg.N-1
N=232/212=220

4GB
 220
physical
pages

10 bits

210 items
  210.4B = 4KB

10 bits

210 Page tables
  210.4KB =

4MB
(if all memory is

paged)

210 items

PDBR

×4

Given process
Page directory

×4

Remark: for 10,10,12-bits each 1024 entries (32-bits each) page table fits exactly in 4k page

71B35APO Computer Architectures

Two Level Pagetables – Another View
C

P
U

 –

lin
e

a
r

a
d

d
re

s
s

s
p

a
c

e
 o

f
th

e
 p

ro
c

e
s

s

page offset address offset

logic address

m
em

or
y

Hard
drive

no page

jagged
array

72B35APO Computer Architectures

Two Level Paging on Intel x86 in Plain 32-bit Mode as Jagged

31 22
 index of rowindex of column 12 bit offset

21 12 11 0

32-bit linear address

...

...
X

X

X

...

...
Matrix rows of 32-bit descriptors
of 4K pages of physical memory

Matrix row table address
(1024 items) 32 bit physical address

20
bits

12
bits

32
bits

10 bitů10
bits

page directory page table entry offset

p
ag

e
d

ir
ec

to
ry

page table entry 0

page table entry 1

page table entry 2

73B35APO Computer Architectures

What Is in Page Table Entries?

Page # Offset

V Access rights Frame#

+Index into
pagetable

Page table

PA – physical address

Page table placed in physical memory

VA – virtual
address

Page Table
Base Register

PTBR

Page valid bit – if = 0,
page not in the memory

results in page fault

74B35APO Computer Architectures

Remarks

V AR Frame#

● Each process has its own page table
● Process specific value of CPU PTBRT register is loaded by

OS when given process is scheduled to run
● This ensures memory separation and protection between

processes
● Page table entry format

● V – Validity Bit. V=0  page is not valid (is invalid)
● AR – Access Rights (Read Only, Read/Write, Executable,

etc.),
● Frame# - page frame number (location in physical memory)
● Other management information, Modified/Dirty, (more bits

discussed later, permission, system, user etc.).

75B35APO Computer Architectures

Page Table - Meaning of Bits in Page Table Directory

• P -bit 0: Present bit – determines whether the page is in memory (1) or on disk (0)
Sometimes this bit is called V - valid.

• R/W -bit 1: Read/Write: if 1 then R/W; otherwise only read
• U/S -bit 2: User/Supervisor: 1 – user access; 0 – only OS
• PWT -bit 3: Write-through/Write-back – writing strategy for the page
• PCD -bit 4: Cache disabled/enabled – some peripherals are mapped directly into

memory (memory mapped I/O), allowing write / read to / from the periphery. These
memory addresses are then I/O ports and they are not written into cache.

Let's look at the item Page Directory (Page Table similar)

31… 1 0
Only OS P=0

31… 12 6 5 4 3 2 1 0
Base Address of Page table … A PCD PWT U/S R/W P=1

Based on simplified x86 model in 32-bits mode, other architectures similar

76B35APO Computer Architectures

Page Table - Meaning of Bits in Page Table Entry (PTE)

• Meaning of bits 0 to 4 is the same as for the page table dircetory
• A -bit 5: Accessed –Whether we have read / written - helps decide which

pages to remove when we need to free up memory space
• D bit 6: Dirty bit – it is set if we wrote into page.
• 11..7 bit - special use, as memory type, or when to update cache, etc.
• 31-12 bit - Physical Page Address

Let's look at the item Page Table (Page Table on 2nd level)
31… 1 0

Only OS P=0

31… 12 7 6 5 4 3 2 1 0
Base address of given page … D A PCD PWT U/S R/W P=1

Based on simplified x86 model in 32-bits mode, other architectures similar

77B35APO Computer Architectures

Virtual Memory – Hardware and Software Interaction

Processor

Address
translation

Page fault
procession by OS

Main
memory

Secondary
store

a
Z

a'

Virtual address Physical address
OS process
data transfer

missing page, i.e. PTE.V = 0

78B35APO Computer Architectures

How to Resolve Page-fault

● Check first that fault address belongs to process mapped areas
● If free physical frame is available

● The missing data are found in the backing store (usually swap or file
on disk)

● Page content is read (usually through DMA, Direct Memory Access,
part of some future lesson) to the allocated free frame. If read
blocks, the OS scheduler switches to another process.

● End of the DMA transfer raises interrupt, OS updates page table of
original process.

● Scheduler switches to (resumes) original process.
● If no free frame is available, some frame has to be released

● The LRU algorithm finds (unpinned – not locked in physical memory
by OS) frame, which can be released.

● If the Dirty bit is set, frame content is written to the backing store
(disc). If store is a swap – store to the PTE or other place block nr.

● Then continue with gained free physical frame.

79B35APO Computer Architectures

Multi-level Page Table – Translation Overhead

● Translation would take long time, even if entries for all levels were
present in cache. (One access per level, they cannot be done in
parallel.)

● The solution is to cache found/computed physical addresses
● Such cache is labeled as Translation Look-Aside Buffer
● Even multi-level translation caching are in use today

80B35APO Computer Architectures

Fast MMU/Address Translation Using TLB

● Translation-Lookaside Buffer, or may it be, more descriptive name
– Translation-Cache

● Cache of frame numbers where key is page virtual addresses

81B35APO Computer Architectures

TLB – Idealized Address Translation for Data Read

CPU (ALU)

TLB
Main

memory

Cache

hit

hit

miss

missvirtual address
page

tag
of
physical
address

transfer
Page table
into TLB

• Note that there may occur miss in cache for actual data read and in
TLB during preceding address translation

• If a TLB miss occurs, we must execute a page walk, it uses cache
indexed by physical address to access tables in memory usually and
that cach result in yet another one or more misses in cache memory

virtual address
offset

82B35APO Computer Architectures

Multi-level Paging on x86 System in 32-bit Mode

Intel IA32 implements 2-level 4k paging for basic 32-bit mode
• Page Table on level 1 is Page Directory (10 bits of address)
• Page Table on level 2 is Page Table (next 10 bits of address)
• 4MB pages (PDE.PS=1) can be used for continuous mappings

Intel IA32 provides even Physical Address Extension
• Available on latest 32-bit chips with 4k paging
• physical address is 36-bits (64GB) but single process limit/virtual address

limit is still 4 GB, 3-levels page tables
• Page Directory Pointer Table on level 1 (2-bits are used)
• Page Table on level 1 is Page Directory (9 bits of address)
• Page Table on level 2 is Page Table (next 9 bits of address)
• 2MB pages (PDE.PS=1) can be used for continuous mappings

83B35APO Computer Architectures

Multi-level Paging on x86 System in 64-bit Mode

In the case of a 64-bit virtual address, it is customary to use fewer bits for a
physical address - for example, 48, or 40. Even virtual address is divided to
top part for system and low part for user and gap I left to lower number of
levels of pagetable
● Intel Core i7 uses 4-level paging and 48 bit address space

• Page Table level 1: Page global directory (9 bits)
• Page Table level 2: Page upper directory (9 bits)
• Page Table level 3: Page middle directory (9 bits)
• Page Table level 4: Page table (9 bits)

• Only the first 3-levels are used in case of 2 MB pages
• 5-level page table mode has been introduced as option in Ice Lake

microarchitecture to aid with virtualization and shadow pagetables

84B35APO Computer Architectures

Canonical Address on x86 System in 64-bit Mode

The full physical address range of 64-bits has no use today still.
Even full 64-bit virtual address is not required and causes to many levels
traversal. Less bits/levels are used and space is divided to top for kernel
and low for user

Bit 47 or 55 is copied
to all higher (MSB)
Bits

The upper space
is used for operating
system

Low for user
applications

Canonical "higher half"

Noncanonical
addresses

FFFF8000 00000000

00000000 00000000

Canonical
"higher half"

Canonical
"lower half"

Noncanonical
addresses

FF800000 00000000

Lower half

Higher half

48-bit address
4 levels

56-bit address
5 levels

64-bit address
6 levels (not used)

85B35APO Computer Architectures

Page Aligned Memory Allocation – Linux

Your program may consider page size and use memory more
efficiently - by aligning allocations to multiple page sizes and
then reducing internal and external page fragmentation ..
(allocation order, etc. See also memory pool)

#include <stdio.h>
#include <unistd.h>
int main(void) {

printf(„Page Size is: %ld B.\n",
 sysconf(_SC_PAGESIZE));
return 0;

}

Allocation of block aligned in memory:
void * memalign(size_t size, int boundary)
void * valloc(size_t size)

86B35APO Computer Architectures

Page Aligned Memory Allocation – Windows

#include <stdio.h>
#include <windows.h>

int main(void) {
 SYSTEM_INFO s;
 GetSystemInfo(&s);
 printf("Size of page is: %ld B.\n",
 ns.dwPageSize);
 printf("Address space for application:
 0x%lx – 0x%lx\n",
 s.lpMinimumApplicationAddress,
 s.lpMaximumApplicationAddress);
 return 0;
}

87B35APO Computer Architectures

Typical Sizes of Today I/D and TLB Caches Comparison

Typical paged memory
parameters

Typical TLB

Size in blocks 16 000-250 000 40-1024

Size 500-1 000 MB 0,25-16 KB

Block sizes in B 4 000-64 000 4-32

Miss penalty
(clock cycles)

10 000 000 –
100 000 000

10-1 000

Miss rates 0,00001-0,0001% 0,01-2

Backing store Pages on the disk Page table in the
main memory

Fast access location Main memory frames TLB

88B35APO Computer Architectures

Hierarchical Memory Caveats

89B35APO Computer Architectures

Some Problems to Be Aware of

● Memory coherence – definition on next slide
● Single processor (single core) systems

● Solution: D-bit and Write-back based data transactions
● Even in this case, consistency with DMA requited (SW or

HW)
● Multiprocessing (symmetric) SMP with common and

shared memory – more complicated. Solutions:
● Common memory bus: Snooping, MESI, MOESI protocol
● Broadcast
● Directories

● More about these advanced topics in A4M36PAP

90B35APO Computer Architectures

Coherency Definition

● Memory coherence is an issue that affects the design of computer
systems in which two or more processors, cores or bus master
controllers share a common area of memory.

● Intuitive definition: The memory subsystem is coherent if the value
returned by each read operation is always the same as the value
written by the most recent write operation to the same address.

● More formal: P – set of CPU's. xm∈X locations. ∀pi,pk∈P: pi≠pk.
Memory system is coherent if

1. pi read after pi write value a to xm returns a if there is no pi or pk

write between these read and write operations

2. if pi reads xm after pk write b to xm and there is no other pi or pk write
to xm then pi reads b if operations are separated by enough time (in
other case previous value of xm can be read) or architecture
specified operations are inserted after write and before read.

3. writes by multiple CPU's to the given location are serialized such
than no CPU reads older value when it already read recent one

91B35APO Computer Architectures

Comparison of Virtual Memory and Cache Memory

● Remarks.: TLB for address translation can be fully
associative, but for bigger sizes is 4-way.

● Do you understand the terms?
● What does victim represent?

● Important: adjectives cache and virtual mean different things.

Virtual memory Cache memory

Page Block/cache line

Page Fault Read/Write Miss

Page size: 512 B – 8 KB Block size: 8 – 128 B

Fully associative DM, N-way set associative

Victim selection: LRU LRU/Random

Write Back Write Thru/Write Back

92B35APO Computer Architectures

Inclusive Versus Exclusive Cache/Data Backing Store

● Mapping of contents of the main memory to the cache
memory is inclusive, i.e. main memory location cannot
be reused for other data when corresponding or updated
contents is held in the cache

● If there are more cache levels it can be waste of the
space to keep stale/old data in the previous cache level.
Snoop cycle is required anyway. The exclusive
mechanism is sometimes used in such situation.

● Inclusive mapping is the rule for secondary storage files
mapped into main memory.

● But for swapping of physical contents to swap device/file
exclusive or mixed approach is quite common.

	Fast and/or Large Memory – Cache and Memory Hierarchy
	Picture of the Day – Sareni Pasovi Durmitor
	Lecture Motivation
	Lecture Outline
	John von Neumann
	PC Computer Motherboard
	Computer architecture (desktop x86 PC)
	From UMA to NUMA development (even in PC segment)
	Intel Core 2 generation
	Intel i3/5/7 generation
	Memory Address Space
	Memory Subsystem – Terms and Definitions
	Memory Types and Maintenance
	Memory and CPU speed – Moore's law
	Typical SRAM and DRAM Memory Parameters
	Bubble sort – algorithm Example from Seminaries
	Memory Hierarchy – Principle of Locality
	Memory Hierarchy Introduced Based on Locality
	Memory Hierarchy – Speed, Capacity, Price
	Memory/Storage in Computer System
	Contemporary Price/Size Examples
	Mechanism to Lookup Demanded Information?
	Processor-memory Performance Gap Solution – Cache
	Performance Gap Between CPU and Main Memory
	Initial Idea – Fully Associative Cache
	Definitions for Cache Memory
	Important Cache Access Statistical Parameters
	Average Memory Access Time – AMAT
	Fully Associative Cache Implementation
	CPU Writes to Main Memory
	The Process to Resolve Cache Miss
	CPU Including Cache – Harvard Cache Architecture
	Example to Illustrate Base Cache Types
	Direct Mapped Cache
	Why to Use Intermediate Bits for Index
	Direct Mapped Cache – 8 bit CPU Example
	Direct Mapped Cache - 1
	Real Cache Organization
	Direct Mapped Cache Implementation
	2-way Set Associative Cache
	Two-way Set Associative Cache
	4-way Set Associative Cache
	Fully Associative Cache as Special N-way Case
	Comparison of Different Cache Sizes and Organizations
	What Can Be Gained from Spatial Locality?
	Six Basic Cache Optimizations
	Multi-level Cache Organization
	Multiple Cache Levels – Development Directions
	Intel Nehalem – Example of Harvard Three-level Cache
	Intel Nehalem – Memory Subsystem Structure
	Notes for Intel Nehalem Example
	Two-level Cache (Pentium 4) Example
	Advanced Cache Optimizations
	Multiword Block Considerations
	Optimizations to Increase Cache Bandwidth
	(DDR) SDRAM Operation
	Virtual Memory
	Physical Address to Memory?
	Virtual Memory Motivation …
	Virtual Memory 1
	Virtual Memory – Fine Gained Translation Problem
	Virtual Memory – Translation by Pages
	Virtual and Physical Addressing - in More Detail
	Virtual Memory – Paging
	Virtual/Physical Address and Data
	Address Translation
	Single-level Page Table (MMU)
	But Consider Memory Consumed by Page Table …
	Multi-Levels Page Table
	Two Level Paging on Intel x86 in Plain 32-bit Mode
	Two Level Pagetables – Another View
	Two Level Paging on Intel x86 in Plain 32-bit Mode as Jagged
	What Is in Page Table Entries?
	Remarks
	Page Table - Meaning of Bits in Page Table Directory
	Page Table - Meaning of Bits in Page Table Entry (PTE)
	Virtual Memory – Hardware and Software Interaction
	How to Resolve Page-fault
	Multi-level Page Table – Translation Overhead
	Fast MMU/Address Translation Using TLB
	TLB – Idealized Address Translation for Data Read
	Multi-level Paging on x86 System in 32-bit Mode
	Multi-level Paging on x86 System in 64-bit Mode
	Canonical Address on x86 System in 64-bit Mode
	Page Aligned Memory Allocation – Linux
	Page Aligned Memory Allocation – Windows
	Typical Sizes of Today I/D and TLB Caches Comparison
	Hierarchical Memory Caveats
	Some Problems to Be Aware of
	Coherency Definition
	Comparison of Virtual Memory and Cache Memory
	Inclusive Versus Exclusive Cache/Data Backing Store

