
1B35APO Computer Architectures

Computer Architectures

Real Numbers and Computer Memory

Pavel Píša, Richard Šusta

Michal Štepanovský, Miroslav Šnorek

Ver.1.10

Czech Technical University in Prague, Faculty of Electrical Engineering

English version partially supported by:
European Social Fund Prague & EU: We invests in your future.

2B35APO Computer Architectures

APO at Dona LakeAPO at Dona Lake
8484° 28' 45" E, 28° 29' 52" N, 4038m, 2019-11-28° 28' 45" E, 28° 29' 52" N, 4038m, 2019-11-28
APO at InstallFest (APO at InstallFest (https://installfest.cz/https://installfest.cz/))
2021-03-06 via BigBlueButton running at 2021-03-06 via BigBlueButton running at
50°4'36.682"N, 14°25'4.116"E50°4'36.682"N, 14°25'4.116"E
QtMIPS Hands on Session to Understand QtMIPS Hands on Session to Understand
Computer Architectures and Discuss Its Teaching Computer Architectures and Discuss Its Teaching
Embedded Linux, FPGA and Motion Control Embedded Linux, FPGA and Motion Control
Hands-OnHands-On

https://installfest.cz/

3B35APO Computer Architectures

Speed of Arithmetic Operations

Operation C language operator

Bitwise complement (negation) ~x

Multiply and divide by 2n x<<n , x>>n

Increment, decrement
++x, x++, --x,
x--

Negate ← complement + increment -x

Addition x+y

Subtraction <- negation + addition x-y

Multiply on hardware multiplier
x*y

Multiply on sequential multiplier/SW

Division x/y

4B35APO Computer Architectures

Multiply/Divide by 2

Logical Shift

C 0b7 ----------------- b0

Cb7 ----------------- b00

Arithmetic Shift

C 0b7 ----------------- b0

Cb7 ----------------- b0

Multiply by 2

Divide by 2 unsigned Divide by 2 signed

C represents Carry Flag, it is present only
on some processors: x86/ARM yes, MIPS no

loss of the
precision

5B35APO Computer Architectures

Barrel Shifter

Barrel shifter can be used for fast variable shifts

6B35APO Computer Architectures

Overflow of Unsigned Number Binary Representation

• The carry from MSB (the most significant bit) is observed in
this case

• The arithmetic result is incorrect because it is out of range.

For 5 bit representation:

28 1 1 1 0 0

+5 + 0 0 1 0 1

?1 1 0 0 0 0 1

12 0 1 1 0 0

+5 + 0 0 1 0 1

17 0 1 0 0 0 1

28 1 1 1 0 0

21 + 1 0 1 0 1

?17 1 1 0 0 0 1

28 1 1 1 0 0

19 + 1 0 0 1 1

?15 1 0 1 1 1 1

The incorrect result is smaller than each of addends

7B35APO Computer Architectures

Overflow of Signed Binary Representation

• Result is incorrect, numeric value is outside of the
range that can be represented with a given
number of digits

• It is manifested by result sign different from
the sign of addends when both addends signs
are the same, and

• the exclusive-or (xor) of carry to and from MSB
differs.

For 5 bit representation:

-4 1 1 1 0 0

+5 + 0 0 1 0 1

1 1 0 0 0 0 1

12 0 1 1 0 0

+5 + 0 0 1 0 1

?-15 0 1 0 0 0 1

-4 1 1 1 0 0

-11 + 1 0 1 0 1

-15 1 1 0 0 0 1

-4 1 1 1 0 0

-13 + 1 0 0 1 1

?15 1 0 1 1 1 1

8B35APO Computer Architectures

Sign Extension

 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 C4 92 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Example:

9B35APO Computer Architectures

Hardware Divider – Simple Sequential Algorithm

ALU does not check,
if the dividend is
smaller or not than
divisor. It finds that
during subtraction
and needs to correct
the result by addition.

7 / 3

7 – 4*3 = -5

(non-restoring)
-5+2*3 = 1
=7 - 2*3

1 – 3 = -2
(restoring)
-2+3 = 1
Restoring is required
only for last operation

Non-restoring division

negate
hot one

reminder

return

quotient

10B35APO Computer Architectures

Hardware divider logic (32b case)

dividend = quotient divisor + reminder

AC MQ

negate
hot one

return

reminder quotient

11B35APO Computer Architectures

Algorithm of the sequential division

MQ = dividend;
B = divisor; (Condition: divisor is not 0!)
AC = 0;

for(int i=1; i <= n; i++) {
 SL (shift AC MQ by one bit to the left, the LSB bit is kept on zero)

 if(AC >= B) {
AC = AC – B;
MQ0 = 1; // the LSB of the MQ register is set to 1

 }
}

 Value of MQ register represents quotient and AC remainder

12B35APO Computer Architectures

Example of X/Y division

i operation AC MQ B comment
0000 1010 0011 initial setup

1 SL 0001 0100

nothing 0001 0100 the if condition not true

2 SL 0010 1000

0010 1000 the if condition not true

3 SL 0101 0000 r y

AC = AC – B; MQ0 = 1;
0010 0001

4 SL 0100 0010 r y

AC = AC – B; MQ0 = 1;
0001 0011 end of the cycle

Dividend x=1010 and divisor y=0011

x : y = 1010 : 0011 = 0011 reminder 0001, (10 : 3 = 3 reminder 1)

2/24/2113

*Real Numbers
and their representation in computer

14B35APO Computer Architectures

Higher Dynamic Range for Numbers (REAL/float)

● Scientific notation, semi-logarithmic, floating point
● The value is represented by:

– EXPONENT (E) – represents scale for given value
– MANTISSA (M) – represents value in that scale
– the sign(s) are usually separated as well
– Mantissa x baseExponent

● Normalized notation
● The exponent and mantissa are adjusted such way, that

mantissa is held in some standard range. Usually 〈1, base)
● When considered base z=2 is considered then mantissa range

is 〈1, 2) or alternatively 〈0.5, 1).
● Decimal representation: 7.26478 x 10

3

● Binary representation: 1,010011 x 2
1001

15B35APO Computer Architectures

Fractional Binary Numbers/Fixed Point

Real number representation in fixed point (fractional numbers)

Bits following “binary point” specify fractions in power two series

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j• • •• • • .
1
2
4

2i–1

2i

• • •
• • •

1/2
1/4
1/8

2–j

bk 2
k

k j

i

They can be used directly or as base for mantissa of float

16B35APO Computer Architectures

Fixed Point Examples

Value Representation

5+3/4 101.112

2+7/8 10.1112

63/64 0.1111112

Operations

Divide by 2 → shift right

Multiply by 2 → shift left.

Numbers 0.111111…2 are smaller than 1.0

1/2 + 1/4 + 1/8 + … + 1/2i + … 1.0
Exact notation → 1.0 – ε

17B35APO Computer Architectures

Binary and Decimal Real Numbers Examples

23.47 = 2×101 + 3×100 + 4×10-1 + 7×10-2

 decimal point

10.01two = 1×21 + 0×20 + 0×2-1 + 1×2-2

 binary point

= 1×2 + 0×1 + 0×½ + 1×¼

= 2 + 0.25 = 2.25

18B35APO Computer Architectures

Scientific Notation and Binary Numbers

Decimal number:

-123 000 000 000 000 → -1.23 × 1014

0.000 000 000 000 000 123 → +1.23× 10-16

Binary number:

110 1100 0000 0000 → 1.1011× 214 = 2969610

-0.0000 0000 0000 0001 1101 → -1.1101 × 2-16

=-2.765655517578125 x 10-5

19B35APO Computer Architectures

Standardized Format for REAL Type Numbers

● Standard IEEE-754 defines next REAL representation
and precision
● single-precision – in the C language declared as float

– uses 32 bits (1 + 8 + 23) to represent a number
● double-precision – C language double

– Uses 64 bits (1 + 11 + 52) to represent a number
● actual standard (IEEE 754-2008) adds half-precision float

(16 bits) mainly for graphics and neural networks,
quadruple-precision (128 bits) and octuple-precision
(256 bits) for special scientific computations

20B35APO Computer Architectures

The Representation/Encoding of Floating Point Number

● Mantissa encoded as the sign and absolute value
(magnitude) – equivalent to the direct representation

● Exponent encoded in biased representation (K=+127 for
single precision, +1023 for double)

● The implicit leading one can be omitted due to
normalization of m ∈ 1, 2) 〈 – 23+1 implicit bit for single

Radix point position for E and M

Sign of M

X = -1s 2A(E)-127 m where m ∈ 1, 2)〈
m = 1 + 2-23 M

21B35APO Computer Architectures

ANSI/IEEE Std 754-1985 – 32b and 64b Formats

ANSI/IEEE Std 754-1985 — double precision format — 64b

g . . . 11b f . . . 52b

ANSI/IEEE Std 754-1985 — single precision format — 32b

fraction point

ANSI/IEEE Std 754-1985 — half precision format — 16b

g . . . 5b f . . . 10b

22B35APO Computer Architectures

Examples of (De)Normalized Numbers in Base 10 and 2

binary

The radix point position for E and M

Sign of M

23B35APO Computer Architectures

IEEE 754 – Conversion Examples

Find IEEE-754 float representation of -12.62510

• Step #1: convert -12.62510 = -1100.1012 = 101 / 8
• Step #2: normalize -1100.1012 = -1.1001012 * 23

• Step #3:
Fill sign field, negative for this case -> S=1.
Exponent + 127 -> 130 -> 1000 0010 .
The first mantissa bit 1 is a hidden one ->

1 1000 0010 . 1001 0100 0000 0000 0000 000

Alternative approach, separate sign, find floor of binary
logarithm for absolute value, compute equivalent power of
two, divide number (result is normalized) and, subtract one,
multiply by two, if > 1 subtract and append 1 to result else
append 0, multiply by two and repeat.

24B35APO Computer Architectures

Example 0.75

0.75 10 = 0.11 2 = 1.1 x 2 -1 = 3/4

1.1 = 1. F → F = 1

E – 127 = -1 → E = 127 -1 = 126 = 011111102

S = 0

00111111010000000000000000000000 =
0x3F400000

25B35APO Computer Architectures

Example 0.110 – Conversion to Float

0.110 = 0.000110011....2

 = 1.100112 x 2
-4 = 1.F x 2 E-127

F = 10011 -4 = E – 127

E = 127 -4 = 123 = 011110112

0011 1101 1100 1100 1100 1100 1100 1100 1100 11..

0x3DCCCCCD, why the last is a D ?

26B35APO Computer Architectures

Example 0.110 – Conversion to Float

0.110 = 0.000110011....2 =

27B35APO Computer Architectures

Often Inexact Floating Point Number Representation

Decadic number with finite expansion → infinite binary expansion

Examples:

0.1ten → 0.2 → 0.4 → 0.8 → 1.6 → 3.2 → 6.4 → 12.8 →…

0.110 = 0.00011001100110011…2

 = 0.000112 (infinite bit stream)

More bits only enhance precission of 0.110

representation

28B35APO Computer Architectures

Real Number Representation - Limitations

Limitation
Only numbers corresponding to x/2k allows
exact representation, all other are stored
inexact

Value representation
1/3 0.0101010101[01]…2

1/5 0.001100110011[0011]…2

1/10 0.0001100110011[0011]…2

29B35APO Computer Architectures

Special Values – Not a Number (NaN) and Infinity

● If the result of the mathematical operation is not defined,
such as the calculation of log (-1), or the result is
ambiguous 0/0, +Inf + -Inf, then the value NaN (Not-a-
Number) is saved

= exponent is set to all ones and the mantissa is nonzero.

● If the operation results only overflow the range or infinity
is on input (X + +Inf) and result sign is unambiguous

NaN

positive 0 11111111 mantisa !=0 NaN

Infinity

positive 0 11111111 00000000000000000000000 +Inf

negative 1 11111111 00000000000000000000000 -Inf

30B35APO Computer Architectures

Implied (Hidden) Leading 1 bit

● Most significant bit of the mantissa is one for each
normalized number and it is not stored in the
representation for the normalized numbers

● If exponent representation is zero then encoded value is
zero or denormalized number which requires to store
most significant bit and there is zero considered on usual
hidden one location

● Denormalized numbers allow to keep resolution in the
range from the smallest normalized number to zero but
the computation when some of operands is denormalized
is more complex. Some coprocessors do not support
denormalized numbers and emulation is required to fulfill
IEEE-754 strict requirements, Intel coprocessors supports
denormalized numbers

31B35APO Computer Architectures

Underflow/Lost of the Precision for IEEE-754 Representation

● The case where stored number value is not zero but it is
smaller than smallest number which can be represented
in the normalized form

● The direct underflow to the zero can be prevented by
extension of the representation range by denormalized
numbers

smallest positive representable number
denormalized

0

underflow

normalized

denormalized
positive

denormalized
negative normalized numbers

normalized
numbers

32B35APO Computer Architectures

Representation of the Fundamental Values

Zero

Infinity

Representation corner values

Positive zero 0 00000000 00000000000000000000000 +0.0

Negative zero 1 00000000 00000000000000000000000 -0.0

Positive infinity 0 11111111 00000000000000000000000 +Inf

Negative infinity 1 11111111 00000000000000000000000 -Inf

Smallest
normalized

* 00000001 00000000000000000000000 ±2(1-127)

±1.1755 10-38

Biggest
denormalized

* 00000000 11111111111111111111111 ±(1-2-23)2(1-126)

Smallest
denormalized

* 00000000 00000000000000000000001 ±2-232-126

±1.4013 10-45

Max. value 0 11111110 11111111111111111111111 (2-2-23)2(127)

+3.4028 10+38

33B35APO Computer Architectures

The Table in Another Format

34B35APO Computer Architectures

Some Features of ANSI/IEEE Standard Floating-point Formats

Feature Single/Float Double/Long
Word width in bits 32 64
Significand in bits 23 + 1 hidden 52 + 1 hidden
Significand range [1, 2 – 2–23] [1, 2 – 2–52]
Exponent bits 8 11
Exponent bias 127 1023
Zero (±0) e + bias = 0, f = 0 e + bias = 0, f = 0
Denormal e + bias = 0, f ≠ 0

represents ±0.f 2–126
e + bias = 0, f ≠ 0
represents ±0.f 2–1022

Infinity (∞) e + bias = 255, f = 0 e + bias = 2047, f = 0
Not-a-number (NaN) e + bias = 255, f ≠ 0 e + bias = 2047, f ≠ 0
Ordinary number e + bias [1, 254]

e [–126, 127]
represents 1.f 2e

e + bias [1, 2046]
e [–1022, 1023]
represents 1.f 2e

min 2–126 1.2 10–38 2–1022 2.2 10–308

max 2128 3.4 1038 21024 1.8 10308

35B35APO Computer Architectures

IEEE-754 Formats

Half precision (binary16)

Single precision (binary32)

Double precision (binary64)

Quadruple precision (binary128)

Source: Herbert G. Mayer, PSU

36B35APO Computer Architectures

X86 Extended Precision Format (80-bits)

Bit 1. is not hidden in mantissa!

Advanced readers note:
 Intel processors integrate arithmetic coprocessor on the single chip with

processor (from Intel 80486), which computes float and double
expressions in „extended precision“ internally and the results are rounded
to float/double when stored.

 But Streaming SIMD Extensions (SSE) instructions (vector operations)
from Intel Pentium III on provides only double precision and the result
rounding/precission can be dependent on compiler selection

Source: Herbert G. Mayer, PSU

37B35APO Computer Architectures

IEEE-754 Special Values Summary

sign bit Exponent
representation

Mantissa Represented value/meaning

0 0<e<255 any value normalized positive number

1 0<e<255 any value normalized negative number

0 0 >0 denormalized positive number

1 0 >0 denormalized negative number

0 0 0 positive zero

1 0 0 negative zero

0 255 0 positive infinity

1 255 0 negative infinity

0 255 ≠0 NaN – does not represent a number

1 255 ≠0 NaN – does not represent a number

38B35APO Computer Architectures

Comparison

● Comparison of the two IEEE-754 encoded numbers
requires to solve signs separately but then it can be
processed by unsigned ALU unit on the representations

 A ≥ B A − B ≥ 0 D(A) − D(B) ≥ 0⇐⇒ ⇐⇒
● This is advantage of the selected encoding and reason

why sign is not placed at start of the mantissa

39B35APO Computer Architectures

Addition of Floating Point Numbers

● The number with bigger exponent value is selected
● Mantissa of the number with smaller exponent is shifted

right – the mantissas are then expressed at same scale
● The signs are analyzed and mantissas are added (same

sign) or subtracted (smaller number from bigger)
● The resulting mantissa is shifted right (max by one) if

addition overflows or shifted left after subtraction until all
leading zeros are eliminated

● The resulting exponent is adjusted according to the shift
● Result is normalized after these steps
● The special cases and processing is required if inputs are

not regular normalized numbers or result does not fit into
normalized representation

40B35APO Computer Architectures

Hardware of the Floating Point Adder

41B35APO Computer Architectures

Multiplication of Floating Point Numbers

● Exponents are added and signs xor-ed
● Mantissas are multiplied
● Result can require normalization

max 2 bits right for normalized numbers
● The result is rounded

● Hardware for multiplier is of the same or even lower
complexity as the adder hardware – only adder part is
replaced by unsigned multiplier

42B35APO Computer Architectures

Floating Point Arithmetic Operations Overview

Addition: A⋅za , B⋅zb , b < a unify exponents
 B⋅zb = (B⋅zb-a)⋅zb-(b-a) by shift of mantissa

 A⋅za + B⋅zb = [A+(B⋅zb-a)]⋅za sum + normalization

Subtraction: unification of exponents, subtraction and
normalization

Multiplication: A⋅za ⋅ B⋅zb = A⋅B⋅za+b

 A⋅B - normalize if required
 A⋅B⋅za+b = A⋅B⋅z⋅za+b-1 - by left shift

Division: A⋅za/B⋅zb = A/B⋅za-b

 A/B - normalize if required
 A/B⋅za-b = A/B⋅z⋅za-b+1 - by right shift

2/24/2143

*Memory and Data
and their store in computer memory

44B35APO Computer Architectures

John von Neumann Computer Block Diagram

28. 12. 1903 -
8. 2. 1957

von Neumann's computer architecture
Princeton Institute for Advanced Studies Processor

Input Output

Memory

ctrl
ALU

●5 functional units – control unit, arithmetic logic unit, memory, input (devices),
output (devices)

●An computer architecture should be independent of solved problems. It has to
provide mechanism to load program into memory. The program controls what the
computer does with data, which problem it solves.

●Programs and results/data are stored in the same memory. That memory consists
of a cells of same size and these cells are sequentially numbered (address).

●The instruction which should be executed next, is stored in the cell exactly after
the cell where preceding instruction is stored (exceptions branching etc.).

●The instruction set consists of arithmetics, logic, data movement, jump/branch
and special/control instructions.

45B35APO Computer Architectures

Memory Address Space

data path,
usual width
32b/4BAddress

width a bits

The most common size of addressable
memory unit is 1B (8 bits)

 a 2↑a

 8 256 distinct locations

16 64K (K=1024)

… ……

32 4G (4096M, M=K↑2)
000000H

FFF…FFH
memory location
holds value – contents

It is an array of addressable units (locations) where each unit can hold a data value.
Number/range of addresses same as addressable units/words are limited in size.

Memory

ALU
Unit

Control
Unit

Input Output

Processor

46B35APO Computer Architectures

Program Layout in Memory at Process Startup

Stack

Uninitialized data
.bss

Program code
.text

0x7fffffff

0x00000000

Initialized data
.data

Dynamic memory
alloc. – heap

● The executable file is mapped
(“loaded”) to process address space
– sections .data and .text (note:
LMA != VMA for some special
cases)

● Uninitialized data area (.bss – block
starting by symbol) is reserved and
zeroed for C programs

● Stack pointer is set and control is
passed to the function _start

● Dynamic memory is usually
allocated above _end symbol
pointing after .bss

47B35APO Computer Architectures

Key Technological Gaps Prediction

Note: The increase in complexity of algorithms over time has been formalized in literature as
the so-called Shannon's Law of Algorithmic Complexity.

48B35APO Computer Architectures

1980 1985 1990 1995 2000 2005 2010

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

Year

P
e

rf
o

rm
a

n
c

e
Memory and CPU Speed – Moore's Law

Processor-Memory
Performance Gap
Growing

Source: Hennesy, Patterson
CaaQA 4th ed. 2006

CPU performance 25%
per year

52%
per year

20%
per year

Throughput of memory
only +7% per year

Memory

CPU

49B35APO Computer Architectures

PC Computer Motherboard

http://www.pcplanetsystems.com/abc/product_details.php?
item_id=3263&category_id=208

50B35APO Computer Architectures

Computer Architecture (Desktop x86 PC)

generic
example

51B35APO Computer Architectures

From UMA to NUMA Development (Even in PC Segment)

CPU 1 CPU 2

Northbridge
MC

Southbridge

RAM

SATA

USB
PCI-E

MC - Memory controller – contains circuitry responsible for SDRAM read and
writes. It also takes care of refreshing each memory cell every 64 ms.

CPU 1 CPU 2

MC

Southbridge

RAM

SATA

USB
PCI-E

RAM

MC Northbridge

Southbridge
SATA

USB
PCI-E

CPU 1 CPU 2

MC MC

RAM RAM

Non-Uniform
Memory
Architecture

52B35APO Computer Architectures

Intel Core 2 Generation

Northbridge became Graphics and Memory Controller Hub (GMCH)

53B35APO Computer Architectures

Intel i3/5/7 Generation

54B35APO Computer Architectures

 Memory Subsystem – Terms and Definitions

● Memory address – fixed-length sequences of bits or index
● Data value – the visible content of a memory location

Memory location can hold even more control/bookkeeping
information
● validity flag, parity and ECC bits etc.

● Basic memory parameters:
● Access time – delay or latency between a request and the access

being completed or the requested data returned
● Memory latency – time between request and data being available

(does not include time required for refresh and deactivation)
● Throughput/bandwidth – main performance indicator. Rate of

transferred data units per time.
● Maximal, average and other latency parameters

55B35APO Computer Architectures

Memory Types and Maintenance

● Types: RWM (RAM), ROM, FLASH
● Implementation: SRAM, DRAM

● Data retention time and conditions (volatile/nonvolatile)
● Dynamic memories (DRAM, SDRAM) require specific

care
● Memory refresh – state of each memory cell has to be

internally read, amplified and fed back to the cell once
every refresh period (usually about 60 ms), even in idle
state. Each refresh cycle processes one row of cells.

● Precharge – necessary phase of access cycle to restore
cell state after its partial discharge by read

● Both contribute to maximal and average access time.

56B35APO Computer Architectures

Typical Memory Parameters

• Memory types: RWM (RAM), ROM, FLASH,
• RAM realization:

 SRAM (static), DRAM (dynamic).

• RAM = Random Access Memory

type transistor
s per cell

1 bit area data availability latency

SRAM cca 6 < 0,1 m2 always < 1ns – 5ns

DRAM 1 < 0,001 m2 requires refresh today 20 ns – 35 ns

57B35APO Computer Architectures

Detail of static and Dynamic Memory Bit Cell

Single transistor cell of dynamic
memory

6 transistor static memory cell (single bit)

58B35APO Computer Architectures

Flip-flop Circuits

RS

D latch, level-controlled flip-flop D flip-flop, edge-controlled flip-flop

http://upload.wikimedia.org/wikipedia/commons/8/8c/D-Type_Flip-flop.svg

59B35APO Computer Architectures

Usual SRAM Chip and SRAM Cell

Usual SRAM chip

Bigger memory size?

SRAM memory cell
CMOS technology

60B35APO Computer Architectures

Usual Static Memory Chip Cell

Area of one memory cell(bit):

SRAM memory cell
6-transistors CMOS, 4 trans. Version exists

Principle:

http://educypedia.karadimov.info/library/SEC08.PDF

61B35APO Computer Architectures

Usual SRAM Chip

Typical synchronous
SRAM chip

Read example for synchronous case:

OE signal can be
asynchronous

https://www.ece.cmu.edu/~ece548/localcpy/sramop.pdf

62B35APO Computer Architectures

Memory Cell Connection to Matrix

stored
bit = 1

bitline =1

row-address

1

stored
bit = 0

row-address 1

bitline =0

stored
bit = 0

row-address

= 0

bitline =Z

stored
bit = 1

row-address

= 0

bitline =Z

stored
bit

row-address

bitline

63B35APO Computer Architectures

Selector Switch – One from N Decoder

y y

 1

 0

 3

 2

1 0

x 0

x 3

x 2

x 1

 y1 y0
x

0

x
3

x
2

x
1'1'

One Hot Decoder cz: Dekodér 1 ze 4

64B35APO Computer Architectures

Switch Analogy of Multiplexer

x
0

x3

x
2

x
1 1

 0

 3

 2

y1 y0

 y1 y0x
0

x3

x
2

x
1

zz

Select

x0

x1

 1

 0

z
Select

x0

x1

z

y0
x0

x1

x2

x3

y1

z

Multiplexer 4 to 1 or 1 of 4 cz : 4 kanálový (4-vstupový) multiplexor

Multiplexer 2 to 1 or 1 of 2 cz :2 kanálový (2-vstupový) multiplexor

65B35APO Computer Architectures

Memory Matrix

data out

Register is necessary for synchronous memory implementation (SDRAM)

row 0

Decoder
one-hot

Address

stored
bit = 0

row 1

row 2

row 3

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data 3

2

stored
bit = 0

stored
bit = 0

stored
bit = 0

stored
bit = 1

1 bitline0

Data 2 Data 1 Data 1

3

2

1

0

3 2 1 02

4

Multiplexer
1 of 4

4

Clock

regis ter

address

66B35APO Computer Architectures

Memory Matrix – Operation

Address is setup at input and it is confirmed by rising edge.

address
6 = 0110

row 0

Decoder
one-hot

Address

stored
bit = 0

row 1

row 2

row 3

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data 3

2

stored
bit = 0

stored
bit = 0

stored
bit = 0

stored
bit = 1

1 bitline0

Data 2 Data 1 Data 1

3

2

1

0

3 2 1 02

4

Multiplexer
1 of 4

4

Clock

regis ter

67B35APO Computer Architectures

Memory Matrix – Operation

clock

regis ter

address
6 = 0110

Adress is stored at rising edge into register
and MSB bits select row and LSB bits column

row 0

Decoder
one-hot

0110

stored
bit = 0

row 1

row 2

row 3

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data 3

01

stored
bit = 0

stored
bit = 0

stored
bit = 0

stored
bit = 1

1 bitline0

Data 2 Data 1 Data 1

3

2

1

0

3 2 1 0

Multiplexer
1 of 4

10

68B35APO Computer Architectures

Memory Matrix – Operation

clock

regis ter

address
6 = 0110

Decoder activates 1 of N rows and the selected cells are connected to all
columns bitlines

row 0

Decoder
one-hot

0110

stored
bit = 0

row 1

row 2

row 3

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data 3

01

stored
bit = 0

stored
bit = 0

stored
bit = 0

stored
bit = 1

1 bitline0

Data 2 Data 1 Data 1

3

2

1

0

3 2 1 0

Multiplexer
1 of 4

10

69B35APO Computer Architectures

Memory Matrix – Operation

clock

regis ter

address
6 = 0110

Multiplexer selects column - Data 2 = 0
When register is connected before multiplexer then whole row can be read at once

and consecutive data words can be streamed out by multiplexer only switching columns

row 0

Decoder
one-hot

0110

stored
bit = 0

row 1

row 2

row 3

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data 3

01

stored
bit = 0

stored
bit = 0

stored
bit = 0

stored
bit = 1

1 bitline0

Data 2 Data 1 Data 1

3

2

1

0

Multiplexer
1 of 4

10

0

3 2 1 0

70B35APO Computer Architectures

Internal Architecture of the DRAM Memory Chip

This 4M × 1 DRAM is internally realized as an 2048x2048 array of 1b
memory cells

71B35APO Computer Architectures

Detail of Dynamic Memory Cell

Single transistor
dynamic memory cell

 nMOS transistor nMOS works as analog switch which
connects selected cell to „bitline“.

 „wordline“ controls which capacitor is connected to
“bitline”

Source: http://www.eetimes.com/document.asp?doc_id=1281315

72B35APO Computer Architectures

Dynamic Memory Capacitor Parameters

Today DRAM parameters
 Capacity fF [femtofarad]
Capacitor capacity from 10 fF to 50 fF
Bit line capacity about 2 fF

[Source: l'INSA de Toulouse]

fF - femtofarad

 fF is SI unit equal to 10−15 Farads.

 10-6 F = 1 μF = 103 nF = 106 pF = 109 fF

~9 fF is capacity between two plates of 1 mm2 area
with distance between plates around 1 mm,

73B35APO Computer Architectures

Detail of Dynamic Memory Cell

 Read operation is complex and slow, takes from 20 to 35 ns, and speedup
is almost impossible

 Read is destructive, capacitor is discharged and original value has to be
restored (refreshed) after each read.

 Femto-farad capacitor spontaneously discharges in short time
- it is necessary to refresh it, in optimum case 60 ms for each cell, but
maintenance frequency is multiplied by row count. Required refresh rate
depends on temperature

Source: http://www.eetimes.com/document.asp?doc_id=1281315

Single transistor
dynamic memory cell

74B35APO Computer Architectures

DRAM Memories – Price Seems to Be Settled for Now

Price for 1 megabit

75B35APO Computer Architectures

History of DRAM chips development

Year Capacity Price[$]/GB Access time [ns]

1980 64 Kb 1 500 000 250

1983 256 Kb 500 000 185

1985 1 Mb 200 000 135

1989 4 Mb 50 000 110

1992 16 Mb 15 000 90

1996 64 Mb 10 000 60

1998 128 Mb 4 000 60

2000 256 Mb 1 000 55

2004 512 Mb 250 50

2007 1 Gb 50 40

76B35APO Computer Architectures

Old School DRAM – Asynchronous Access

RAS – Row Address Strobe,
CAS – Column Address Strobe

● The address is transferred in two phases – reduces
number of chip module pins and is natural for internal
DRAM organization

● This method is preserved even for today chips

77B35APO Computer Architectures

Phases of DRAM Memory Read

78B35APO Computer Architectures

EDO-RAM – About 1995

● Output register holds data during overlap of next read
CAS phase with previous access data transfer

this overlap (“pipelining”) increases throughput

79B35APO Computer Architectures

SDRAM – end of 90-ties – synchronous DRAM

● SDRAM chip is equipped by counter that can be used to
define continuous block length (burst) which is read together

80B35APO Computer Architectures

SDRAM – the Most Widely Used Main Memory Technology

● SDRAM – clock frequency up to 100 MHz, 2.5V.
● DDR SDRAM – data transfer at both CLK edges, 2.5V, I/O bus

clock 100-200 MHz, 0.2-0.4 GT/s (gigatransfers per second)
● DDR2 SDRAM – lower power consumption 1.8V, frequency up

to 400 MHz, 0.8 GT/s
● DDR3 SDRAM – even lower power consumption at 1.5V,

frequency up to 800 MHz, 1.6 GT/s
● DDR4 SDRAM – 1.05 – 1.2V, I/O bus clock 1.2 GHz, 2.4 GT/s
● DDR5 SDRAM – expected 2019-2020, ~6 GT/s
● All these innovations are focused mainly on throughput, not on

the random access latency which for large capacities is still 20
to 35 ns.

81B35APO Computer Architectures

Other Main Memory Types

● QDRx SDRAM (Quad Data Rate) – not twice as fast,
allows only simultaneous read and write thanks to
separated clocks for RD and WR, DDR are more effective
than QDR for single access type only přístupu.

● GDDR SDRAM – today up to GDDR6, designed for
graphics cards/GPUs

- based on DDR memories.

- data rate accelerated by wider output bus
● High Bandwidth Memory (HBM) is a high-performance

RAM interface for 3D-stacked SDRAM from Samsung,
AMD and SK Hynix.

● Another concept RDRAM (RAMBUS DRAM), which use
completely different interface. Due to patent litigationare
not in use in personal computers from 2003 year.

82B35APO Computer Architectures

Notes for Today SDRAMs and Slides

● Use of the banked architecture that enables throughput to
be increased by hiding latency of the opening and closing
rows. These operations can proceed in parallel on
different banks (sequential and interleaved banks
mapping). The change result in a minimal pin count
increase that is critical for price and density.

● Ulrich Drepper, Red Hat, Inc., What Every Programmer
Should Know About Memory

2/24/2183

*Multi-byte Numbers
and their store in computer memory

84B35APO Computer Architectures

How to Store Multi-byte Number in Memory

Little-Endien comes from a book by Gulliver's
Travels, Jonathan Swift 1726, in which he
referred to one of the two opposing factions of
the Lilliput. Ones ate eggs from the narrow end
to the broader while
Big Endien proceeded the other way around. And
the war did not wait long ...

Little-Endien comes from a book by Gulliver's
Travels, Jonathan Swift 1726, in which he
referred to one of the two opposing factions of
the Lilliput. Ones ate eggs from the narrow end
to the broader while
Big Endien proceeded the other way around. And
the war did not wait long ...

Do you remember how war ended?Do you remember how war ended?

Hexadecimal number: 0x1234567

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian - downto

Little Endian - to

01 23 45 67

67 45 23 01

85B35APO Computer Architectures

Memory Alignment (cz:zarovnání paměti?)

.align n directive

 - next space allocated for data or text starts at 2n divisible address

 Example .align 2

- two least significant bits (LSB) are equal to 00

Memory is addressed as
byte array us usually (in C more
precisely as array of chars)

The word of 32-bit processor is
formed of 4-bytes in such case 0

4

8

12

a
d

d
re

s
s

not aligned

. . .

aligned word

not aligned

Memory

86B35APO Computer Architectures

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x2000 3 5 41 50 4F 12 34 56 78

0x2010 10 00

.data

.align 2 // or .align 4 on x86, use .p2align and .baling
 var1: .byte 3, 5,'A','P','O'
.align 2 // or .align 4 on x86, use .p2align and .baling
 var2: .word 0x12345678 // or .long on x86
.align 3 // or .align 8 on x86, use .p2align and .baling
 var3: .2byte 1000 // or .word on x86

Align in Data Segment Filled by Assembler

var1 var2

var3

BIG ENDIAN

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x2000 3 5 41 50 4F 78 56 34 12

0x2010 00 10

var1 var2

var3

LITTLE ENDIAN

87B35APO Computer Architectures 87

C Language: Pointer

& (address operator)

Returns the lowest address in memory address space where
space/cells allocated to store variable starts.

Example

 int y = 5;
int *yPtr;
yPtr = &y; // yPtr is signed to y address

yPtr “points to” y

yPtr

y
5

yptr

500000 600000

y

600000 5

y
addressbecom
es value of
yptr

88B35APO Computer Architectures 88

C Language: Pointer Operations

& (address operator)
returns address of operand

* dereference address
returns value stored on address interpreted according to pointer type

* and & are inverse
(but are not applicable in each case)

*&myVar == myVar
 and
&*yPtr == yPtr

89B35APO Computer Architectures

C Language: Size of Element Pointed by C Pointer

int * ptri;

char * ptrc;

double * ptrd;

-

+

ptri

ptri+1

ptrc

ptrc+1

ptrd

ptrd+1

*ptrx ≡ ptrx[0]
*(ptrx+1) ≡ ptrx[1]
*(ptrx+n) ≡ ptrx[n]
*(ptrx-n) ≡ ptrx[-n]

nr1 = sizeof (double);
nr2 = sizeof (double*);

nr1 != nr2

90B35APO Computer Architectures

int x, y;

int * lpio = &y;
*lpio = 1;x=*lpio; lpio++;

const int * lpCio = &y;
*lpCio = 1; x=*lpCio; lpCio++;

int * const lpioC = &y;
*lpioC = 1; x=*lpioC; lpioC++;

const int * const lpCioC = &y;
*lpCioC = 1; x=*lpCioC; lpCioC++;

C Language: Pointer with const Qualifier

91B35APO Computer Architectures

C Language and Pointers

int i;
int *p;
p=&i;

i=i+1;
*p=*p+1;
i++;
(*p)++;
p[0]++;

int pole[30];
p=pole;
p=&pole[0];

for(i=0;i<30;i++)
 pole[i]++;

p=pole;
for(i=0;i<30;i++){
 (*(p++))++;
}

p++;
p=(int*) ((char*)p + sizeof(int));

92B35APO Computer Architectures

The Lecture and Real Programming Question

 A:
int matrix[M][N];

int i, j, sum = 0;

…

for(i=0; i<M; i++)

 for(j=0; j<N; j++)

 sum += matrix[i][j];

Quick Quiz 1.: Is the result of both code fragments a same?

Quick Quiz 2.: Which of the code fragments is processed faster and why?

 B:
int matrix[M][N];

int i, j, sum = 0;

…

for(j=0; j<N; j++)

 for(i=0; i<M; i++)

 sum += matrix[i][j];

Is there a rule how to iterate over matrix element efficiently?

	Slide 1
	APO at InstallFest
	Speed of Arithmetic Operations
	Multiply/Divide by 2
	Barrel Shifter
	Overflow of Unsigned Number Binary Representation
	Overflow of Signed Binary Representation
	Sign Extension
	Hardware Divider – Simple Sequential Algorithm
	Hardware divider logic (32b case)
	Algorithm of the sequential division
	Example of X/Y division
	Real Numbers
	Higher Dynamic Range for Numbers (REAL/float)
	Fractional Binary Numbers/Fixed Point
	Fixed Point Examples
	Binary and Decimal Real Numbers Examples
	Scientific Notation and Binary Numbers
	Standardized Format for REAL Type Numbers
	The Representation/Encoding of Floating Point Number
	ANSI/IEEE Std 754-1985 – 32b and 64b Formats
	Examples of (De)Normalized Numbers in Base 10 and 2
	IEEE 754 – Conversion Examples
	Example 0.75
	Example 0.1 – Conversion to Float
	Example 0.1 – Conversion to Float - 1
	Often Inexact Floating Point Number Representation
	Real Number Representation - Limitations
	Special Values – Not a Number (NaN) and Infinity
	Implied (Hidden) Leading 1 bit
	Underflow/Lost of the Precision for IEEE-754 Representation
	Representation of the Fundamental Values
	The Table in Another Format
	Some Features of ANSI/IEEE Standard Floating-point Formats
	IEEE-754 Formats
	X86 Extended Precision Format (80-bits)
	IEEE-754 Special Values Summary
	Comparison
	Addition of Floating Point Numbers
	Hardware of the Floating Point Adder
	Multiplication of Floating Point Numbers
	Floating Point Arithmetic Operations Overview
	Memory and Data
	John von Neumann Computer Block Diagram
	Memory Address Space
	Program Layout in Memory at Process Startup
	Key Technological Gaps Prediction
	Memory and CPU Speed – Moore's Law
	PC Computer Motherboard
	Computer Architecture (Desktop x86 PC)
	From UMA to NUMA Development (Even in PC Segment)
	Intel Core 2 Generation
	Intel i3/5/7 Generation
	Memory Subsystem – Terms and Definitions
	Memory Types and Maintenance
	Typical Memory Parameters
	Detail of static and Dynamic Memory Bit Cell
	Flip-flop Circuits
	Usual SRAM Chip and SRAM Cell
	Usual Static Memory Chip Cell
	Usual SRAM Chip
	Memory Cell Connection to Matrix
	Selector Switch – One from N Decoder
	Switch Analogy of Multiplexer
	Memory Matrix
	Memory Matrix – Operation
	Memory Matrix – Operation - 1
	Memory Matrix – Operation - 2
	Memory Matrix – Operation - 3
	Internal Architecture of the DRAM Memory Chip
	Detail of Dynamic Memory Cell
	Dynamic Memory Capacitor Parameters
	Detail of Dynamic Memory Cell - 1
	DRAM Memories – Price Seems to Be Settled for Now
	History of DRAM chips development
	Old School DRAM – Asynchronous Access
	Phases of DRAM Memory Read
	EDO-RAM – About 1995
	SDRAM – end of 90-ties – synchronous DRAM
	SDRAM – the Most Widely Used Main Memory Technology
	Other Main Memory Types
	Notes for Today SDRAMs and Slides
	Multi-byte Numbers
	How to Store Multi-byte Number in Memory
	Memory Alignment (cz:zarovnání paměti?)
	Align in Data Segment Filled by Assembler
	C Language: Pointer
	C Language: Pointer Operations
	C Language: Size of Element Pointed by C Pointer
	C Language: Pointer with const Qualifier
	C Language and Pointers
	The Lecture and Real Programming Question

