et

Learning for vision lli
Convolutional networks

Karel Zimmermann

http://cmp.felk.cvut.cz/~zimmerk/

Vision for Robotics and Autonomous Systems
https://cyber.felk.cvut.cz/vras/

Cer

ter for Machir

nttps://cmp.t

€

e Perception
K.cvut.cz
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https://cmp.felk.cvut.cz
https://cyber.felk.cvut.cz/vras/
http://cmp.felk.cvut.cz/~zimmerk/

Do clean up + Iif not needed, switch off remote machines
(it might be switched off automatically after 24h of inactivity).

Outline

* Fully connected neural network

e Avoid overfitting by search for the NN model suitable for image
porocessing [Hubel and Wiesel 1960].

* Feedforward and Backprop in ConvNets.

 Epmiric evaluation of classitier performance (Precision, Recall).

Czech Technical University in Prague
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Fully connected neural network

»C(f(Xz', W)? yz)

RV

\ _’ \
£ G~ D)= Cloglo(ya)
/

Nl

\

Y

Czech Technical University in Prague
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The Tungsten Electrode [Hubel-Science-1957]

http://braintour.harvard.edu/archives/portfolio-items/hubel-and-wiesel

* Device capable to record signal from a single neuron

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics


http://braintour.harvard.edu/archives/portfolio-items/hubel-and-wiesel

[Hubel and Wiesel 1959]  gectrical signal

Recording electrode ——»

. &" I‘ ~|

Visual area
of brain

e Experiment with anaesthetised paralysed cat

Czech Technical University in Prague
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[Hubel and Wiesel 1960]

https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/

Czech Technical University in Prague
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[Hubel and Wiesel 1960]

paralysed cat awake monkey
A B
i i |

N I N

S IS

Yo R

_. " H I

7 — A ——
W e —
o = — s

https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
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Hubel and Wiesel experiments in 1950s and 1960s
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o | |
 Nobel Prize in Physiology and Medicine in 1981
 Dr. Hubel: "There has been a myth that the brain cannot
understand itself. It is compared to a man trying to lift
himselt by his own bootstraps. We feel that is nonsense.

The brain can be studied just as the kidney can.”

https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
@ Czech Technical University in Prague

Faculty of Electrical Engineering, Department of Cybernetics 8



1. Nearby neurons process information from nearby visual
fields (topographical map).

* Processing of visual information in cortex is not fully
connected.

Czech Technical University in Prague
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1. Nearby neurons process information from nearby visual
fields (topographical map).

image
@ TxD—

K

hat is dimensionality reduction for N-pixel image and
-dimensional spatial neighbourhood?

Czech Technical University in Prague
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2. Different neurons detects the same edge
at different positions (translation invariance)

image
Gw{ X D—

\ should do
/ the same thing

There are neurons which detect an edge on the left and there are different
which detect the same edge on the right.

Czech Technical University in Prague
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2. Neurons with similar function organized into columns
(translation invariance)

|
|
|

image

N
D
X
Q.

't corresponds to convolution of image xwith kernel w
followed by activation function
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image

N

\ .

\

N
D
X
Q.

't corresponds to convolution of image xwith kernel w
followed by activation function
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Convolution forward pass y = conv(x, w)

kernel/filter

Wa1 | Woo filter response/

output map
1L L 2 | o Yi1 | Y12

Czech Technical University in Prague
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Convolution forward pass y = conv(x, w)

L11 L12 | L13

Y11 | Y12 w11 | W12
— CONvV L21 | 422 | 423

Y21 | Y22 ) | W21 | Wo2
L31 | £32 | £33

Y11 = W11T11 + W12T12 + W21T21 + W22L292

Y12
Y21

= W11T12 + W12T13 + W21T22 + W22T23

— W11T21 + W12T22 + W21T31 + W22T392

Yoo = W11T22 + W12T23 + W21TL32 + W22T33

et
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Y21

Convolution forward pass y = conv(x, w)

Y22

Y12 = W11T12 + W12T13 + W21T22 + W22T23

Y21 = W11T21 + W12T29 + W21T31 + W22T32

Yoo = W11T22 + W12T23 + W21T32 + W22T33

et

Czech Technical University in Prague
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Y11

Y21

Y22

Convolution forward pass y = conv(x, w)

— COoNV (

Y11 = W11T11 + W12T12 + W21T21 + W22T22

Y21 = W11T21 + W12T29 + W21T31 + W22T32

Yoo = W11T22 + W12T23 + W21T32 + W22T33

et
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Convolution forward pass y = conv(x, w)

Y11 | Y1

2
W1 Y2

Y11 = W11T11 + W12T12 + W21T21 + W22T22

Y12 = W11T12 + W12T13 + W21T22 + W22T23

Yoo = W11T22 + W12T23 + W21T32 + W22T33

Czech Technical University in Prague
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Convolution forward pass y = conv(x, w)

Y11 | Y12 (

o1 - — COoNV

Y11 = W11T11 + W12T12 + W21T21 + W22T22

Y12 = W11T12 + W12T13 + W21T22 + W22T23

Y21 = W11T21 + W12T29 + W21T31 + W22T32

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Feature maps

'J Convolutional kernel 1
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Image Feature map 1
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Feature maps

Feature map 2

'J Convolutional kernel 1

S Convolutional kernel 2

Image Feature map 1

Czech Technical University in Prague
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conv (

et

Convolution layer properties - output size

image kernel output
(5x5) (2Xx2) (? x ?)
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Convolution layer properties - output size

Cconv

(T =

image kernel output
(5x5) (2Xx2) (? x ?)
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Convolution layer properties - output size

(0T ma) -

image kernel output
(5x5) (2Xx2) (? x ?)
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Convolution layer properties - output size

W OE ma) -

image kernel output
(5x5) (2Xx2) (? x ?)

Czech Technical University in Prague
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conv (

et

Convolution layer properties - output size

image kernel output
(5%9) (2x2) (4x4)

Czech Technical University in Prague
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conv (

et

Convolution layer properties - output size

M =N-K + 1

image kernel output
(NXN) (KxK) (MxM)

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

27



Cconv

et

Convolution layer properties - stride

stride = 1

kernel moves by 1 pixel

Was)

image kernel output

(5x5) (2x2) (4x4)

Czech Technical University in Prague
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conv (

Convolution layer properties - stride

stride = 3
kernel moves by 3 pixels
—>
[ =
image kernel output
(5x5) (2Xx2) (? x ?)

Czech Technical University in Prague
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Cconv

et

Convolution layer properties - stride

stride = 3

kernel moves by 3 pixels

—>
(HH @) =C
image kernel output

(5x5) (2Xx2) (? x ?)

Czech Technical University in Prague
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conv (

Convolution layer properties - stride

stride = 3
kernel moves by 3 pixels
—>
. ) = [
image kernel output
(5x5) (2Xx2) (? x ?)

Czech Technical University in Prague
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conv (

et

Convolution layer properties - stride

stride = 3

kernel moves by 3 pixels
—>
|:| , ) )
image kernel
(5%5) (2Xx2)

Czech Technical University in Prague

bL

output
(? x ?)
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conv (

Convolution layer properties - stride

stride = 3
kernel moves by 3 pixels
—>
I:I | |:| ) = _H
image kernel output
(5x5) (2Xx2) (2x2)

Czech Technical University in Prague
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Convolution layer properties - stride
M = floor( (N-K) / stride + 1)

stride
—

o

) =

image kernel output
(NXN) (KxK) (MxM)

eg.M=(5-2)/3+1=2

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Convolution layer properties - pad

pad = 1
Ol0101010 added border of size
: =
0 0 o
0 O D) —
0 0
0 0
0 0/0]0|0]|0
image kernel output
(5x5) (2X2) (6X6)

Czech Technical University in Prague
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Convolution layer properties - pad

M = floor( (N+2*pad-K) / stride + 1)

Ololololololo ¢ added border of size 1
O 0
O 0
COIlV( O O , ) —
O 0
O 0
0/0]0]0]0]0|0
mage kernel output
(N+2*pad)X(N+2"pad) (KxK) (MxM)

Czech Technical University in Prague
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Cconv

et

Convolution layer

Dilatation rate = 1

(B o =

image kernel output
(5x5) (2Xx2) (? x ?)

Czech Technical University in Prague
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conv (

Atrous convolution layer

Dilatation rate = 2

[ ]

) -

image kernel output
(5x5) (2Xx2) (? x ?)

Czech Technical University in Prague
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Show python code

Czech Technical University in Prague
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conv (

et

Multl-channel convolution

RGB image kernel output
(5X5X3) (2x2x3) (4x4x1)

Czech Technical University in Prague
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conv (

et

Multl-channel convolution

RGB image kernel output
(5X5X3) (2x2x3) (4x4x1)

Czech Technical University in Prague
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conv (

et

Multl-channel convolution

H [y B

RGB image kernel output
(5X5X3) (2x2x3) (4x4x1)
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conv (

et

Multl-channel convolution

H =

RGB image kernel output
(5X5X3) (2x2x3) (4x4x1)

Czech Technical University in Prague
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conv (

et

Multl-channel convolution

|:| [ ]

RGB image kernel output
(5X5X3) (2x2x3) (4x4x1)

Czech Technical University in Prague
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—— W1 Convolutional layer

Y1

N\

et
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—— W1 Convolutional layer

| Y1

et

Yo
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——— W1 Convolutional layer

et

| Y1
oD
|I '|w2
Yo
oD,
I| I|W3
Y3
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Convolutional network (ConvNet)

|
?

4X4AX3 4X4AX3
feature feature
map
layer:
layer: conv sigmoid layer: conv2

Czech Technical University in Prague
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# initialise
import torch.nn as nn

# define 2D
first layer

et

2D convolution forward pass

| | | | | |E‘
| | | | | Yy

5x5x3

convolutional laxer

= nn.Conv2d(in channels=3, out channels=2,
kernel size=2, stride=1,
padding=1)

Czech Technical University in Prague
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# initialise
import torch.nn as nn

# define 2D
first layer

et

2D convolution forward pass

| | | | | |E‘
| | | | | Yy

of kernels

convolutional laxer

= nn.Conv2d(in channels=3, out channels=3,
kernel size=2, stride=1,
padding=1)

Czech Technical University in Prague
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# initialise
import torch.nn as nn

# define 2D
first layer

et

2D convolution forward pass

e 1T oxox3

5x5x3

of kernels

convolutional laxer

= nn.Conv2d(in channel%=3, out channels=2,
kernel size=2, stride=1,
padding=1)

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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3. Neurons are sensitive to edges and Its orientation

Inputs which maximized output of layer 1

[Zeiler and Fergus, ECCV, 2014]
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3. Neurons are sensitive to edges and Its orientation

Inputs which maximized output of layer 2

[ Zeiler and -ergus, ECCV, 2014]
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3. Neurons are sensitive to edges and Its orientation

Inputs which maximized output of layer 3

[ Zeiler and -ergus, ECCV, 2014]
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3. Neurons are sensitive to edges and Its orientation

Inputs which maximized output of layer 4

[Zeiler and Fergus, ECCV, 2014]
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3. Neurons are sensitive to edges and Its orientation

Inputs which maximized output of layer 5

[Zeiler and Fergus, ECCV, 2014]

Czech Technical University in Prague
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Convolution backward pass

Learning of convolutional neuron => backpropagation

w11 | W12
w21 | W22
11 | L12 | 213 \
To1 | To2 | T23 —’—>
31 L339 X33 Y11 Y12
Ya1 | Y22

Czech Technical University in Prague
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Convolution backward pass

Op Op
6’(1)11 awlg ,?
Op op |
8w21 8’(1)22

w11 | W12

w21 | W22

11 | L12 | 213
31 L339 X33 Y11 Y12
Ya1 | Y22

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

P




Convolution backward pass

Op
Owio 2

Op Op
Owa1 Owas

p(wll) — P(yn(wll), y12(w11), y21(w11), y22(w11))

L11 | £12 | L13
—_—
L21 | £22 | 423 —’ .
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Convolution backward pass wrt weights

 Backpropagation in convolutional layer wrt weights Is:
‘convolution of input feature map with upstream gradient”

Op Op 11 | 12 | T13 op Op
8w11 8w12 ayll ale
5 5 — CONvV L21 | £22 | L23 , 9 o
p p
OWoq O Woo L31 | £32 | £33 0Y21 OYa2
w11 | W12 Op Op
0Y11 0Y12 upstream
w21 | W22 .
Op Op gradient
0Y21 0Y22
L11 | L12 | L£13
L21 | £22 | 423 —> < >
L31 X392 X33 Y11 Y12 D
Y21 | Y22

Czech Technical University in Prague
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Convolution backward pass wrt input feature map

e Backpropagation in convolutional layer Is:
‘convolution of padded upstream gradient with mirrored weights”

Jp Jp Jp 0 0 0 0
Oxy1 | Oxia | 0x3 Jp dp
or | 9o | B —con\( ) o e 2 b
2] L22 L2z 1™ D D
op Ip Ip y 0y21 O0y22 U bl W2 Wit
031 0x32 0x33 0 0 0 0
w11 | W12 Op Op
9, 11 e, 192 UpStream
w21 | W22 - /
Op Op gradient
0y21 0Y22
11 | L12 | L13
L21 | £22 | 423 —> < >
L31 X392 X33 Y11 Y12 D
Y21 | Y22
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|
?

4X4AX3 4X4AX3
feature feature
map
layer:
layer: conv sigmoid layer: conv2
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|
?

4X4AX3 4X4AX3
feature feature
map
layer:
layer: conv sigmoid layer: conv2
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|
?

4X4AX3 4X4AX3
feature feature
map
layer:
layer: conv sigmoid layer: conv2
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[ [ T 1

layer: conv
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Sigmoid

1

O'(LU) — l14+e—*

tanh
tanh(x)

RelLU
max O :I:

Activation functions

b
-
/

Leaky Rel U
max(0.1z, x)

Maxout

J
- -1 10

max(wi T + by, wa T + by)

ELU

T x>0
ae® —1) <0

10
/‘)
-2
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O
>
kL
Ax4x3 €4
8
feature o
map g
layey:
layer: conv sigmaid layer: conv2

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

6/



Max-pooling

max ( 2X2 )

N— | O |—=

O—=INO|—

image output
(5x5) (? x ?)




Max-pooling

11310 1 314
21011 |4

max( 0317312 | 7X7):
11310 (2 1
2101112 [0
image output

(5x5) (7 x ?)



Max-pooling

_>
Q|
WA~

max ( 2X2 )

N|—= | O |—

O—=INO|—

image output
(5x5) (7 x ?)




Convolutional net

e Convolutional network (ConvNet) is concatenation of convolutional layers

 Backprop in ConvNet is convolution of feature maps or kernels or feature-maps
with the upstream gradient.

 Feed-forward and backprop are convolutions => efficient implementation on GPU

Czech Technical University in Prague
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IMAGENET

Classification results
http://image-net.org/challenges/LSVRC/2017/index

Steel drum
Output: Output:
Scale Scale
T-shirt V T-shirt
Steel drum Giant panda
Drumstick Drumstick
Mud turtle Mud turtle
- 1 . . .
Error = 100,000 z 1[incorrect on image i]
100,000
Images
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Classification Error

et

0.3
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0.15

0.1

0.05

IMAGENET

Classification results

AlexNet
8 layers

!

N N

2010 2011 2012
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Classification Error
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IMAGENET

Classification results

AlexNet
8 layers

2010 2011 2012
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Classification Error
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0.3
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IMAGENET
Classification results

AlexNet

8 layers
VGGnet

19 layers

2010 2011 2012 2013

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

79



Classification Error

et

0.3
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0.2
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0.1
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IMAGENET
Classification results

AlexNet

8 layers
VGGnet

19 layers

GooglLeNet
22 layers

2010 2011 2012 2013 2014
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0.3

0.25

0.2

0.15

0.1

Classification Error

0.05

et

IMAGENET
Classification results

AlexNet

3 layers
VGGnet

19 layers

GooglLeNet

22 layers
ResNet

152 layers

l

0.036

2010 2011 2012 2013 2014 2015
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Classification results

AlexNet
0.3 3 layers
VGGnet
0.25 19 layers
g 0.2 GoogleNet
- 22 layers
S 015 ResNet
3 152 layers
& 01
2 16.7% ' 23.3%
(O
O 0.05 v b }
. 0056

2010 2011 2012 2013 2014 2015 2016 2017
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mean Average Precision (mAP)

et

70%

60%

50%

40%

30%

20%

10%

0%

2006

Pascal VOC object detection challenge

ot After

Before the successful application of ConvNets ‘ \

2007 2008 2009 2010 2011 2012 2013 2014
year
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Learning as gradient minimization

. Initialize weights Woand k=1

. Plug x; to input and estimate 8f(gi’w)
W

. Estimate gradient over whole training set

by backprop

w=wk—1

0f(w) 1 Of(xiy W)
OW | ko N; Ow

. Update weights

w=wk—1

k k—1 af—r(“)
QO
OW

w=wk—1
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Learning as gradient minimization
1. Initialize weights Woand k£ =1 9F (.
> Plug x; toinput and estimate 27 (;‘“W)
W

3. Estimate gradient over whole training set

by backprop

w=wk—1

of (w) 1 ZN: Of (xi; W)
oW |o_wr—1 IV — Ow k1
4. Update weights
wk — wk—1 _ of " (w)
oW | ko1

* \Whole training set does not fit iInto memory => instead estimate stochas
over minibatch
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Learning as gradient minimization

. Initialize weights Woand k=1

. Plug x; to input and estimate 8f(g""w)
W

. Estimate gradient over random mini-batch

by backprop

w=wk—1

0f(w 1 0 X:, W
giv) 3 f(xi;w)

. Update weights

sk —1 . o k—1
W=W 1€eMB W=W

w=wk—1
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Stochastic Gradient Descent (SGD) drawbacks

OW |kt
OW | r
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Stochastic Gradient Descent (SGD) drawbacks
k k—1 5fT(W)

w' =W — O
OW

w=wk—1

Of(w)
: Ow

w=wk—1
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SGD drawbacks

_ wk1_ af@TVE,—W)
0f (w)
OW | k1

w=wk—1
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SGD drawbacks

. @f(; szW)

w=wk—1

* Easily get stuck in local minima or saddle points
* [here are much more saddle points than minima

f(w)

86



SGD drawbacks

. @f(; szW)

w=wk—1

* Easily get stuck in local minima or saddle points
* [here are much more saddle points than minima

f(w)
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SGD drawbacks

. @f(; szW)

w=wk—1

* Easily get stuck in local minima or saddle points
* [here are much more saddle points than minima

f(w)
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SGD drawbacks

. @f(; szW)

w=wk—1

* Easily get stuck in local minima or saddle points
* [here are much more saddle points than minima

f(w)
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SGD in 2 dimensional weights

k k—1 of ' (w)
o
Ow _

> >

Vwy =777
vaZ???
__ Of(w)
[le, V@Uz] — Iw N
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SGD in 2 dimensional weights

wk — wk—1 _ of " (w)
OW | ko1
VUJQ
<<<<< >>>>
le

91



SGD in 2 dimensional weights

k k—1 of ' (w)
o
Ow _

0f(w)

[lea Vw?] — Ow

w=wk—1
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SGD in 2 dimensional weights

w=wk—1
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SGD in 2 dimensional weights

w=wk—1

94



SGD in 2 dimensional weights

k k=1 _ 5fT(W)

ow w—wk—1

Undesired zig-zag behaviour

w=wk—1
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SGD drawbacks - in 2D

wk — wk—1 _ of " (w)
Ow

w=wk—1

a =1e-3
Starting Point

Optimum

Solution

https://distill.pub/2017/momentum/
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SGD drawbacks - in 2D

wk — wk—1 _ of " (w)
Ow

w=wk—1

Optimum

N
- \\\\\\\

https://distill.pub/2017/momentum/

|
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SGD + momentum

vk = gyk-l of ' (w)
Ow
wh = whr 1 -+ av®
Of (w)
OW | k1
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SGD + momentum
of ' (w)

Vk _ ﬁVk_l

Ow

Wk — Wk_l —+ ozvk

w=wk—1
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SGD + momentum
of ' (w)

Vk _ ﬁVk_l

Ow

Wk — Wk_l —+ ozvk

w=wk—1
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SGD + momentum

vk = gyk-l of ' (w)
Ow
wh = whr 1 -+ av®
Of (w)

Ow
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e Bul

e RO

SGD + momentum
of T (w)

Ow
k

Vk _ ﬁVk_l

w=wk—1

Wk — Wk_l + Vv

d velocity vas running average of gradients
ing ball with velocity v and friction coeff S

f(w)

v =177
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e Bul

e RO

SGD + momentum
of T (w)

Ow
k

Vk _ ﬁVk_l

w=wk—1
w' =w'! + av
d velocity vas running average of gradients

ing ball with velocity v and friction coeff S

Overcome low
f(w) gradient regions

§v>>0

103



e Bul

e RO

SGD + momentum
of T (w)

Ow
k

Vk _ ﬁVk_l

w=wk—1
w' =w'! + av
d velocity vas running average of gradients

ing ball with velocity v and friction coeff S

f(w) Reach minimum
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e Bul

e RO

SGD + momentum
of T (w)

Ow
k

Vk _ ﬁVk_l

w=wk—1
w' =w'! + av
d velocity vas running average of gradients

ing ball with velocity v and friction coeff S

f(w) Reach minimum
but overshoots

v > ()
*—>

W3 Wy
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e Bul

e RO

SGD + momentum
of T (w)

Ow
k

Vk _ ﬁVk_l

w=wk—1
w' =w'! + av
d velocity vas running average of gradients

ing ball with velocity v and friction coeff S

f(w) Reach minimum
but overshoots
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e Bul

e RO

SGD + momentum
of T (w)

Ow
k

Vk _ ﬁVk_l

w=wk—1
w' =w'! + av
d velocity vas running average of gradients

ing ball with velocity v and friction coeff S

f(w) Reach minimum
but overshoots

v < 0

WEW5

107



e Bul

e RO

SGD + momentum

vk = gyk-l of ' (w)
Oow we—wk—1
wF = wh1 L avh
d velocity vas running average of gradients
ing ball with velocity v and friction coeff S
f(w) Reach minimum
but overshoots

V<Qi

108



e Bul

e RO

SGD + momentum
of T (w)

Ow
k

Vk _ ﬁVk_l

w=wk—1
w' =w'! + av
d velocity vas running average of gradients

ing ball with velocity v and friction coeff S

Jumps steep minima.
s it good?

\ :v>>0
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“SGD” vs “SGD + momentum” in 2D

wk — wk—1 _ of " (w)
OW |kt
Undesired zig-zag behaviour
Vuw
L
(o=
3
le
0
Vwi, Vws| = g(‘:) N
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“SGD” vs “SGD + momentum” in 2D

e ofT(w)
Vk _ ﬁvk 1 . o
wh = wh1 L qvh
' T
¥ %iy.
“ Wéi’é’ :t >

Momentum suppresses this problem partially by averaging element-wise gradients
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“SGD” vs “SGD + momentum” in 2D

0
vk = gyk-l f(w)
Oow we—whk—1
w' =w"t 4 av”
o =1e-3 B =0
Optgum

Solution

https://distill.pub/2017/momentum/
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“SGD” vs “SGD + momentum” in 2D

-
vk = gyk-1 of (w)

OW | k1
wh = wr 1 + ozvlC
a = 5e-3 6 =0

Optimum

BN

1

\
https://distill.pub/2017/momentum/

113



“SGD” vs “SGD + momentum” in 2D

9,
vk = gyk-l f(w)
Oow we—whk—1
Wk — vvk_1 —+ ozvk
a=1e-3 6 =0.9
Optgum

Solution

https://distill.pub/2017/momentum/
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Py lorch
# initialise
import torch.nn as nn
import torch.optim as optim

# initialize optimizer
optimizer = optim.SGD(conv net.parameters(), lr=le-2)

# define ConvNet model
conv_net = ..

# define criterion function
loss = loss fn(conv net(images), labels)

# compute gradient
loss.backward()

# update weights of the model
optimizer.step()
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Training procedure

* Choose:
o Weight initialization (Xavier)
* Network architecture (ideally re-use pre-trained net)
* | earning rate and other hyper-parameters.
* LOSS + regularization
* Divide data on three representative subsets:
e Jraining data (the set on which the backprop is used to estimate weights)
o \Validation data (the set on which hyper-param are tuned)
* Jesting data (the set on which the expected performance is measured
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error

Training procedure

Trn loss explodes to infinity => oscillations
* decrease the learning rate

iterations
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SGD drawbacks - in 2D

https://distill.pub/2017/momentum/
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|0SS

Training procedure

\
\
-
-
-
-
-
-
-
-
-
-
-
-
------
m .
------------

Irn loss Is decreasing very slowly
* Increase learning rate

. Training loss
. Testing loss

iterations
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SGD drawbacks - in 2D

a = 1e-3

Starting Point

Optimum

Solution

https://distill.pub/2017/momentum/
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|0SS

Training procedure '

Trn loss remains huge =>underfitting .-
* decrease regularization strength .-
* INncrease model capacity

L
L
L g
-
-
-
L
L
-
-
-
-
-
-
------
m .
------------

iterations
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|0SS

Tst loss>>1rn loss => overtfitting ,
* |ncrease strength of regularization
o decrease model capacity S
» Tst data are too far from Trn data .-
(should come from the same distribution)

B Training loss terations
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Tst loss>>Trn loss => overfitting
* |ncrease strength of regularization
o decrease model capacity S
» Tst data are too far from Trn data .-
(should come from the same distribution)

|0SS

| gap

B Training loss terations
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|0SS

Trn loss>>Tst loss
» bad division on training/testing data .-
] gap
iterations
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|0SS

Correct behaviour

iterations
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Hyper parameters tuning

Weight initialization (Xavier)
Trn loss Is huge =>underfitting

e decrease regularization strength

* INncrease model capacity
Trn loss explodes to infinity=> huge learning rate
* decrease the learning rate
Trn loss Is decreasing very slowly => small learning rate
* INncrease learning rate
Tst loss>>1Trn loss => overtitting

* |ncrease strength of regularization

e decrease model capacity

e [st data are too far from Trn data

(should come from the same distribution)

Trn loss>>Tst loss =>bad division on training/testing data
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Binary classitier testing presence of potentially dangerous case:

127



Binary classitier testing presence of potentially dangerous case:
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Binary classitier testing presence of potentially dangerous case:

129



Binary classitier testing presence of potentially dangerous case:

false negative (FN) --- classifier falsely indicates positive class (e.g. car)
as a negative class => missed danger
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Binary classitier testing presence of potentially dangerous case:

false negative (FN) --- classifier falsely indicates positive class (e.g. car)
as a negative class => missed danger

false positive (FP) ... classifier falsely indicates negative class (e.g. background)
as a positive class => false alarm
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Binary classitier testing presence of potentially dangerous case:

false negative (FN) ---

false positive (FP)

true positive (TP)

classifier falsely indicates positive class (e.g. car)
as a negative class => missed danger

. classifier falsely indicates negative class (e.g. background)

as a positive class => false alarm

. classifier correctly indicate ground truth positive class

e.q. car) as a positive class => correctly found danger
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Binary classifier testing presence of potentially dangerous case:

GT
CARS

CLS
CARS

false negative (FN) --- Classifier falsely indicates positive class (e.g. car)
as a negative class => missed danger

false positive (FP) ... classifier falsely indicates negative class (e.g. background)
as a positive class => false alarm

true positive (TP) ... classifier correctly indicate ground truth positive class
(e.g. car) as a positive class => correctly found danger

true negative (TN) ... classifier correctly indicate ground truth negative class
e.g. car) as a negative class => correctly found safet
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Binary classifier testing presence of potentially dangerous case:

0.5 0.1 | 0.1 -0.4
.. classifier falsely IRdicates positive class (e.g. car
as a negative class => missed danger

false negativé (FN) -

false positive (FP) ... classifier falsely indicates negative class (e.g. background)
as a positive class => false alarm

true positive (TP) ... classifier correctly indicate ground truth positive class
(e.g. car) as a positive class => correctly found danger

true negative (TN) ... classifier correctly indicate ground truth negative class
(e.g. car) as a negative class => correctly found safety
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Binary classifier testing presence of potentially dangerous case:

false negativé (FN) -

false positive (FP)
true positive (TP)

true negative (TN)

“Classitier false vV Indicates pOSI ve clasd$¥(e.q. car
as a negative class => missed danger

. classifier falsely indicates negative class (e.g. background)

as a positive class => false alarm

. classifier correctly indicate ground truth positive class

(e.g. car) as a positive class => correctly found danger

. classifier correctly indicate ground truth negative class

(e.g. car) as a negative class => correctly found safety
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Binary classitier testing presence of potentially dangerous case:

false negative (FN) =1 - 1
Precision (P) = ———— = —— =1/3
false positive (FP) =2 TP + EP 1.0
1P 1
true positive (TP) =1 Recall (R) = pr P _1/2

true negative (TN) =2 Oracle: Precision = Recall = 1
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Precision (P)

Smoothed Precision-Recall curve

Oracle: Precision = Recall = 1

Recall (R)
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Precision (P)

Smoothed Precision-Recall curve

Oracle: Precision = Recall = 1

Recall (R)
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Precision (P)

Smoothed Precision-Recall curve

1
AUC = J P(R)dR
0

Oracle: Precision = Recall = 1

Recall (R)
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Precision (P)

Smoothed Precision-Recall curve

Oracle: Precision = Recall = 1

|
AUC ~ AP = ) P(R)
R=0

Recall (R)
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Object detectio
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Object detection
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Object detection
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Object detectlon
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Object detectlon
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Object detectlon

M” il 'l' |
nl“

IHHM il 8

, o\ H?l” ]U ”““
A

l‘ T

0.0 person

m pbackgrna

class: car

- »

s

Czech Technical University in Prague 146
Faculty of Electrical Engineering, Department of Cybernetics



Object detectlon
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Object detectlon
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Object detectlon
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Object detection

 Approach works but it takes extremely long to compute response on all rectangular
Sub-windows:
H x W x Aspect_Ratio x Scales x 0.001 sec = months

Czech Technical University in Prague 150
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Object detectlon
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Object detection
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— == —| classify + align only 2k
region proposals

[Girschick ICCV 2015] Fast-RCNN

https://arxiv.org/abs/1504.08083 -
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https://arxiv.org/abs/1504.08083

Object detection

 Approach works but it takes extremely long to compute response on all rectangular
Sub-windows:

H x W x Aspect_Ratio x Scales x 0.001 sec = months

* |nstead we can use elementary signal processing method to extract only 2k viable
candidates:

[Girschick ICCV 2015], Fast-RCNN
https://arxiv.org/abs/1504.08083

(find 2k cand.) + (2k cand. x 0.001 sec) = 47+2 sec = 49 sec

Czech Technical University in Prague -
Faculty of Electrical Engineering, Department of Cybernetics
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Object detectlon
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https://arxiv.org/abs/1504.08083

YOLO and Faster RCNN architectures
https://arxiv.org/abs/1506.01497

0_object
center_x

center_y
width

height

0_class
0_class’?
0_class3

low resolution
feature map

e divide Image Into 3x3 sub Images
» predict relative position, objectness, class for each sub-im

Czech Technical University in Prague -
Faculty of Electrical Engineering, Department of Cybernetics
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YOLO and Faster RCNN architectures
https://arxiv.org/abs/1506.01497

0_object
center_x

center_y
width

height

0_class
0_class’?
0_class3

- low resolution
ground truth feature map

e divide Image Into 3x3 sub Images
» predict relative position, objectness, class for each sub-im

e |earn from ground truth

Czech Technical University in Prague -
Faculty of Electrical Engineering, Department of Cybernetics
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YOLO and Faster RCNN architectures
https://arxiv.org/abs/1506.01497

0_object =1
center_x="
center_y="

width =7
height ="
o0_class1="
0_class2="
0_class3="

- o N e low resolution
ground truth feature map

e divide Image Into 3x3 sub Images
» predict relative position, objectness, class for each sub-im

e ground truth: bbs with loU>0.7 are objects,
bbs with [oU<0.3 not objects

Czech Technical University in Prague 157
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YOLO and Faster RCNN architectures
https://arxiv.org/abs/1506.01497

0_object =1
center_x=.3
center_y=.5

width =7
height ="
o0_class1="
0_class2="
0_class3="

- o N e low resolution
ground truth feature map

e divide Image Into 3x3 sub Images
» predict relative position, objectness, class for each sub-im

e ground truth: bbs with loU>0.7 are objects,
bbs with [oU<0.3 not objects

Czech Technical University in Prague -
Faculty of Electrical Engineering, Department of Cybernetics


https://arxiv.org/abs/1506.01497

YOLO and Faster RCNN architectures
https://arxiv.org/abs/1506.01497

0_object =1
center_x=.3
center_y=.5

width =.7

height =1.5
o0_class1="
0_class2="
0_class3="

- o N e low resolution
ground truth feature map

e divide Image Into 3x3 sub Images
» predict relative position, objectness, class for each sub-im

e ground truth: bbs with loU>0.7 are objects,
bbs with [oU<0.3 not objects

Czech Technical University in Prague 159
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YOLO and Faster RCNN architectures
https://arxiv.org/abs/1506.01497

0_object =1
center_x=.3
center_y=.5

width =.7

height =1.5
0_class1=1
0_class2=0
0_class3=0

: e low resolution
ground truth feature map

e divide Image Into 3x3 sub Images
» predict relative position, objectness, class for each sub-im

e ground truth: bbs with loU>0.7 are objects,
bbs with [oU<0.3 not objects

Czech Technical University in Prague 160
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YOLO and Faster RCNN architectures
https://arxiv.org/abs/1506.01497

O_C
O_C
O_C

low resolution
feature map

e divide Image Into 3x3 sub Images

0_object
center_x
center_y

width
height

ass
ass’
ass3

» predict relative position, objectness, class for each sub-im

e each sub-image has its own output

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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YOLO and Faster RCNN architectures
https://arxiv.org/abs/1506.01497

0_object
center_x
center_y
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e = = SRR

low resolution
feature map

e divide Image Into 3x3 sub Images

» predict relative position, objectness, class for each sub-im
e each sub-image has its own output
Do you see any problem?

Czech Technical University in Prague 6o
Faculty of Electrical Engineering, Department of Cybernetics
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YOLO and Faster RCNN architectures
https://arxiv.org/abs/1506.01497

0_object =1
center_x=.3
center_y=.5

width =.7

height =1.5
o0_class1=1
0_class?2=1
0_class3=0

- low resolution
ground truth feature map

e divide Image Into 3x3 sub Images
» predict relative position, objectness, class for each sub-im

e ground truth: bbs with loU>0.7 are objects, => more obj In
bbs with [oU<0.3 not objects one supb-im

Czech Technical University in Prague 163
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YOLO and Faster RCNN architectures
https://arxiv.org/abs/1506.01497

0_object
center_x

center_y
width

height

0_class
0_class’?
0_class3

low resolution
feature map

e divide Image Into 3x3 sub-images
» predict relative position, objectness, class for each sub-im

Czech Technical University in Prague 64
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YOLO and Faster RCNN architectures
https://arxiv.org/abs/1506.01497

T low resolution

ground truth feature map

Introduce anchor bounding boxes

et

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

0_object

cernl
cernl

er_X

ter_y

width
height

O_C
O_C
O_C

ass
ass’

ass3

0_object
center_x
center_y
width
height

O_C
O_C
O_C

ass
ass’
ass3
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YOLO and Faster RCNN architectures |P_oObject

https://arxiv.org/abs/1506.01497 center_x
center_y
width
height
0_class
0_class?
0_class3
0_object
: S e low resolution center x
ground truth feature map center_y
width
Introduce anchor bounding boxes neight
e for each anchor bb CNN predicts: p_class]
» its “alignment with gt” (regression loss) p_class2
e its “objectness”+"class” (classification loss) | P-Class3

Czech Technical University in Prague Py
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YOLO and Faster RCNN architectures |pP_object

https://arxiv.org/abs/1506.01497 center_x
center_y
width
height
0_class
0_class’
0_class3
0_object
: S e low resolution center x
ground truth feature map center_y
width
Introduce anchor bounding boxes neight
« for each anchor bb CNN predicts: p_class
e its “alignment with gt” (regression loss) p_class2
» its “objectness”+"class” (classification loss) | P_Class3

Czech Technical University in Prague o7
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Object detection

 Approach works but It takes extremely long to compute response on all rectangular
Sub-windows:

H x W x Aspect_Ratio x Scales x 0.001 sec = months

* |nstead we can use elementary signal processing method to extract only 2k viable
candidates:

[Girschick ICCV 2015], Fast-RCNN
https://arxiv.org/abs/1504.08083

(find 2k cand.) + (2k cand. x 0.001 sec) = 47+2 sec = 49 sec
* Do region proposal by CNN => 0.1 sec

[Faster RCNN 2017] https://arxiv.org/abs/1506.01497

[Redmont CVPR 2018], https://arxiv.org/abs/1804.02767
code: https://pjreddie.com/darknet/yolo/

Czech Technical University in Prague 168
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https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1506.01497

Deep convolutional - object detection

YOLO va

http://pureddie.com/yolo

Czech Technical University in Prague
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summary

Use ConvNets for images (or any other spatially structured inputs - depth images)
Always use distinct training/testining data to avoid overfitting
Compare results using by comparing full curves, e.g. Average Precision (AP)

Simplified detector based on RPN will be implemented during following two labs.

Test compentecies
Compute feedforward pass in neural nets (includinginput/output dimensionality)

Compute backpropagation in neural nets (including convnet, sigmoid layer)
Compute precision, recall, FP, FN, TP, TN ...

Understand object detection architecture

Czech Technical University in Prague 170
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