
Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Automated (AI) Planning
Planning tasks & Search

Carmel Domshlak

Automated
(AI) Planning

Planning by
state-space
search

Introduction

Classification

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

State-space search

state-space search: one of the big success stories of AI

many planning algorithms based on state-space search
(we’ll see some other algorithms later, though)

will be the focus of this and the following topics

we assume prior knowledge of basic search algorithms

uninformed vs. informed
systematic vs. local

background on search: Russell & Norvig, Artificial
Intelligence – A Modern Approach, chapters 3 and 4

Automated
(AI) Planning

Planning by
state-space
search

Introduction

Classification

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Satisficing or optimal planning?

Must carefully distinguish two different problems:

satisficing planning: any solution is OK
(although shorter solutions typically preferred)

optimal planning: plans must have shortest possible length

Both are often solved by search, but:

details are very different

almost no overlap between good techniques for satisficing
planning and good techniques for optimal planning

many problems that are trivial for satisficing planners are
impossibly hard for optimal planners

Automated
(AI) Planning

Planning by
state-space
search

Introduction

Classification

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Planning by state-space search

How to apply search to planning? many choices to make!

Choice 1: Search direction

progression: forward from initial state to goal

regression: backward from goal states to initial state

bidirectional search

Automated
(AI) Planning

Planning by
state-space
search

Introduction

Classification

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Planning by state-space search

How to apply search to planning? many choices to make!

Choice 2: Search space representation

search nodes are associated with states

search nodes are associated with sets of states

Automated
(AI) Planning

Planning by
state-space
search

Introduction

Classification

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Planning by state-space search

How to apply search to planning? many choices to make!

Choice 3: Search algorithm

uninformed search:
depth-first, breadth-first, iterative depth-first, . . .

heuristic search (systematic):
greedy best-first, A∗, Weighted A∗, IDA∗, . . .

heuristic search (local):
hill-climbing, simulated annealing, beam search, . . .

Automated
(AI) Planning

Planning by
state-space
search

Introduction

Classification

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Planning by state-space search

How to apply search to planning? many choices to make!

Choice 4: Search control

heuristics for informed search algorithms

pruning techniques: invariants, symmetry elimination,
helpful actions pruning, . . .

Automated
(AI) Planning

Planning by
state-space
search

Introduction

Classification

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Search-based satisficing planners

FF (Hoffmann & Nebel, 2001)

search direction: forward search

search space representation: single states

search algorithm: enforced hill-climbing (informed local)

heuristic: FF heuristic (inadmissible)

pruning technique: helpful actions (incomplete)

 one of the best satisficing planners

Automated
(AI) Planning

Planning by
state-space
search

Introduction

Classification

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Search-based optimal planners

Fast Downward + hHHH (Helmert, Haslum & Hoffmann, 2007)

search direction: forward search

search space representation: single states

search algorithm: A∗ (informed systematic)

heuristic: merge-and-shrink abstractions (admissible)

pruning technique: none

 one of the best optimal planners

Automated
(AI) Planning

Planning by
state-space
search

Introduction

Classification

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Our plan for the next lectures

Choices to make:

1 search direction: progression/regression/both
 this chapter

2 search space representation: states/sets of states
 this chapter

3 search algorithm: uninformed/heuristic; systematic/local
 this chapter

4 search control: heuristics, pruning techniques
 following chapters

Automated
(AI) Planning

Planning by
state-space
search

Progression

Overview

Example

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Planning by forward search: progression

Progression: Computing the successor state appo(s) of a state
s with respect to an operator o.

Progression planners find solutions by forward search:

start from initial state

iteratively pick a previously generated state and progress it
through an operator, generating a new state

solution found when a goal state generated

pro: very easy and efficient to implement

Automated
(AI) Planning

Planning by
state-space
search

Progression

Overview

Example

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Search space representation in progression planners

Two alternative search spaces for progression planners:
1 search nodes correspond to states

when the same state is generated along different paths,
it is not considered again (duplicate detection)
pro: fast
con: memory intensive (must maintain closed list)

2 search nodes correspond to operator sequences

different operator sequences may lead to identical states
(transpositions)
pro: can be very memory-efficient
con: much wasted work (often exponentially slower)

 first alternative usually preferable

Automated
(AI) Planning

Planning by
state-space
search

Progression

Overview

Example

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Progression planning example (depth-first search)

I

G

Automated
(AI) Planning

Planning by
state-space
search

Progression

Overview

Example

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Progression planning example (depth-first search)

I

G

Automated
(AI) Planning

Planning by
state-space
search

Progression

Overview

Example

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Progression planning example (depth-first search)

I

G

Automated
(AI) Planning

Planning by
state-space
search

Progression

Overview

Example

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Progression planning example (depth-first search)

I

G

Automated
(AI) Planning

Planning by
state-space
search

Progression

Overview

Example

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Progression planning example (depth-first search)

I

G

Automated
(AI) Planning

Planning by
state-space
search

Progression

Overview

Example

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Progression planning example (depth-first search)

I

G

Automated
(AI) Planning

Planning by
state-space
search

Progression

Overview

Example

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Progression planning example (depth-first search)

I

G

Automated
(AI) Planning

Planning by
state-space
search

Progression

Overview

Example

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Progression planning example (depth-first search)

I

G

Automated
(AI) Planning

Planning by
state-space
search

Progression

Overview

Example

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Progression planning example (depth-first search)

I

G

Automated
(AI) Planning

Planning by
state-space
search

Progression

Overview

Example

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Progression planning example (depth-first search)

I

G

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Overview

Example

STRIPS

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Forward search vs. backward search

Going through a transition graph in forward and backward
directions is not symmetric:

forward search starts from a single initial state;
backward search starts from a set of goal states

when applying an operator o in a state s in forward
direction, there is a unique successor state s′;
if we applied operator o to end up in state s′,
there can be several possible predecessor states s

 most natural representation for backward search in planning
associates sets of states with search nodes

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Overview

Example

STRIPS

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Planning by backward search: regression

Regression: Computing the possible predecessor states regro(S)
of a set of states S with respect to the last operator o that was
applied.

Regression planners find solutions by backward search:

start from set of goal states

iteratively pick a previously generated state set and
regress it through an operator, generating a new state set

solution found when a generated state set includes the
initial state

Pro: can handle many states simultaneously
Con: basic operations complicated and expensive

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Overview

Example

STRIPS

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Search space representation in regression planners

identify state sets with logical formulae:

search nodes correspond to state sets

each state set is represented by a logical formula:
φ represents {s ∈ S | s |= φ}
many basic search operations like detecting duplicates are
NP-hard or coNP-hard

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Overview

Example

STRIPS

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Regression planning example (depth-first search)

I

G

Gφ1φ1 = regr−→(G) φ2

φ2 = regr−→(φ1)
φ3

φ3 = regr−→(φ2), I |= φ3

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Overview

Example

STRIPS

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Regression planning example (depth-first search)

I

G

G

φ1φ1 = regr−→(G) φ2

φ2 = regr−→(φ1)
φ3

φ3 = regr−→(φ2), I |= φ3

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Overview

Example

STRIPS

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Regression planning example (depth-first search)

I

G

Gφ1φ1 = regr−→(G)

φ2

φ2 = regr−→(φ1)
φ3

φ3 = regr−→(φ2), I |= φ3

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Overview

Example

STRIPS

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Regression planning example (depth-first search)

I

G

Gφ1φ1 = regr−→(G) φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Overview

Example

STRIPS

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Regression planning example (depth-first search)

I

G

Gφ1φ1 = regr−→(G) φ2

φ2 = regr−→(φ1)
φ3

φ3 = regr−→(φ2), I |= φ3

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Overview

Example

STRIPS

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Regression for STRIPS planning tasks

Definition (STRIPS planning task)

A planning task is a STRIPS planning task if all operators are
STRIPS operators and the goal is a conjunction of literals.

Regression for STRIPS planning tasks is very simple:

Goals are conjunctions of literals l1 ∧ · · · ∧ ln.

First step: Choose an operator that makes some of
l1, . . . , ln true and makes none of them false.

Second step: Remove goal literals achieved by the
operator and add its preconditions.

 Outcome of regression is again conjunction of literals.

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Nodes and states

Search for
planning

Uninformed
search

Heuristic
search

Choices to make:

1 search direction: progression/regression/both
 above

2 search space representation: states/sets of states
 above

3 search algorithm: uninformed/heuristic; systematic/local
 this chapter

4 search control: heuristics, pruning techniques
 next chapters

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Nodes and states

Search for
planning

Uninformed
search

Heuristic
search

Search

Search algorithms are used to find solutions (plans) for
transition systems in general, not just for planning tasks.

Planning is one application of search among many.

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Nodes and states

Search for
planning

Uninformed
search

Heuristic
search

Required ingredients for search

A general search algorithm can be applied to any transition
system for which we can define the following three operations:

init(): generate the initial state

is-goal(s): test if a given state is a goal state

succ(s): generate the set of successor states of state s,
along with the operators through which they are reached
(represented as pairs 〈o, s′〉 of operators and states)

Together, these three functions form a search space (a very
similar notion to a transition system).

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Nodes and states

Search for
planning

Uninformed
search

Heuristic
search

Search for planning: progression

Let Π = 〈V, I,O,G〉 be a planning task.

Search space for progression search

states: all states of Π (assignments to V)

init() = I

succ(s) = {〈o, s′〉 | o ∈ O, s′ = appo(s)}

is-goal(s) =

{
true if s |= G

false otherwise

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Nodes and states

Search for
planning

Uninformed
search

Heuristic
search

Classification of search algorithms

uninformed search vs. heuristic search:

uninformed search algorithms only use the basic
ingredients for general search algorithms

heuristic search algorithms additionally use heuristic
functions which estimate how close a node is to the goal

systematic search vs. local search:

systematic algorithms consider a large number of search
nodes simultaneously

local search algorithms work with one (or a few) candidate
solutions (search nodes) at a time

not a black-and-white distinction; there are crossbreeds
(e. g., enforced hill-climbing)

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Nodes and states

Search for
planning

Uninformed
search

Heuristic
search

Classification: what works where in planning?

uninformed vs. heuristic search:

For satisficing planning, heuristic search vastly
outperforms uninformed algorithms on most domains.

For optimal planning, the difference is less pronounced. An
efficiently implemented uninformed algorithm is not easy
to beat in most domains. (But doable! We’ll see that
later.)

systematic search vs. local search:

For satisficing planning, the most successful algorithms are
somewhere between the two extremes.

For optimal planning, systematic algorithms are required.

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Uninformed search algorithms
Less relevant for planning, yet not irrelevant

Popular uninformed systematic search algorithms:

breadth-first search

depth-first search

iterated depth-first search

Popular uninformed local search algorithms:

random walk

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Heuristic search algorithms: systematic

Heuristic search algorithms are the most common and
overall most successful algorithms for classical planning.

Popular systematic heuristic search algorithms:

greedy best-first search

A∗

weighted A∗

IDA∗

depth-first branch-and-bound search

breadth-first heuristic search

. . .

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Heuristic search algorithms: local

Heuristic search algorithms are the most common and
overall most successful algorithms for classical planning.

Popular heuristic local search algorithms:

hill-climbing

enforced hill-climbing

beam search

tabu search

genetic algorithms

simulated annealing

. . .

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Heuristic search: idea

goal
init

dista
nce estim

ate
distance estimate

distance estimate

distance estimate

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Required ingredients for heuristic search

A heuristic search algorithm requires one more operation
in addition to the definition of a search space.

Definition (heuristic function)

Let Σ be the set of nodes of a given search space.
A heuristic function or heuristic (for that search space) is a
function h : Σ→ N0 ∪ {∞}.

The value h(σ) is called the heuristic estimate or heuristic
value of heuristic h for node σ. It is supposed to estimate the
distance from σ to the nearest goal node.

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

What exactly is a heuristic estimate?

What does it mean that h “estimates the goal distance”?

For most heuristic search algorithms, h does not need to
have any strong properties for the algorithm to work
(= be correct and complete).

However, the efficiency of the algorithm closely relates to
how accurately h reflects the actual goal distance.

For some algorithms, like A∗, we can prove strong formal
relationships between properties of h and properties of the
algorithm (optimality, dominance, run-time for bounded
error, . . .)

For other search algorithms, “it works well in practice” is
often as good an analysis as one gets.

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Heuristics applied to nodes or states?

Most texts apply heuristic functions to states, not nodes.

This is slightly less general than our definition:

Given a state heuristic h, we can define an equivalent node
heuristic as h′(σ) := h(state(σ)).
The opposite is not possible. (Why not?)

There is good justification for only allowing state-defined
heuristics: why should the estimated distance to the goal
depend on how we ended up in a given state s?

We call heuristics which don’t just depend on state(σ)
pseudo-heuristics.

In practice there are sometimes good reasons to have the
heuristic value depend on the generating path of σ

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Perfect heuristic

Let Σ be the set of nodes of a given search space.

Definition (optimal/perfect heuristic)

The optimal or perfect heuristic of a search space is the
heuristic h∗ which maps each search node σ to the length of a
shortest path from state(σ) to any goal state.

Note: h∗(σ) =∞ iff no goal state is reachable from σ.

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Properties of heuristics

A heuristic h is called

safe if h∗(σ) =∞ for all σ ∈ Σ with h(σ) =∞
goal-aware if h(σ) = 0 for all goal nodes σ ∈ Σ
admissible if h(σ) ≤ h∗(σ) for all nodes σ ∈ Σ
consistent if h(σ) ≤ h(σ′) + 1 for all nodes σ, σ′ ∈ Σ
such that σ′ is a successor of σ

Relationships?

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Greedy best-first search

Greedy best-first search (with duplicate detection)

open := new min-heap ordered by (σ 7→ h(σ))
open.insert(make-root-node(init()))
closed := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) <∞:

open.insert(σ′)
return unsolvable

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Properties of greedy best-first search

one of the three most commonly used algorithms for
satisficing planning

complete for safe heuristics (due to duplicate detection)

suboptimal unless h satisfies some very strong
assumptions (similar to being perfect)

invariant under all strictly monotonic transformations of h
(e. g., scaling with a positive constant or adding a
constant)

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

A∗

A∗ (with duplicate detection and reopening)

open := new min-heap ordered by (σ 7→ g(σ) + h(σ))
open.insert(make-root-node(init()))
closed := ∅
distance := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed or g(σ) < distance(state(σ)):

closed := closed ∪ {state(σ)}
distance(σ) := g(σ)
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) <∞:

open.insert(σ′)
return unsolvable

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

A∗ example
Example

G

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

A∗ example
Example

G

I

0+3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

3

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

A∗ example
Example

G

I

0+3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

3

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

A∗ example
Example

G

I

0+3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

A∗ example
Example

G

I

0+3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

1

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Terminology for A∗

f value of a node: defined by f(σ) := g(σ) + h(σ)
generated nodes: nodes inserted into open at some point

expanded nodes: nodes σ popped from open for which the
test against closed and distance succeeds

reexpanded nodes: expanded nodes for which
state(σ) ∈ closed upon expansion (also called reopened
nodes)

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Properties of A∗

the most commonly used algorithm for optimal planning

rarely used for satisficing planning

complete for safe heuristics (even without duplicate
detection)

optimal if h is admissible and/or consistent (even without
duplicate detection)

never reopens nodes if h is consistent

Implementation notes:

in the heap-ordering procedure, it is considered a good
idea to break ties in favour of lower h values

can simplify algorithm if we know that we only have to
deal with consistent heuristics

common, hard to spot bug: test membership in closed at
the wrong time

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Weighted A∗

Weighted A∗ (with duplicate detection and reopening)

open := new min-heap ordered by (σ 7→ g(σ) +W · h(σ))
open.insert(make-root-node(init()))
closed := ∅
distance := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed or g(σ) < distance(state(σ)):

closed := closed ∪ {state(σ)}
distance(σ) := g(σ)
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) <∞:

open.insert(σ′)
return unsolvable

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Properties of weighted A∗

The weight W ∈ R+
0 is a parameter of the algorithm.

for W = 0, behaves like breadth-first search

for W = 1, behaves like A∗

for W →∞, behaves like greedy best-first search

Properties:

one of the three most commonly used algorithms for
satisficing planning

for W > 1, can prove similar properties to A∗, replacing
optimal with bounded suboptimal: generated solutions are
at most a factor W as long as optimal ones

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Hill-climbing

Hill-climbing

σ := make-root-node(init())
forever:

if is-goal(state(σ)):
return extract-solution(σ)

Σ′ := {make-node(σ, o, s) | 〈o, s〉 ∈ succ(state(σ)) }
σ := an element of Σ′ minimizing h (random tie breaking)

can easily get stuck in local minima where immediate
improvements of h(σ) are not possible

many variations: tie-breaking strategies, restarts

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Enforced hill-climbing

Enforced hill-climbing: procedure improve

def improve(σ0):
queue := new fifo-queue
queue.push-back(σ0)
closed := ∅
while not queue.empty():

σ = queue.pop-front()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if h(σ) < h(σ0):

return σ
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
queue.push-back(σ′)

fail

 breadth-first search for more promising node than σ0

Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search

Heuristics

Systematic
search

Local search

Enforced hill-climbing (ctd.)

Enforced hill-climbing

σ := make-root-node(init())
while not is-goal(state(σ)):

σ := improve(σ)
return extract-solution(σ)

one of the three most commonly used algorithms for
satisficing planning

can fail if procedure improve fails (when the goal is
unreachable from σ0)

complete for undirected search spaces (where the
successor relation is symmetric) if h(σ) = 0 for all goal
nodes and only for goal nodes

	Planning by state-space search
	Introduction
	Classification of state-space search algorithms

	Progression
	Overview
	Example

	Regression
	Overview
	Example
	Regression for STRIPS tasks

	Search algorithms for planning
	Search nodes & search states
	Search for planning

	Uninformed search algorithms
	Heuristic search algorithms
	Heuristics: definition and properties
	Systematic heuristic search algorithms
	Heuristic local search algorithms

