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»Expressing Epipolar Constraint Algebraically

Pi:[Qi qz'}IKi[Ri ti]7i:12

I’
R, — relative camera rotation, Ra; = RZRIT

to1 — relative camera translation, ta; = t2 — R21t1 = —Ra2b —74

b - baseline vector (world coordinate system)

remember: C = —Q 'q=-R't

—33 and 35
0=d; p. ~ (Q;'m)" QL =m; Q; Q) (e1 xm)=my (Q; Q [e1],) mu
~—~ N — N~ N

normal of optical ray  optical plane

image of ¢ in 72 fundamental matrix F

Epipolar constraint mJ Fm; =0 s a point-line incidence constraint

® point my is incident on epipolar line I ~ Fm; e Fer=F'ex=0 (non-trivially)

e point my is incident on epipolar line I} ~ F " mjy e all epipolars meet at the epipole

e1~Q,Cs+q, =Q,C:—Q,Ci =KiRib=-K RiR; t2; = —K;Rj; to1

_ _ ® 1 — _
F=Q, ' Q/ [e], =Q; Q| [-KiRjto1], = - ~ K5 ' [~t21] Ro1 K7 " fundamental
E = [—t21]XR21 = [sz} ><13,21 = R21 [Rlb] % = R21[—R2Tlt21]x essential

—— ——
baseline in Cam 2 baseline in Cam 1
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» The Structure and the Key Properties of the Fundamental Matrix

left epipole right epipole
—1 \—T -T T —76 ” -T -1
F=(Q,Q; ) [ei], =K; RauK, [e1], = [Hee], He=K; [—tai], Ro1 K5
——r N————
epipolar homography H H;T essential matrix E
1. E captures relative camera pose only [Longuet-Higgins 1981]
(the change of the world coordinate system does not change E)
R t
[R; t}]=[Ri t- [0T 1} = [RR Rit+t],
. then
Ry =R)R; = =Ra thy =th —Rhit) = =t

2. the translation length t2; is lost since E is homogeneous
3. F maps points to lines and it is not a homography
4. H. maps epipoles to epipoles, H. T epipolar lines to epipolar lines: 1, ~ H. '],
another epipolar line map: 1, >~ Fle1], It
e proof by point/line ‘transmutation’ (left)
® point e; does not lie on line e; (dashed): ngel #0

e Flei], is not a homography, unlike HZ T but it does the
same job for epipolar line mapping

® no need to decompose F to obtain H,
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»Summary: Relations and Mappings Involving Fundamental Matrix

©
R
=]
£
=

e ~null(F")

e ~H. e e~ H.e
L ~F m I~ Fmy
L~HbL L~H, 'L

I ~ FT[@z}Xlz I ~ Flei] i

F[e1], maps epipolar lines to epipolar lines but it is
not a homography

H. = Q2Q1_1 is the epipolar homography—78
H;T maps epipolar lines to epipolar lines, where

H. = Q,Q; ' = KoRao1Ki'!

you have seen this —59

H, or F ey«
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»Representation Theorem for Fundamental Matrices
Def: F is fundamental when F ~ H’T[gl}x, where H is regular and e; ~ null F # 0.

Theorem: A 3 X 3 matrix A is fundamental iff it is of rank 2.

Proof.
Direct: By the geometry, H is full-rank, e; # 0, hence H’T[gl]>< is a 3 X 3 matrix of rank 2.
Converse:

1. let A =UDV' be the SVD of A of rank 2: then D = diag(A1,A2,0), A1 > A2 >0

2. we write D = BC, where B = diag(A1, A2, A3), C = diag(1,1,0)

3. then A =UBCV' = UBCWW' VT with W rotation

I
4. we look for a rotation W that maps C to a skew-symmetric S, i.,e. S = CW

0 a 0
5. then W= |—a 0 0], |a]=1 and S=][s],,s=(0,0,1)
0 0 1
6. we write ©1 v3 — 3rd column of V, us — 3rd column of U
A=UB[s|, W'V =5 =UB(VW)T [v3], ~ [Hvs], H, (12)
%/_/,T ——
~H z[ug]><
7. H regular, Avg =0, usA =0 for v3 # 0, ug # 0 O

® we also got a (non-unique: «, A3) decomposition formula for fundamental matrices
o it follows there is no constraint on F' except for the rank
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» Representation Theorem for Essential Matrices

Theorem
Let E be a 3 x 3 matrix with SVD E = UDV . Then E is essential iff D ~ diag(1,1,0).

Proof.

Direct:

If E is an essential matrix, then the epipolar homography matrix is a rotation matrix
(—78), hence H™ T ~ UB(VW) T in (12) must be ()\-scaled) orthogonal, therefore
B =l we have fixed the missing A3 in (12)

Then
Ryu=H "~UW' V' ~UWV'

Converse:

E is fundamental with

D = diag(A, A\, 0) = AI diag(1,1,0)
B D

then B = AL in (12) and U(VW) is orthogonal, as required. O
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»Essential Matrix Decompaosition
We are decomposing E to E ~ [—t21], Ra1 = Ro1[-Rg t21],, [H&Z, sec. 9.6]

1. compute SVD of E = UDV " and verify D = Adiag(1,1,0)
2. ensure U, V are rotation matrices by U — det(U)U, V — det(V)V
3. compute

0 o O
Ray=U|—-a 0 0 VT, to1 = —,3113, \a| = 1, ﬂ 75 0 (13)
0 0 1
Notes W

® v3 ~ R;ltgl by (12), hence Ra1v3 =~ t21 ~ ug since it must fall in left null space by
E ~ [UB]XRQI

® to; is recoverable up to scale 3 and direction sign (3
o the result for R21 is unique up to ao = £1 despite non-uniqueness of SVD
e the change of sign in « rotates the solution by 180° about to;

R(e) =UWV' R(-a)=UW'V' = T =R(-a)R' (a) = --- = Udiag(—1,-1,1)U"
which is a rotation by 180° about us ~ ta1: show that ug is the rotation axis

-1 0 0] o
Udiag(—1,-1,1)U us=U |0 -1 0| [0 =us
o o 1|1

® 4 solution sets for 4 sign combinations of «;, (8 see next for geometric interpretation
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»Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then t2; = —b
and W rotates about the baseline b. —77

o, —f (baseline reversal) —a, —f (combination of both)

o chirality constraint: all 3D points are in front of both cameras
e this singles-out the upper left case [H&Z, Sec. 9.6.3]
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»7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(x;,1:)}*_, of k = 7 finite correspondences, estimate f. m. F.

X?F&-zo, i=1,...,k,  known: )gz(uhvil,l), }ﬁ:(u?,vf,l)

terminology: correspondence = truth, later: match = algorithm’s result; hypothesized corresp.

Solution:
T T T\ T . .
Yi Fx, = (XZ)S,L ) F = (vec()ﬁ&v )) VQC(F)7 rotation property of matrix trace =71
T 9 .
vec(F) = [fll f21 f31 . f33] cR column vector from matrix
™ T 1,2 12 .1 .21 1.2 .1 .2 2
(VeC(Y1X1 ))T wju]  wivy uwy wjvi wvivy wvi ui vy 1
1,2 1,2 1 2.1 1,2 1 2 2
(Vec(y2x2 )) UsU5  UIVE  UZ UV VaV; U3 u5 v 1
T 1,2 1,2 1 2.1 1,2 1 2 2
D= | (vec(ysx3)) | = | usuz wusvs wus wivs wvzvy vy uz vy 1| c ko
' 12 1,2 1 2.1 1,2 1 2 2
TV T URUE  URVE UL ULV, UpVp Uy UL U 1
(VeC(kak )) kUK EVk k EVk  URpVk Ui k k

Dvec(F)=0
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»7-Point Algorithm Continued

Dvec(F) =0, DeR"

e for k = 7 we have a rank-deficient system, the null-space of D is 2-dimensional

e but we know that det F' = 0, hence
1. find a basis of the null space of D: Fy, Fa by SVD or QR factorization
2. get up to 3 real solutions for o from
det(aF1 4+ (1 — a)F2) =0 cubic equation in a
3. get up to 3 fundamental matrices F; = a;F1 + (1 — «;)F2
4. if rank F; < 2 for all i = 1,2, 3 then fail

e the result may depend on image (domain) transformations

e normalization improves conditioning —92
o this gives a good starting point for the full algorithm —104
e dealing with mismatches need not be a part of the 7-point algorithm —105
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A Note on Oriented Epipolar Constraint

e a tighter epipolar constraint preserves orientations

e requires all points and cameras be on the same side of the plane at infinity

(e2 xmy) + Fmy

notation: m + n means m = An, A >0

=}

® we can read the constraint as (e X m2) + H. " (e1 x my)

® note that the constraint is not invariant to the change of either sign of m;

e all 7 correspondence in 7-point alg. must have the same sign see later
o this may help reject some wrong matches, see —105 [Chum et al. 2004]
® an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint
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