3D Computer Vision

Radim Šára Martin Matoušek
Center for Machine Perception
Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. November 2, 2021

Open Informatics Master's Course

Expressing Epipolar Constraint Algebraically

Epipolar constraint $\quad \underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1}=0 \quad$ is a point-line incidence constraint

- point $\underline{\mathbf{m}}_{2}$ is incident on epipolar line $\underline{\mathbf{l}}_{2} \simeq \mathbf{F} \underline{\mathbf{m}}_{1}$
- point $\underline{\mathbf{m}}_{1}$ is incident on epipolar line $\underline{l}_{1} \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2}$
- $\mathbf{F e}_{1}=\mathbf{F}^{\top} \underline{\mathbf{e}}_{2}=\mathbf{0}$ (non-trivially)
- all epipolars meet at the epipole

$$
\begin{aligned}
& \underline{\mathbf{e}}_{1} \simeq \mathbf{Q}_{1} \mathbf{C}_{2}+\mathbf{q}_{1}=\mathbf{Q}_{1} \mathbf{C}_{2}-\mathbf{Q}_{1} \mathbf{C}_{1}=\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{b}=-\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{R}_{2}^{\top} \mathbf{t}_{21}=-\mathbf{K}_{1} \mathbf{R}_{21}^{\top} \mathbf{t}_{21} \\
& \mathbf{F}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\mathbf{e}_{1}\right]_{\times}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[-\mathbf{K}_{1} \mathbf{R}_{21}^{\top} \mathbf{t}_{21}\right]_{\times}={ }^{\circledast 1} \simeq \mathbf{K}_{2}^{-\top}\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21} \mathbf{K}_{1}^{-1} \text { fundamental } \\
& \mathbf{E}=\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\underbrace{\left[\mathbf{R}_{2} \mathbf{b}\right]_{\times}}_{\text {baseline in Cam 2 }} \mathbf{R}_{21}=\mathbf{R}_{21} \underbrace{\left[\mathbf{R}_{1} \mathbf{b}\right]_{\times}}_{\text {baseline in Cam 1 }}=\mathbf{R}_{21}\left[-\mathbf{R}_{21}^{\top} \mathbf{t}_{21}\right]_{\times} \quad \text { essential }
\end{aligned}
$$

-The Structure and the Key Properties of the Fundamental Matrix

$$
\mathbf{F}=(\underbrace{\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}}_{\text {epipolar homography } \mathbf{H}_{e}})^{-\top}\left[\mathbf{e}_{1}\right]_{\times}=\underbrace{\mathbf{K}_{2}^{-\top} \mathbf{R}_{21} \mathbf{K}_{1}^{\top}}_{\mathbf{H}_{e}^{-\top}} \overbrace{\left[\mathbf{e}_{1}\right]_{\times}}^{\text {left epipole }} \stackrel{\sim}{2}_{\sim}^{76} \overbrace{\left[\mathbf{H}_{e} \mathbf{e}_{1}\right]_{\times}}^{\text {right epipole }} \mathbf{H}_{e}=\mathbf{K}_{2}^{-\top} \underbrace{\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}}_{\text {essential matrix } \mathbf{E}} \mathbf{K}_{1}^{-1}
$$

1. E captures relative camera pose only
[Longuet-Higgins 1981]
(the change of the world coordinate system does not change \mathbf{E})

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathbf{R}_{i}^{\prime} & \mathbf{t}_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right] \cdot\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R}_{i} \mathbf{R} & \mathbf{R}_{i} \mathbf{t}+\mathbf{t}_{i}
\end{array}\right], } \\
& \mathbf{R}_{21}^{\prime}= \mathbf{R}_{2}^{\prime} \mathbf{R}_{1}^{\prime}{ }^{\top}=\cdots=\mathbf{R}_{21} \quad \text { then } \\
& \mathbf{t}_{21}^{\prime}=\mathbf{t}_{2}^{\prime}-\mathbf{R}_{21}^{\prime} \mathbf{t}_{1}^{\prime}=\cdots=\mathbf{t}_{21}
\end{aligned}
$$

2. the translation length \mathbf{t}_{21} is lost since \mathbf{E} is homogeneous
3. \mathbf{F} maps points to lines and it is not a homography
4. \mathbf{H}_{e} maps epipoles to epipoles, $\mathbf{H}_{e}^{-\top}$ epipolar lines to epipolar lines: $\mathfrak{l}_{2} \simeq \mathbf{H}_{e}^{-\top} \mathbf{l}_{1}$

another epipolar line map: $\underline{l}_{2} \simeq \mathbf{F}\left[\mathbf{e}_{1}\right]_{\times} \underline{l}_{1}$

- proof by point/line 'transmutation' (left)
- point $\underline{\mathbf{e}}_{1}$ does not lie on line $\underline{\mathbf{e}}_{1}$ (dashed): $\underline{\mathbf{e}}_{1}^{\top} \underline{\mathbf{e}}_{1} \neq 0$
- $\mathbf{F}\left[\mathbf{e}_{1}\right]_{\times}$is not a homography, unlike $\mathbf{H}_{e}^{-\top}$ but it does the same job for epipolar line mapping
- no need to decompose \mathbf{F} to obtain \mathbf{H}_{e}

Summary: Relations and Mappings Involving Fundamental Matrix

$$
\begin{aligned}
0 & =\underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1} & & \\
\underline{\mathbf{e}}_{1} & \simeq \operatorname{null}(\mathbf{F}), & & \underline{\mathbf{e}}_{2} \simeq \operatorname{null}\left(\mathbf{F}^{\top}\right) \\
\underline{\mathbf{e}}_{1} & \simeq \mathbf{H}_{e}^{-1} \underline{\mathbf{e}}_{2} & & \underline{\mathbf{e}}_{2} \simeq \mathbf{H}_{e} \underline{\mathbf{e}}_{1} \\
\underline{\mathbf{l}}_{1} & \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2} & & \underline{\mathbf{l}}_{2} \simeq \mathbf{F} \underline{\mathbf{m}}_{1} \\
\underline{\mathbf{l}}_{1} & \simeq \mathbf{H}_{e}^{\top} \underline{\mathbf{l}}_{2} & & \underline{\mathbf{l}}_{2} \simeq \mathbf{H}_{e}^{-\top} \underline{\mathbf{l}}_{1} \\
\underline{l}_{1} & \simeq \mathbf{F}^{\top}\left[\underline{\mathbf{e}}_{2}\right]_{\times} \underline{\mathbf{l}}_{2} & & \underline{l}_{2} \simeq \mathbf{F}\left[\underline{\mathbf{e}}_{1}\right]_{\times} \underline{\mathbf{l}}_{1}
\end{aligned}
$$

- $\mathbf{F}\left[\mathbf{e}_{1}\right]_{\times}$maps epipolar lines to epipolar lines but it is not a homography
- $\mathbf{H}_{e}=\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}$ is the epipolar homography $\rightarrow 78$ $\mathbf{H}_{e}^{-\top}$ maps epipolar lines to epipolar lines, where

$$
\mathbf{H}_{e}=\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}=\mathbf{K}_{2} \mathbf{R}_{21} \mathbf{K}_{1}^{-1}
$$

you have seen this $\rightarrow 59$

-Representation Theorem for Fundamental Matrices

Def: \mathbf{F} is fundamental when $\mathbf{F} \simeq \mathbf{H}^{-\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}$, where \mathbf{H} is regular and $\underline{\mathbf{e}}_{1} \simeq \operatorname{null} \mathbf{F} \neq \mathbf{0}$.
Theorem: A 3×3 matrix \mathbf{A} is fundamental iff it is of rank 2 .

Proof.

Direct: By the geometry, \mathbf{H} is full-rank, $\underline{\mathbf{e}}_{1} \neq \mathbf{0}$, hence $\mathbf{H}^{-\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}$is a 3×3 matrix of rank 2 .

Converse:

1. let $\mathbf{A}=\mathbf{U D V}^{\top}$ be the SVD of \mathbf{A} of rank 2; then $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, 0\right), \lambda_{1} \geq \lambda_{2}>0$
2. we write $\mathbf{D}=\mathbf{B C}$, where $\mathbf{B}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right), \mathbf{C}=\operatorname{diag}(1,1,0)$
3. then $\mathbf{A}=\mathbf{U B C V} \mathbf{V}^{\top}=\mathbf{U B C} \underbrace{\mathbf{W} \mathbf{W}^{\top}}_{\mathbf{I}} \mathbf{V}^{\top}$ with \mathbf{W} rotation
4. we look for a rotation \mathbf{W} that maps \mathbf{C} to a skew-symmetric \mathbf{S}, i.e. $\mathbf{S}=\mathbf{C W}$
5. then $\mathbf{W}=\left[\begin{array}{ccc}0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1\end{array}\right],|\alpha|=1$, and $\mathbf{S}=[\mathbf{s}]_{\times}, \mathbf{s}=(0,0,1)$
6. we write

$$
\begin{equation*}
\mathbf{A}=\mathbf{U B}[\mathbf{s}]_{\times} \mathbf{W}^{\top} \mathbf{V}^{\top}=\cdots{ }^{\circledast}=\underbrace{\mathbf{U B}(\mathbf{V} \mathbf{W})^{\top}}_{\simeq \mathbf{H}^{-\top}}\left[\mathbf{v}_{3}\right]_{\times} \simeq \underbrace{\left[\mathbf{H v}_{3}\right]_{\times}}_{\simeq\left[\mathbf{u}_{3}\right]_{\times}} \mathbf{H}, \tag{12}
\end{equation*}
$$

7. \mathbf{H} regular, $\mathbf{A v}_{3}=\mathbf{0}, \mathbf{u}_{3} \mathbf{A}=\mathbf{0}$ for $\mathbf{v}_{3} \neq \mathbf{0}, \mathbf{u}_{3} \neq \mathbf{0}$

- we also got a (non-unique: α, λ_{3}) decomposition formula for fundamental matrices
- it follows there is no constraint on \mathbf{F} except for the rank

Representation Theorem for Essential Matrices

Theorem

Let \mathbf{E} be a 3×3 matrix with $S V D \mathbf{E}=\mathbf{U D V}^{\top}$. Then \mathbf{E} is essential iff $\mathbf{D} \simeq \operatorname{diag}(1,1,0)$.

Proof.

Direct:
If \mathbf{E} is an essential matrix, then the epipolar homography matrix is a rotation matrix $(\rightarrow 78)$, hence $\mathbf{H}^{-\top} \simeq \mathbf{U B}(\mathbf{V W})^{\top}$ in (12) must be (λ-scaled) orthogonal, therefore $\mathbf{B}=\lambda \mathbf{I}$. we have fixed the missing λ_{3} in (12)

Then

$$
\mathbf{R}_{21}=\mathbf{H}^{-\top} \simeq \mathbf{U} \mathbf{W}^{\top} \mathbf{V}^{\top} \simeq \mathbf{U W} \mathbf{V}^{\top}
$$

Converse:
\mathbf{E} is fundamental with

$$
\mathbf{D}=\operatorname{diag}(\lambda, \lambda, 0)=\underbrace{\lambda \mathbf{I}}_{\mathbf{B}} \underbrace{\operatorname{diag}(1,1,0)}_{\mathbf{D}}
$$

then $\mathbf{B}=\lambda \mathbf{I}$ in (12) and $\mathbf{U}(\mathbf{V W})^{\top}$ is orthogonal, as required.

Essential Matrix Decomposition

We are decomposing \mathbf{E} to $\mathbf{E} \simeq\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}=\mathbf{R}_{21}\left[-\mathbf{R}_{21}^{\top} \mathbf{t}_{21}\right]_{\times}$

1. compute SVD of $\mathbf{E}=\mathbf{U D V}^{\top}$ and verify $\mathbf{D}=\lambda \operatorname{diag}(1,1,0)$
2. ensure \mathbf{U}, \mathbf{V} are rotation matrices by $\mathbf{U} \mapsto \operatorname{det}(\mathbf{U}) \mathbf{U}, \mathbf{V} \mapsto \operatorname{det}(\mathbf{V}) \mathbf{V}$
3. compute

Notes

$$
\mathbf{R}_{21}=\mathbf{U} \underbrace{\left[\begin{array}{ccc}
0 & \alpha & 0 \tag{13}\\
-\alpha & 0 & 0 \\
0 & 0 & 1
\end{array}\right]}_{\mathbf{W}} \mathbf{V}^{\top}, \quad \mathbf{t}_{21}=-\beta \mathbf{u}_{3}, \quad|\alpha|=1, \quad \beta \neq 0
$$

- $\mathbf{v}_{3} \simeq \mathbf{R}_{21}^{\top} \mathbf{t}_{21}$ by (12), hence $\mathbf{R}_{21} \mathbf{v}_{3} \simeq \mathbf{t}_{21} \simeq \mathbf{u}_{3}$ since it must fall in left null space by $\mathbf{E} \simeq\left[\mathbf{u}_{3}\right]_{\times} \mathbf{R}_{21}$
- \mathbf{t}_{21} is recoverable up to scale β and direction $\operatorname{sign} \beta$
- the result for \mathbf{R}_{21} is unique up to $\alpha= \pm 1$
despite non-uniqueness of SVD
- the change of sign in α rotates the solution by 180° about \mathbf{t}_{21}

$$
\begin{aligned}
& \mathbf{R}(\alpha)=\mathbf{U W} \mathbf{V}^{\top}, \mathbf{R}(-\alpha)=\mathbf{U} \mathbf{W}^{\top} \mathbf{V}^{\top} \Rightarrow \mathbf{T}=\mathbf{R}(-\alpha) \mathbf{R}^{\top}(\alpha)=\cdots=\mathbf{U} \operatorname{diag}(-1,-1,1) \mathbf{U}^{\top} \\
& \text { which is a rotation by } 180^{\circ} \text { about } \mathbf{u}_{3} \simeq \mathbf{t}_{21} \text { : } \\
& \text { show that } \mathbf{u}_{3} \text { is the rotation axis }
\end{aligned}
$$

$$
\mathbf{U} \operatorname{diag}(-1,-1,1) \mathbf{U}^{\top} \mathbf{u}_{3}=\mathbf{U}\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\mathbf{u}_{3}
$$

- 4 solution sets for 4 sign combinations of α, β
see next for geometric interpretation

-Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then $\mathbf{t}_{21}=-\mathbf{b}$ and \mathbf{W} rotates about the baseline \mathbf{b}.

- chirality constraint: all 3D points are in front of both cameras
- this singles-out the upper left case
[H\&Z, Sec. 9.6.3]

7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$ of $k=7$ finite correspondences, estimate f. m. F.

$$
\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}=0, \quad i=1, \ldots, k, \quad \underline{\text { known: }} \quad \underline{\mathbf{x}}_{i}=\left(u_{i}^{1}, v_{i}^{1}, 1\right), \quad \underline{\mathbf{y}}_{i}=\left(u_{i}^{2}, v_{i}^{2}, 1\right)
$$

terminology: correspondence $=$ truth, later: match $=$ algorithm's result; hypothesized corresp.

Solution:

$$
\begin{gathered}
\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}=\left(\underline{\mathbf{y}}_{i} \underline{\mathbf{x}}_{i}^{\top}\right): \mathbf{F}=\left(\operatorname{vec}\left(\underline{\mathbf{y}}_{i} \underline{\mathbf{x}}_{i}^{\top}\right)\right)^{\top} \operatorname{vec}(\mathbf{F}), \quad \text { rotation property of matrix trace } \rightarrow 71 \\
\operatorname{vec}(\mathbf{F})=\left[\begin{array}{llll}
f_{11} & f_{21} & f_{31} & \ldots \\
l_{3}
\end{array} f^{\top} \in \mathbb{R}^{9} \quad\right. \text { column vector from matrix } \\
\mathbf{D}=\left[\begin{array}{c}
\left(\operatorname{vec}\left(\mathbf{y}_{1} \mathbf{x}_{1}^{\top}\right)\right)^{\top} \\
\left(\operatorname{vec}\left(\mathbf{y}_{2} \mathbf{x}_{2}^{\top}\right)\right)^{\top} \\
\left(\operatorname{vec}\left(\mathbf{y}_{3} \mathbf{x}_{3}^{\top}\right)\right)^{\top} \\
\vdots \\
\left(\operatorname{vec}\left(\mathbf{y}_{k} \mathbf{x}_{k}^{\top}\right)\right)^{\top}
\end{array}\right]=\left[\begin{array}{ccccccccc}
u_{1}^{1} u_{1}^{2} & u_{1}^{1} v_{1}^{2} & u_{1}^{1} & u_{1}^{2} v_{1}^{1} & v_{1}^{1} v_{1}^{2} & v_{1}^{1} & u_{1}^{2} & v_{1}^{2} & 1 \\
u_{2}^{1} u_{2}^{2} & u_{2}^{1} v_{2}^{2} & u_{2}^{1} & u_{2}^{2} v_{2}^{1} & v_{2}^{1} v_{2}^{2} & v_{2}^{1} & u_{2}^{2} & v_{2}^{2} & 1 \\
u_{3}^{1} u_{3}^{2} & u_{3}^{1} v_{3}^{2} & u_{3}^{1} & u_{3}^{2} v_{3}^{1} & v_{3}^{1} v_{3}^{2} & v_{3}^{1} & u_{3}^{2} & v_{3}^{2} & 1 \\
\vdots & & & & & & & & \vdots \\
u_{k}^{1} u_{k}^{2} & u_{k}^{1} v_{k}^{2} & u_{k}^{1} & u_{k}^{2} v_{k}^{1} & v_{k}^{1} v_{k}^{2} & v_{k}^{1} & u_{k}^{2} & v_{k}^{2} & 1
\end{array}\right] \in \mathbb{R}^{k, 9}
\end{gathered}
$$

7-Point Algorithm Continued

$$
\mathbf{D} \operatorname{vec}(\mathbf{F})=\mathbf{0}, \quad \mathbf{D} \in \mathbb{R}^{k, 9}
$$

- for $k=7$ we have a rank-deficient system, the null-space of \mathbf{D} is 2-dimensional
- but we know that $\operatorname{det} \mathbf{F}=0$, hence

1. find a basis of the null space of $\mathbf{D}: \mathbf{F}_{1}, \mathbf{F}_{2}$
2. get up to 3 real solutions for α from

$$
\operatorname{det}\left(\alpha \mathbf{F}_{1}+(1-\alpha) \mathbf{F}_{2}\right)=0 \quad \text { cubic equation in } \alpha
$$

3. get up to 3 fundamental matrices $\mathbf{F}_{i}=\alpha_{i} \mathbf{F}_{1}+\left(1-\alpha_{i}\right) \mathbf{F}_{2}$
4. if $\operatorname{rank} \mathbf{F}_{i}<2$ for all $i=1,2,3$ then fail

- the result may depend on image (domain) transformations
- normalization improves conditioning
- this gives a good starting point for the full algorithm
- dealing with mismatches need not be a part of the 7-point algorithm

A Note on Oriented Epipolar Constraint

- a tighter epipolar constraint preserves orientations
- requires all points and cameras be on the same side of the plane at infinity

$$
\left(\underline{\mathbf{e}}_{2} \times \underline{\mathbf{m}}_{2}\right) \stackrel{\mathbf{F}}{\sim} \underline{\mathbf{m}}_{1}
$$

notation: $\underline{\mathbf{m}} \underset{\sim}{ \pm} \underline{\mathbf{n}}$ means $\underline{\mathbf{m}}=\lambda \underline{\mathbf{n}}, \lambda>0$

- we can read the constraint as $\left(\mathbf{e}_{2} \times \underline{\mathbf{m}}_{2}\right) \underset{\sim}{\underset{e}{-\top}}\left(\mathbf{e}_{1} \times \underline{\mathbf{m}}_{1}\right)$
- note that the constraint is not invariant to the change of either sign of $\underline{\underline{m}}_{i}$
- all 7 correspondence in 7 -point alg. must have the same sign
see later
- this may help reject some wrong matches, see $\rightarrow 105$
[Chum et al. 2004]
- an even more tight constraint: scene points in front of both cameras
expensive
this is called chirality constraint

Thank You

