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IStripping MH Down To Get RANSAC [Fischler & Bolles 1981]

• when we are interested in the best config only. . . and we need fast data exploration. . .

. . . then the sampling procedure simplifies:

1. given Ct, draw a random sample S from q(S | Ct) q(S) independent sampling

no use of information from Ct

2. compute acceptance probability

a = min

{
1,

π(S)

π(Ct)
· q(Ct | S)
q(S | Ct)

}
3. draw a random number u from unit-interval uniform distribution U0,1

4. if u ≤ a then Ct+1 := S else Ct+1 := Ct
5. if π(S) > π(Cbest) then remember Cbest := S

Steps 2–4 make no difference when waiting for the best sample configuration

• . . . but getting a good accuracy configuration might take very long this way

• good overall exploration but slow convergence in the vicinity of a mode where Ct could serve
as an attractor

• cannot use the past generated configurations to estimate any parameters

• we will fix these problems by (possibly robust) ‘local optimization’
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IRANSAC with Local Optimization and Early Stopping

1. initialize the best configuration as empty Cbest := ∅ and time t := 0

2. estimate the number of needed proposals as N :=
(n
s

)
n – No. of primitives, s – minimal config size

3. while t ≤ N :

a) propose a minimal random config S of size s from q(S)
S

b) if π(S) > π(Cbest) then

i) update the best config Cbest := S π(S) marginalized as in (26); π(S) includes a prior⇒ MAP

ii) threshold-out inliers using eT from (27)

2eT
S

iii) start local optimization from the inliers of Cbest LM optimization with robustified (→115) Sampson error

possibly weighted by posterior π(mij) [Chum et al. 2003]

LO(Cbest)

iv) update Cbest, update inliers using (27), re-estimate N from inlier counts →124 for derivation

N =
log(1− P )

log(1− εs)
, ε =

| inliers(Cbest)|
mn

,

c) t := t+ 1

4. output Cbest

• see MPV course for RANSAC details see also [Fischler & Bolles 1981], [25 years of RANSAC]
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Example Matching Results for the 7-point Algorithm with RANSAC

input images interest points (ca. 3600) tentative corresp. (416) matching (340)

• no descriptors used

• notice some wrong matches (they have wrong depth, even negative)
remember: hidden labels →111

• they cannot be rejected without additional constraints or scene knowledge

• without local optimization the minimization is over a discrete set of epipolar geometries
proposable from 7-tuples
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Beyond RANSAC

By marginalization in (23) we have lost constraints on M (e.g. uniqueness). One can choose a
better model when not marginalizing:

π(M,F, E,D) = p(E |M,F)︸ ︷︷ ︸
reprojection error

· p(D |M)︸ ︷︷ ︸
similarity

· p(F)︸ ︷︷ ︸
prior

· P (M)︸ ︷︷ ︸
constraints

this is a global model: decisions on mij are no longer independent!

In the MH scheme

• one can work with full p(M,F | E,D), then configuration C = M F computable from M

• explicit labeling mij can be done by, e.g. sampling from

q(mij | F) ∼
(
(1− P0) p1(eij | F), P0 p0(eij | F)

)
when P (M) uniform then always accepted, a = 1 ~ derive

• we can compute the posterior probability of each match p(mij) by histogramming mij
from {Ci}

• local optimization can then use explicit inliers and p(mij)

• error can be estimated for the elements of F from {Ci} does not work in RANSAC!

• large error indicates problem degeneracy this is not directly available in RANSAC

• good conditioning is not a requirement we work with the entire distribution p(F)

• one can find the most probable number of epipolar geometries by reversible jump MCMC

(homographies or other models) and Bayesian model selection

if there are multiple models explaning data, RANSAC will return one of them randomly
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Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image. Principal point is
known, square pixel.

video

simplifications

• vanishing points restricted to the set of all
pairwise segment intersections

• mother lines fixed by segment centroid, then θL
uniquely given by λi, and the configuration is

C = {v1, v2,Λ}

• primitives = line segments

• latent variables

1. each line has a vanishing point label
λi ∈ {∅, 1, 2}, ∅ represents an outlier

2. ‘mother line’ parameters θL (they pass
through their vanishing points)

• explicit variables

1. two unknown vanishing points v1, v2

• marginal proposals (vi fixed, vj proposed)

• minimal configuration s = 2

� = 1
� = 2 � = ;v2

v1
arg min

v1,v2,Λ,θL
V (v1, v2,Λ, θL)
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Module VI

3D Structure and Camera Motion

6.1 Reconstructing Camera System: From Triples and from Pairs

6.2 Bundle Adjustment

covered by

[1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1

[2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop
on Vision Algorithms. Springer-Verlag. pp. 298–372, 1999.

additional references

D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In

Proc CVPR, 2007

M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment.

ACM Trans Math Software 36(1):1–30, 2009.
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IReconstructing Camera System by Gluing Camera Triples

Given: Calibration matrices Kj and tentative correspondences per camera triples.

Initialization

1. initialize camera cluster C with P1, P2,

2. find essential matrix E12 and matches
M12 by the 5-point algorithm →88

3. construct camera pair

P1 = K1

[
I 0

]
, P2 = K2

[
R t

]
4. triangulate {Xi} per match

from M12 →106

5. initialize point cloud X with {Xi}
satisfying chirality constraint zi > 0
and apical angle constraint |αi| > αT

αi

mi2

ei1(Xi,P1)
eij(Xi,Pj)

mij

PjP2

P1

Xi

mi1

Attaching camera Pj /∈ C
1. select points Xj from X that have matches to Pj
2. estimate Pj using Xj , RANSAC with the 3-pt alg. (P3P), projection errors eij in Xj →66

3. reconstruct 3D points from all tentative matches from Pj to all Pl, l 6= k that are not in X
4. filter them by the chirality and apical angle constraints and add them to X
5. add Pj to C
6. perform bundle adjustment on X and C coming next →138
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IThe Projective Reconstruction Theorem

• We can run an analogical procedure when the cameras remain uncalibrated. But:

Observation: Unless Pi are constrained, then for any number of cameras i = 1, . . . , k

mi ' PiX= PiH
−1︸ ︷︷ ︸

P′i

HX︸︷︷︸
X′

= P′iX
′

• when Pi and X are both determined from correspondences (including calibrations
Ki), they are given up to a common 3D homography H

(translation, rotation, scale, shear, pure perspectivity)

�1 �2 −→

m1 m2 X X ′

• when cameras are internally calibrated (Ki known) then H is restricted to a similarity
since it must preserve the calibrations Ki [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981]

(translation, rotation, scale)
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Thank You
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